ACTA CHEMICA SCANDINAVICA ISSN 0904 213X

Short Communication

Acid-Catalyzed Hydrolysis of Bridged Bi- and Tricyclic Compounds. XXXIV. 3-Methyl-3-nortricyclanol: Kinetics, Products and Mechanism

Martti Lajunen,* Erja Katainen and Martti Dahlqvist

Department of Chemistry, University of Turku, FIN-20014 Turku, Finland

Lajunen, M., Katainen, E. and Dahlqvist, M., 1998. Acid-Catalyzed Hydrolysis of Bridged Bi- and Tricyclic Compounds. XXXIV. 3-Methyl-3-nortricyclanol: Kinetics, Products and Mechanism. – Acta Chem. Scand. 52: 816–818. © Acta Chemica Scandinavica 1998.

The acid-catalyzed hydration of several 3-X-substituted nortricyclanes (1) has been studied in our laboratory earlier.1,2 Usually the reaction is initiated by the ratedetermining protonation of the cyclopropane ring (X= H, CH₂OH, CH₂Cl, Ac, OH, OCH₃, CN or NO₂; the $Ad_{\rm E}2$ or A- $S_{\rm E}2$ mechanism). In a few cases, however, the protonation of the substituent starts the reaction: e.g. when X = OAc, the $A_{Ac}2$ ester hydrolysis occurs first; when X = O, the cleavage of the cyclopropane ring probably follows an A-2 mechanism; and when $X = CH_3OH$, the cleavage of the cyclopropane ring obeys an A-1 mechanism. In this last case, attempts were made to solve the real route of the reaction using several methods: reaction rate,1,3 activation parameters,3 general acid catalysis, 4 and isotope effects in isotopically different waters, 5 but without result. In the present work, the excess acidity theory⁶ and product analysis by modern instruments are used to solve the mechanism of hydrolysis of 3-methyl-3-notricyclanol (2) in perchloric acid.

Syntheses of 3-methyl-3-nortricyclanol³ (**2**) and 2-methyl-*exo*-5-hydroxy-2-norbornene⁷ (**3**) have been reported, the purities by GC being 99.8% and 97%, respectively.

The disappearance of the substrate (2) in HClO₄(aq) was followed by GC (an FFAP capillary column) with nitrobenzene as the internal standard and dichloromethane as the extracting solvent.⁸ The rate constants of disappearance in aqueous perchloric at 318 K at different acid concentrations are presented in Table 1, and are in good agreement with the rate constants measured earlier in 1 M HClO₄(aq).^{1,3}

The rate constants of disappearance increase steeply with increasing acid concentration. This effect can be analyzed quantitatively with the excess acidity theory,⁶ which offers eqn. (1)⁹

$$\log k_{\psi} - \log c_{H^{+}} = m^{\neq} m^{*} X_{0} - \log[1 + (c_{H^{+}}/K_{SH^{+}}) 10^{m^{*} X_{0}}] + \log(k_{0}/K_{SH^{+}})$$
(1)

for the A-1 mechanism. In the equation, k_{ψ} is the pseudo-

Table 1. Rate constants of disappearance for 3-methyl-3-nortricyclanol (2) in aqueous perchloric acid at 318.2 K at different acid concentrations.

$c(HCIO_4)/M^{a}$	X ₀ ^b	$k_{\psi}/10^{-4} \mathrm{s}^{-2}$
0.990	0.254	0.966(10)
1.432	0.347	2.065(9)
2.010	0.470	4.79(7)
2,445	0.570	8.62(15)
2.970	0.705	17.34(20)
3.451	0.847	33.0(2)
3.844	0.977	55.8(6)

^aTemperature corrected. ^bExcess acidity, ¹⁰ temperature corrected ⁶

^{*} To whom correspondence should be addressed.

Scheme 1.

first-order rate constant in the aqueous acid of concentration $c_{\rm H^+}$ and of excess acidity X_0 ; 10 m^{\neq} and m^* are slope parameters, the former being indicative of the transition state and the latter of the site of proton attack; k_0 stands for the medium-independent rate constant of the rate-limiting step of the reaction and $K_{\rm SH^+}$ for the thermodynamic dissociation constant of the oxygen-protonated substrate (Scheme 1).

Equation (1) can be used to evaluate the best values of parameters m^* , m^{\neq} , $K_{\rm SH^+}$ (or $pK_{\rm SH^+}$) and k_0 [or $\log(k_0/K_{\rm SH^+})$] from the experimental values of k_{ψ} , $c_{\rm H^+}$ and K_0 with the method of nonlinear least-squares minimization. The following values were obtained: $m^*=1.01\pm0.03$, $m^{\neq}=1.92\pm0.05$, $pK_{\rm SH^+}=-1.70\pm0.10$ and $\log(k_0/K_{\rm SH^+})=-4.49\pm0.02$, and seem reasonable. The value of m^* is typical of the protonation of the hydroxylic¹¹ (and ether)^{8,9,12} oxygen atom, that of m^{\neq} accords with the A-1 mechanism, 6,9 and the value of $pK_{\rm SH^+}$ is in agreement with those measured earlier for other alcohols^{11,13,14} (the tertiary hydroxylic oxygen is evidently more basic than primary or secondary).

Equation (1) can be changed to the original linear form, eqn. (2),⁶

$$\log k_{\psi} - \log c_{H^{+}} - \log[c_{S}/(c_{S} + c_{SH^{+}})]$$

$$= m^{\neq} m^{*} X_{0} + \log(k_{0}/K_{SH^{+}})$$
(2)

for Fig. 1 by the aid of eqn. (3):6

$$\log(c_{SH^+}/c_S) - \log c_{H^+} = m^* X_0 + p K_{SH^+}$$
 (3)

In the equations, $c_{\rm S}$ and $c_{\rm SH^+}$ are the concentrations of

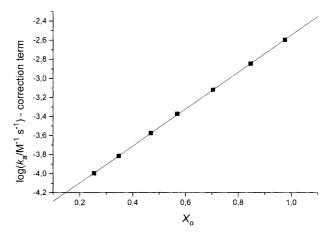


Fig. 1. The excess acidity plot [eqn. (2)] for the hydrolysis of 3-methyl-3-nortricyclanol (2) at 318.2 K in HClO₄(aq) $(k_a = k_\psi/c_{\rm H^+})$. The correction term, $\log[c_{\rm S}/(c_{\rm S} + c_{\rm SH^+}]$, has been calculated with eqn. (3) from the evaluated m^* and p $K_{\rm SH^+}$.

the substrate, unprotonated and protonated on the oxygen atom. As Fig. 1 shows, the plot is strictly linear (r=0.99996).

According to the product analyses,⁸ the substrate produces in 1 M HClO₄(aq) at ca. 318 K three (ca. 1 $t_{1/2}$) to four (ca. 10 $t_{1/2}$) norbornanediols (Scheme 1), which were identified by GC, GC/FTIR and GC/MS and in the case of the main product, *endo-2*-methyl-*exo*,*exo-2*,5-norbornanediol (9), by ¹³C NMR ($\delta_{obs} = \delta_{calc}$ within 1 ppm). The diol 9 [GC/FTIR: $v_{OH} = 3648$ cm⁻¹ and MS, *m/e* (% rel. int.): e.g. 142 (1, M), 124 (17), 109 (14), 106

(1), 95 (16), 81 (22), 80 (21), 67 (29), 66 (95) and 43 (100)] was also observed to be the predominant hydration product (89%; **5**, **6** and **8** are minor products) of 2-methyl-exo-5-hydroxy-2-norbornene (**3**), which reacts ca. 2700 times faster than the substrate **2** in 1 M HClO₄(aq) at 298 K.^{3,7} It is probable that this unsaturated bicyclic alcohol **3** is a fleeting intermediate in the A-1 hydrolysis of **2** (Scheme 1) formed by water attack on the 3-methyl-3-nortricyclyl cation (**7**), which is strongly stabilized by the cyclopropane ring.^{16,17} A minor product (**8**; v_{OH} = 3663 cm⁻¹), probably 1-methyl-exo-2-endo-5-norbornanediol, is evidently also formed via the A-1 mechanism and the Wagner–Meerwein rearrangement (**10**).¹⁸

It is probable that the cyclopropane ring of the substrate 2 is also protonated ($Ad_{\rm E}2$ mechanism; Scheme 1) in the aqueous acids used, although the portion of this route is of minor importance $[k_{obs} \approx 11k_{calc}(Ad_E 2)]$ in 1 M HClO₄ at 348 K]. 1,3 The protonation mostly takes place on C-1 and C-6 and/or on the σ -bond between these,¹ producing 7-methyl-7-hydroxy-2-norbornyl cations (4), which yield the corresponding norbornanediols 5 $[v_{OH} =$ 3574 and 3596 cm⁻¹ (arising from the intramolecularly hydrogen-bonded and free hydroxyl groups, respectively) and m/e 142 (0, M), 124 (38), 109 (16), 106 (2), 95 (20), 81 (100), 80 (74), 67 (20), 66 (9) and 43 (91)] and 6 (3655 cm⁻¹) when reacting with water (Scheme 1). The small yield of these diols (ca. 20% by GC in 1 M HClO₄ at 318 K) seems reasonable. Thus the portion of the A-1 mechanism is probably 90-80% and that of the $Ad_{\rm E}2$ mechanism 10-20% as estimated from the reaction rate and the product analysis, respectively.

Acknowledgements. We are grateful to Miss Kirsti Wiinamäki and Mr. Jaakko Hellman for recording the mass and ¹³ C NMR spectra, respectively.

References

- 1. Lajunen, M. J. Chem. Soc., Perkin Trans. 2 (1986) 1551.
- Lajunen, M., Jantunen, J. and Koiranen, P. Acta Chem. Scand. 52 (1998) 728.
- 3. Lajunen, M. and Hirvonen, P. Finn. Chem. Lett. (1974) 245.
- 4. Lajunen, M. and Wallin, M. . Finn. Chem. Lett. (1974) 251.
- 5. Lajunen, M. Finn. Chem. Lett. (1975) 153.
- 6. Cox, R. A. Acc. Chem. Res. 20 (1987) 27.
- Lajunen, M. and Lyytikäinen, H. Acta Chem. Scand., Ser. A 35 (1981) 131.
- Lajunen, M., Laine, R. and Aaltonen, M. Acta Chem. Scand. 51 (1997) 1155.
- 9. Lajunen, M. and Tanskanen-Lehti, K. Acta Chem. Scand. 48 (1994) 861.
- 10. Cox, R. A. and Yates, K. Can. J. Chem. 59 (1981) 2116.
- 11. Lajunen, M. Virta, M. and Kylliäinen, O. Acta Chem. Scand. 48 (1994) 122.
- Lajunen, M. and Koskinen, J.-M. Acta Chem. Scand. 48 (1994) 788.
- 13. Arnett, E. M. and Wu, C. Y. J. Am. Chem. Soc. 82 (1960) 4999.
- Perdoncin, G. and Scorrano, G. J. Am. Chem. Soc. 99 (1977) 6983.
- Lippmaa, E., Pehk, T., Paasivirta, J., Belikova, N. and Plate, A. Org. Magn. Reson. 2 (1970) 581.
- Richey, H. G., Jr. In: Olah, G. A. and Schleyer, P. von R., Eds., *Carbonim Ions*, Vol. 3, Wiley-Interscience, New York 1972, Chap. 25.
- 17. Olah, G. A. and Liang, G. J. Am. Chem. Soc. 95 (1973) 3792; 97 (1975) 1920.
- E.g. Brown, H. C. The Nonclassical Ion Problem, Plenum Press, New York 1977.

Received October 20, 1997.