Short Communication

Stability and Structure of Sodium Tetrafluoroaluminate, NaAIF₄

M. Bruno,^a O. Herstad^b and J. L. Holm^{a,*}

^aDepartment of Inorganic Chemistry and ^bDepartment of Physical Chemistry, The Norwegian University of Science and Technology N-7034 Trondheim, Norway

Bruno, M., Herstad, O. and Holm, J. L., 1998. Stability and Structure of Sodium Tetrafluoroaluminate, NaAlF₄. – Acta Chem. Scand. 52: 1399–1401. © Acta Chemica Scandinavica 1998.

The binary system NaF-AlF₃ contains two compounds, one congruently melting compound corresponding to the mineral cryolite, Na₃AlF₆, and one incongruently melting compound corresponding to the mineral chiolite, Na₅Al₃F₁₄. There has been some doubt about the existence and stability of a third compound in the system, sodium tetrafluoroaluminate, NaAlF₄. About 40 years ago Howard¹ demonstrated the existence of NaAlF₄ by quenching the vapour above a molten mixture of NaF and AlF₃. The existence of NaAlF₄ has later been verified by several authors. These investigations have been summarized among others by Holm and co-workers.²⁻⁴ In the paper by Bjørseth et al.4 published in 1986, the disproportionation of solid NaAlF₄ was studied by X-ray diffraction analysis and differential scanning calorimetry in the temperature range 400-900 K. Both techniques showed that solid NaAlF₄ is a metastable phase at room temperature, and that at higher temperatures it decomposes to chiolite, Na₅Al₃F₁₄, and aluminium fluoride, AlF₃. The disproprotionation takes place at a considerable rate between 700 K and 900 K. The stability of solid NaAlF₄ in water was tested and found to be far less than for the thermodynamically stable compounds Na₅Al₃F₁₄ and AlF₃.

Different attempts have been made to determine the structure of NaAlF₄; by Howard¹ in 1954, Mashovets⁵ in 1957 and Garton and Wanklyn⁶ in 1965. However, owing to coincidence and presence of reflections from both Na₅Al₃F₁₄ and AlF₃ and the instability of the compound, none of these examinations can be considered as accurate or reliable today. Mashovets,⁵ for instance, deduced a unit cell with a = 3.48 Å, c = 6.29 Å and space group P4/mmm (isomorphous with Rb, Tl and K compounds). Garton and Wanklyn⁶ pointed out correctly that the true unit cell must be larger to account for the

additional low-angle lines in their X-ray diagram. They suggested on the basis of their results a unit cell of dimensions a = 14.00 Å and c = 12.00 Å. Their X-ray data are often referred to in the literature today (PDF card 19-1243).

Experimental

The preparation of solid NaAlF₄ from its vapour under controlled conditions was performed by vaporization at 800 °C of a melt of bulk composition corresponding to 5 NaF:3 AlF₃. A sample of the mineral chiolite, Na₅Al₃F₁₄ (hand-picked mineral, clear crystals of the highest purity available from Ivigtut, Greenland),[†] was used as a starting material.

The experimetal set up and the procedure was the same as described in the paper by Bjørseth *et al.*⁴ During the experiment dry nitrogen gas was flushed through the furnace, and the condensation product from the vapour was collected on an alumina filter at room temperature.

X-Ray investigation of a freshly collected NaAlF₄ sample consisting of very fine crystals was carried out by use of a Phillips PW 1730/10 instrument using Cu K α radiation ($\lambda = 1.5418 \text{ Å}$).

The density of NaAlF₄ had been determined earlier on a sample of NaAlF₄ of the same quality by a method described by Biltz.⁷ Shell Odourless kerosene was used as a liquid during the experiment.

Results and discussion

Formation of gaseous NaAlF₄. in Fig. 1 are plotted the free energy taken from Ref. 8 for NaAlF₄(g) in the temperature range 1200–1400 K together with the data

^{*}To whom correspondence should be addressed.

[†]A gift to one of the authors (J.L.H.) from Kryolitselskabet Øresund, Denmark in 1960.

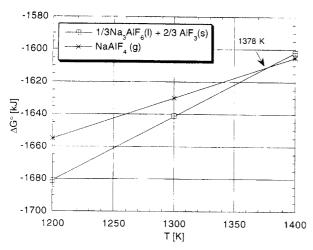


Fig. 1. Free energy data according to Ref. 8 for NaAlF₄(g) and the equilibrium mixture 1/3 Na₃AlF₆(I) + 2/3 AlF₃(s) in the temperature range 1200–1400 K.

for $Na_3AlF_6(1) + AlF_3(s)$ according to the equilibrium 1/3 $Na_3AlF_6(1) + 2/3$ $AlF_3(s) = NaAlF_4(g)$

According to these data, the equilibrium pressure of gaseous NaAlF₄ will reach 1 atm at 1378 K or 1105 °C.

Structure of solid NaAlF₄. The results from the X-ray investigation of NaAlF₄ are presented in Fig. 2. The powder patterns are compared with the diagram based on the results of Garton and Wanklyn results from 1965.⁶

Their diagram clearly contains lines from both $Na_5Al_3F_{14}$ and AlF_3 .

In Table 1 are given the experimental d-values as well as the calculated values based on a tetragonal cell of dimensions $a=7.449\pm0.002$ Å and $c=10.523\pm0.008$ Å. As can be seen, this cell accounts satisfactorily for all observed reflections. The volume of the cell is 583.92 Å³ and contains eight formula units. The theoretical density is, according to the cell dimensions given above, $2.866 \, \mathrm{g \, cm^{-3}}$, in excellent agreement with the experimentally determined value $2.86 \, \mathrm{g \, cm^{-3}}$. The ratio $c/a \approx \sqrt{2}$, and therefore the cell is closely related to a pseudocubic sub-cell with $a \approx c/2$ or $5.26 \, \text{Å}$.

The cell parameters obtained for NaAlF₄ are compared with the cell parameters for chiolite, Na₅Al₃F₁₄, in Table 2. The structures of the two compounds [Na₅Al₃F₁₄ with two units in the cell (Na₁₀Al₆F₂₈) and NaAlF₄ with eight units in the cell (Na₈Al₈F₃₂)] are comparable in size. The differences in the cell parameters a and c can be explained by the fact that that in the chiolite structure one third of the AlF₆ octahedra share four corners and two thirds only two corners with others, while in the MAlF₄ structures all octahedra share four corners.¹⁰

In Fig. 3 are plotted the densities of the five compounds belonging to the NaF-AlF₃ system (NaF, Na₃AlF₆, Na₅Al₃F₁₄, NaAlF₄ and AlF₃) as a function of composition. As can be seen, the density of NaAlF₄ does not fit in with the other four compounds. This is due to the

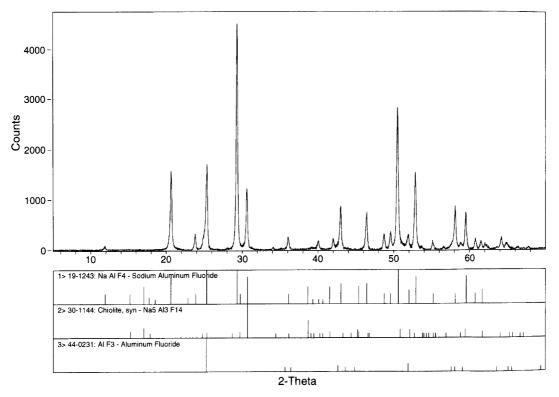


Fig. 2. Powder patterns of NaAlF₄ (PDF: 19-1243), Na₅Al₃F₁₄ (PDF: 30-1144) and AlF₃ (PDF: 44-0231).

Table 1. Results from X-ray examination of NaAlF₄ (20 °C).

h k I	d _{calculated}	d _{measured}	1/10	
100	7.4492	7.450	2	
102	4.2975	4.298	35	
200	3.7246			
112	3.7225	3.722	7	
201	3.5111	3.511	38	
202	3.0400	3.043	100	
113	2.9195	2.919	27	
220	2.6337	2.630	1	
0 0 4	2.6308			
2 2 1	2.5549	2.555	1	
203	2.5535	2.555	•	
300	2.4831	2.488	5	
104	2.4808			
3 1 1	2.2987	2.300	1	
302	2.2456	2.250	3	
3 1 2	2.1500	2.147	4	
2 0 4	2.1488			
2 2 3	2.1061	2.104	19	
3 1 3	1.9556	1.956	16	
115	1.9543			
400	1.8623	1.866	7	
2 2 4	1.8612			
401	1.8338	1.836	7	
2 0 5 4 1 0	1.8323			
-	1.8066 1.8057	1.806	62	
3 0 4 3 3 0				
402	1.7558 1.7556	1.759	5	
3 1 4	1.7549	1.755	5	
3 3 1	1.7319	1.732	33	
106	1.7071	1.706	1	
420	1.6657	1.700	•	
332	1.6655	1.665	4	
116	1.6640		·	
3 2 4	1.6248	1.625	1	
422	1.5880		40	
206	1.5867	1.587	19	
3 3 3	1.5701	1.570	2	
3 1 5	1.5694	1.567	2 3	
2 1 6	1.5519	1.553	16	
4 0 4	1.5200	1.522	5	
423	1.5047	1.506	4	
500	1.4898	1.489	2	
4 3 0	1.4898		2	
117	1.4455	1.450	5	
502	1.4335	1.437	3	
306	1.4325		·	
5 1 2	1.4077	1.407	1	
3 1 6	1.4067			
207	1.3940	1.396	1	
4 4 0	1.3168	1.315	8	
008	1.3154			
5 0 4 4 3 4	1.2964	1.299	3	
	1.2964 1.2953	1.233	3	
108 530	1.2953 1.2775			
4 4 2	1.2774	1.278	10	
- T &	1,2//7			

 $[^]a$ The experimental values are compared with d -values assuming a tetragonal cell with $a\!=\!7.449\pm0.002$ Å and $c\!=\!10.523\pm0.008$ Å.

Table 2. Unit-cell dimensions of NaAlF₄ and Na₅Al₃F₁₄ (space group P4/mnc).

Compound	a/Å	c/Å	Z	Ref.
Na ₅ Al ₃ F ₁₄	7.0142	10.400	2	9
NaAIF ₄	7.4492	10.523	8	This work

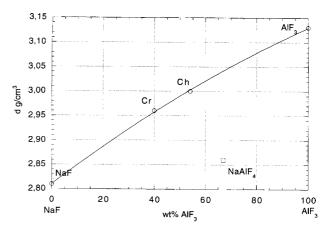


Fig. 3. Densities of five compounds in the NaF-AIF $_3$ system plotted as a function of composition. The densities of NaF, Na $_3$ AIF $_6$, Na $_5$ Al $_3$ F $_{14}$ and AIF $_3$ are as given on their respective PDF cards.

unfavourable and open structure of NaAlF₄, as this solid compound is formed by quenching directly from the vapour.

The decomposition reaction

 $NaAlF_4(s) \rightarrow 1/5 Na_5Al_3F_{14}(s) + 2/5 AlF_3(s)$

will, according to the new data, be accompanied by a reduction in volume of ca. 6%.

References

- 1. Howard, E. H. J. Am. Chem. Soc. 76 (1954) 2041.
- 2. Holm, J. L. Acta Chem. Scand. 27 (1973) 1410.
- 3. Holm, J. L. High Temp. Sci. 6 (1974) 16.
- Bjørseth, O., Herstad, O. and Holm, J. L. Acta Chem. Scand., Ser. A40 (1986) 566.
- 5. Mashovets, V. P. Dokl. Akad. Nauk. SSSR 113 (1957) 1290.
- Garton, G. and Wanklyn, B. M. J. Inorg. Nucl. Chem. 27 (1965) 2461.
- 7. Biltz, W. Z. Anorg. Chem. 134 (1934) 130.
- 8. JANAF Thermochemical Tables, 3rd Edn. J. Phys. Chem. Ref. Data 14 (1985) suppl 1.
- 9. Brosset, C. Z. Anorg. Chem. 228 (1938) 201.
- Wells, A. F. Structural Inorganic Chemistry, 3rd Edn., Oxford at the Claredon Press, London 1962, pp. 382–383.

Received May 20, 1998.