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The synthesis of sterically hindered primary, secondary and tertiary alcohols is
reported. An unsual monoalkylation/reduction occurs on treatment of a fully
a-substituted methyl carboxylate with /-BuLi. A mechanism not involving a
ketone intermediate but a B-H abstraction from 7-BuLi prior to or after alkylation

is proposed.

We are currently studying the synthesis ot some long-
chain alkenols in which the carbon o or B to the oxygen
atom bears alkyl groups of different size. Since a hindered
ketone and a Grignard reagent with B-hydrogens are
prone to side reactions'= such as enolization and reduc-
tion at the expense of the normal 1,2-addition, a synthetic
route employing an a-disubstituted ester 1a as the starting
material was developed (Scheme 1). An organolithium
reagent was chosen instead of a Grignard reagent since
higher addition to reduction ratios are generally encoun-
tered by the use of the former.!*3

The ester 1a was allowed to react with z-BuLi at —70
or 0°C. The di-fert-butyl derivative 2 was not formed
even in trace amounts at either reaction temperature
according to the NMR spectra measured from the crude
product mixtures. The sec mono-tert-butyl alkenol 3 was
isolated as the sole product in both cases instead.
However, the related tri-zerz-butyl carbinol 6 (Scheme 2)
has been obtained from hexamethylacetone and z-BuLi
at —70°C.® The authors say that the ketone reduction
product 7 appears as a by-product only at temperatures
higher than —40°C.57

We found that tri-zerz-butyl carbinol 6 is formed along
with the di-tert-butyl carbinol derivative 7 in the ratio
2:3at0°C. At —70°C 6 and 7 were formed in the ratio
3:1. Furthermore, the tert-alkenol 8 was produced along
with the ketone 9 (Scheme 3) as a 1:1 mixture from the
ester 1b and s-BuLi at —70 °C or 0°C with no traces of
the corresponding sec mono-tert-butyl alkenol.

These findings clearly indicate that the long hydro-
carbon chain together with the steric hindrance caused
by the alkyl groups around the oxygen moiety in the
ester 1a prevent the normal 1,2-addition. Obviously both
these factors are required for monoalkylation-reduction
to occur since aliphatic cage derivatives of 6 with adam-
antyl, bicyclo[2.2.2]Joctyl and norbornyl substituents
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have been synthesized from a ketone and an organo-
lithium reagent.3-1!

According to the literature, organolithium or Grignard
reagents react with carbonyl compounds to afford addi-
tion products in high yields in the presence of anhydrous
cerium (II1) chloride.'>'* Thus, an attempt was made to
synthesize 2 via a cerium chloride promoted nucleophilic
addition'* of #-BuLi at —70°C to the ester 1a or to the
ketone 10 (Scheme 4), prepared from la and 7-Bul.i at
—70°C. In both cases only the starting material 1a or
10 was recovered.

Almost complete suppression of reduction and enoliz-
ation is observed, in the absence of CeCl; or other
additives, if a ketone is added to a solution of z-BuLi in
THF at —78°C, but not vice versa.'> In an attempt to
react the ketone 10 with z-BuLi accordingly,'® mainly
unchanged starting material remains even after 7 h, along
with a very small amount (< 5%) of the mono-tert-butyl
derivative 3, according to the 'H and '*C NMR spectra
measured from the crude product mixture. Thus it
appears that in the alkylation-reduction of the ester 1a
to the alcohol 3, the ketone 10 is not an intermediate.

An analogous alkylation-reduction of methyl pivalate

\/(CHZh\n/O\ —_— OH
o
8
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9

to hexamethylacetone and the sec-alcohol 7 using tert-
butyl chloride and sodium has been previously mentioned
with little detail and no mechanistic discussion.'® Other
ester-into-sec-alcohol conversions have been performed
with RMgX in the presence of LiBH,,'” Cp,TiCl,'® or
DIBAL.! A mechanism involving a ketone intermediate
was suggested for the first mentioned reaction.!’
Replacing RMgX by RLi produced tert alcohols.!”

For the reaction of the aliphatic ester 1a and z-BuLi
we suggest the following mechanism [Fig. 1(a,b)] which
takes into account the fact that the ketone 10 is not
reduced under our conditions. Compound 3 is formed
when a B-hydrogen atom is abstracted from #-BuLi with
simultaneous formation of lithium methoxide and isobut-
ene, or alternatively, the B-hydrogen atom abstraction
could occur prior to alkylation involving a reduction to
an aldehyde in the first step. The normal 1,2-addition
pathway is prevented by the long hydrocarbon chain.
We realize that alternative single-electron processes may
also be depicted for the 1a — 3 reaction.

The other long-chain alkenols 4 and 5 in Scheme 1
were obtained by treating the ester 1la with CH;Li at
0°C or with LiAlH, in refluxing THF, respectively.
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Fig. 1. (a), (b) Proposed mechanisms for the reduction of the ester 1a by t-BulLi.
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Experimental

'H, *C and 2D NMR spectra (HSQC and HMBC)
were recorded on a Varian Unity 500 MHz, Varian Inova
300 MHz or Varian Gemini 200 MHz spectrometer using
CDCI; as the solvent unless otherwise stated. Infrared
spectra were obtained on a Bio-Rad SPC 3200 spectro-
meter. Mass spectra and high-resolution mass spectra
were recorded on a JEOL JMS-SX102 with an EI
potential of 70 eV. Flash chromatography was carried
out with Merck Silica gel 60 (0.063-0.200 mm).
Preparative layer chromatography was performed on
aluminium oxide 60 F 254 PLC plates (Merck). All
reactions were performed under an argon atmosphere.
Tetrahydrofuran (THF) was freshly distilled from
sodium and benzophenone. 11-Bromoundecene (from
Lancaster), methyl isobutyrate (from Aldrich) and
anhydrous CeCl; (from Fluka) were used as received.
Methyl 9-decenoate (1b), synthesized by Neste, was
distilled before use.

Ester 1a. LDA was prepared from BuLi (1 equiv.) and
diisopropylamine (1 equiv.) at —40°C and then kept at
0°C for 15min.?® Methyl isobutyrate (1 equiv.) was
added at —70 C and the mixture was stirred at that
temperature for 90 min. 11-Bromoundecene (1.5 equiv.)
was added to the mixture at —70°C and the reaction
mixture was allowed to warm to 0°C over 1 h. It was
then stirred overnight at room temperature. The reaction
was quenched with 10% NH,CI (aq.) at 0°C. The crude
product was purified by flash chromatography on silica
gel with gradient elution using hexane and dichlorometh-
ane as solvents. The yield of the pure ester was 4.0 g
(80%).

Compound 3. The ester 1a was treated with +-BuLi (3.5
equiv.) in THF at 0°C for 4h, then left at room
temperature overnight or at —70°C for 5h and then
quenched as stated above. The crude product (yield
0.95 g, 80%) was purified by preparative Al,O; (neutral)
layer chromatography using a hexane-dichloromethane
(7:3) eluent system. The yield of the pure 3 was 0.24 g
(25%), its structure being assigned by 2 D NMR tech-
niques at different temperatures. The characteristic fea-
ture in these spectra is the CHOH proton resonance.
When the 'H NMR spectrum was measured at 27 °C in
CD,Cl,, the methine proton showed an unresolved doub-
let signal at 3 3.05 ppm. The OH proton resonance was
a singlet of chemical shift 1.50 ppm. The coupling con-
stant of 5.5 Hz for the CH and OH protons was deter-
mined from the '"H NMR spectrum measured at —40 °C.
At that temperature the CH and OH resonances are each
divided into a doublet, the former having a chemical
shift of 3.05 ppm and the latter 1.62 ppm. By lowering
the measurement temperature to —70 or —90°C, the
OH proton resonance was observed to shift to § 1.75 or
1.95 ppm in the '"H NMR spectra. IR (KBr): v,,,, 3519,
2922, 1639, 1473, 995, 914 cm™'. 'H NMR (500 MHz,
CD,Cl,): 65.80 (m, 1 H, C=CH), 4.90 (m, 2 H, CH,=C),
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3.05 (unresolved d, 1H, CHOH), 2.00 (m, 2H,
C=C-CH,), 1.50 (s, OH), 1.46 (m, 2 H), 1.36 (m, 2 H),
1.20-1.30 (br, 6 CH,), 1.00 (s, 9 H, ¢-Bu), 0.80 (s, 3 H,
CH;), 0.70 (s, 3H, CH;). 3C NMR (500 MHz,
CD,Cl,): 6 139.5, 114.1, 84.0, 42.3, 40.0, 37.5, 34.0, 31.0,
29.94, 29.87, 29.7, 29.4, 29.2, 29.0, 25.9, 25.5, 24.3.
HRMS: calc. for C,oH350 282.2923, found 282.2909.

Compound 4. The ester 1a was treated with CH,Li (3.5
cquiv.) at 0°C for 2 h 30 min, and then stirred at room
temperature overnight. The crude product (122 mg) was
purified as described above for compound 3 using
dichloromethane as the eluent. The yield of 4 was 50 mg
(41%). IR (KBr): v, 3443, 2932, 1642, 1470, 1378,
1115, 908 cm~'. 'H NMR (500 MHz): & 5.80 (m, 1 H,
C=CH), 490 (m, 2H, CH,=C), 2.00 (m, 2H,
C=C-CH,), 1.40 (s, OH), 1.38 (m, 2 H), 1.34-1.22 (br,
7CH;), 1.20 (s, 6H), 090 (s, 6 H). *C NMR
(500 MHz): & 139.9, 114.8, 76.4, 40.5, 37.6, 34.5, 31.6,
30.4, 30.3, 30.2, 29.8, 29.7, 26.0, 25.4, 22.1. HRMS: calc.
for C;H;,0 254.2609, found 254.2599.

Compound 5. The ester 1a was reduced with LiAIH, (1.5
equiv.) by refluxing the mixture in THF. The yield of
the compound 5 after purification by flash chromato-
graphy on silica gel (CH,Cl, eluent) was 0.50 g (55%).
IR (KBr): v, 3352, 2916, 1643, 1410, 1041, 908 cm ™.
'H NMR (200 MHz): § 5.80 (m, 1 H, C=CH), 5.00 (m,
2H, CH,=C), 3.30 (s, 2H, CH,OH), 2.00 (m, 2H
C=C-CH,), 1.50 (s, OH), 1.20-1.40 (br, 8 CH,), 0.90
(s, 6 H, CH;). '3C NMR (200 MHz): & 139.3, 114.1,
72.1, 38.7, 35.0, 33.8, 30.6, 29.7, 29.6, 29.5, 29.2, 29.0,
23.9. HRMS: cale. for C,;5H;,0 226.2297, found
226.2299.

Compound 8. Methyl 9-decenoate was treated with 7-
BuLi (3.5 equiv.) in THF at 0 or —70°C as described
for compound 3. The raw product (0.58 g) was a 1:1
mixture of the ferz-alkenol 8 and ketone 9. Compound 8
was purified by flash chromatography on neutral Al,O,
using a gradient elution [petroleum ether (b.p.
30-65°C)-diethyl ether mixtures]. The yield of pure 8
was 119mg (21%). IR (KBr): vpa., 3550, 2940, 1640,
1470, 1365, 1000, 920 cm ~*. '"H NMR (300 MHz): § 5.80
(m, 1 H, C=CH), 5.00 (m, 2 H, CH,=C), 2.00 (m, 2 H,
C=C-CH,), 1.58 (t, 2 H), 1.54 (s, OH), 1.20-1.40 (br,
5CH,), 1.00 (s, 18 H, 2 +-Bu). '3C NMR (300 MHz): §
139.2, 114.4, 79.8, 42.6, 34.2, 33.7, 30.9, 30.1, 29.7, 29.4,
28.8, 27.0. EI-MS (m/z) 250 (M —H,0), 211 (M —¢t-Bu).

Compound 10. The ester 1a was treated with 7-BuLi
(1 equiv.) at —70°C for 30 min. The crude product
(119 mg) was isolated as above and purified by preparat-
ive Al,O; (neutral) layer chromatography using a tolu-
ene-pentane (1:9) eluent system. The yield of 10 was
38 mg (32%). IR (KBr): vp.. 2931, 1682, 1482, 1047,
982, 912cm™!. '"H NMR (300 MHz): § 5.80 (m, 1 H,
C=CH), 500 (m, 2H, CH,=C), 2.05 (m, 2H,




C=C-CH,), 1.56 (m, 2 H), 1.36 (m, 2 H), 1.32-1.20 (br,
5 CH, and 5 CH,), 1.12 (m, 2 H). *C NMR (300 MHz):
5 219.1, 139.5, 114.4, 49.8, 46.0, 41.9, 34.1, 30.6, 29.9,
298, 29.7, 29.4, 29.2, 28.8, 26.8, 25.6. HRMS: calc. for
C,oH,cO 280.2766, found 280.2779.

Attempted synthesis of compound 2. A suspension of
anhydrous CeCl; (3.5 or 1.5 equiv.) and dry THF was
stirred overnight at room temperature. -BuLi (3.5 or
1.5 equiv.) was added at —70°C and mixed for 1.5h at
—70°C followed by addition of the ester 1a (1 equiv.)
or ketone 10 (1 equiv.). Stirring was continued for 7 h
at —70°C. Quenching and isolation of the product was
performed as described earlier. In each case only the
starting material was recovered.
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