Experimental Study of the Moving Chemical Reaction Boundary Formed by Co²⁺ and OH⁻

Cao Cheng-Xiⁿ,* and Chen Wen-Keiᵇ

ⁿDepartment of Forensic Medicine, Wannan Medical College, 241001 Anhui Wuhu, China and
ᵇInstitute of Allergy Research, Wannan Medical College, 241001 Anhui Wuhu, China

Experiments on the moving chemical reaction boundary (MCRB) formed by Co²⁺ and OH⁻ have been performed in 1% (w/v) weight/volume agarose gel containing 0.1 N background electrolyte KCl. The results show that the MCRB experiments are quantitatively in agreement with the predictions of the MCRB theory. Thus, the experiments directly demonstrate the correctness of the theory.

1. Introduction

In our previous reports¹–³ the concept of a moving chemical reaction boundary (MCRB) was proposed, the MCRB theory was advanced and a series of moving chemical reaction boundary equations (MCRBEs) were formulated. From the MCRBEs, one can get

\[\mu^{\beta} = \frac{m_{\alpha} c_{\alpha} E_{\alpha} - m_{\beta} c_{\beta} E_{\beta}}{c_{\alpha} - c_{\beta}} \]

(1)

where the superscripts \(\alpha \) and \(\beta \) indicate phase \(\alpha \) and \(\beta \), respectively, the subscripts + and − indicate positive and negative reacting ions like Co²⁺ and OH⁻, respectively, \(m \) is the mobility, \(c \) the equivalent concentration, and \(E \) the electric strength. Here \(m \) and \(c \) are positive if the ion carries net positive charge(s) or negative if net negative charge(s), as defined by Dole⁴ Alberty⁵ and one of the authors.²³

The theory of the MCRB has been partly proved by the experiments by Deman and Rigole⁶,⁷ and by Pospichal et al.,⁸ and computer simulations based upon Kohlrausch’s beharrliche function.¹⁸

However, systematic experiments have not been performed up to now. Thus the purpose of work reported here is to test the validity of MCRBEs with the experiments of MCRB formed by positive and negative reacting ions, Co²⁺ and OH⁻.

2. Experimental procedures

The reagents used here were CoCl₂·6H₂O, NaOH and KCl, all of them of AR grade (Shanghai Chemical Reagent Co., Shanghai, China). The agarose used to prepare the gel was a biochemical reagent (Shanghai Huang-Hua Pharmaceutical Factory, Shanghai, China). Agarose gel, produced from agar, is preferred in contrast to agar gel, since in agarose gel there is nearly complete absence of electro-osmotic flow (EOF), but the agar has EOF, due to the existence of charged groups in agar gel.⁹

A power supply (DYYIII8A, Beijing Luyi Instrument Factory, Beijing, China), with constant voltage 0–150 or 0–600 V, constant current 0–25 or 0–100 mA and timer equipment, is used to yield direct current. A disc electrophoretic trough (DYYIII27, Beijing Luyi Instrument Factory), together with electrophoretic tubes, is used to perform the MCRB formed by Co²⁺ and OH⁻.

The MCRB experiments were mainly carried out according to the procedures given in Refs. 6 and 7, but with some modifications.

As shown in Fig. 1a, for the anodic movement of MCRB, initially phase \(\alpha \) contains 1% (w/v = weight/volume) agarose gel in tube (but no gel in the anodic vessel), 0.1 N background electrolyte KCl and 0.004–0.02 N, viz. 4–20 equiv. m⁻³ CoCl₂, and phase \(\beta \), viz. the cathode vessel, holds 0.1 N KCl and 0.001–0.02 N, viz. 1–20 equiv. m⁻³ NaOH.

As shown in Fig. 1b for the cathodic movement of MCRB, at the beginning, phase \(\alpha \), viz. the anodic vessel, contains 0.1 N KCl and 0.04/or 0.014 N CoCl₂, and phase \(\beta \) holds 1% (w/v) agarose gel in the tube (but no gel in the cathodic trough), 0.1 N KCl and 0.001/or 0.002 N NaOH.

Each run includes two tubes which are filled with 1% (w/v) agarose gel containing 0.1 N KCl and 0.004–0.014 N CoCl₂ (Fig. 1a), or 0.001–0.02 N NaOH (Fig. 1b).

*To whom correspondence should be addressed.
During each run with two tubes, the blue precipitate reaction boundary, viz. the ‘precipitate reaction front’ as called by Deman and Regole, is formed and moves toward the anode or cathode; the precipitate zone is developed just after the boundary. After each run, the displacements of boundaries for the two tubes (L_{obs}, the positive and negative mean the cathodic and anodic movements, respectively) are equal to the lengths of precipitate zones, which can be directly determined with a vernier caliper; the observed velocity (μ_{obs}, the positive and negative mean the cathodic and anodic movements, respectively) can directly be calculated by

$$\mu_{obs}^\pm = \frac{L_{obs}^\pm}{t_{obs}}$$

(due to each run with two tubes)

where t_{obs}, the run time, is equal to 10 min, viz. 600 s, for each run.

Owing to the existence of background electrolyte KCl in a large quantity, the conductivity is considered to be uniform over a whole conductor (the conductivity of solution containing 0.1 N KCl and 0.01 N CoCl$_2$ or NaOH is equal to 1.22 S m$^{-1}$ at 25 °C), viz.

$$E^a = E^b$$

(3a)

or

$$I/q_k^a = I/q_k^b$$

(3b)

During the 10 min run, the electric current, I (in A), as shown in Fig. 2, is recorded, the mean electric current, \bar{I}, is calculated from

$$\bar{I} = \frac{1}{10} \sum_{i=0}^{10} I_i / 11 \quad (i = 0, 1, 2, \ldots, 10 \text{ min})$$

(4)

and the mean electric current intensity (\bar{i}, in A m$^{-2}$) is computed by

$$\bar{i} = \frac{\bar{I}}{2q} \quad \text{(due to each run with two tubes)}$$

(5)

For the existence of high ionic strength, the mobilities of Co$^{2+}$ and OH$^-$ in eqn. (1) should be corrected by the empirical equation given by the author

$$m_{act} = m_0 \exp(-\eta \sqrt{zI})$$

($\eta = 0.77$ if $z \geq 2$; $\eta = 0.50$ if $z = 1$)

(6)

where m_{act} and m_0 are the actual and absolute mobilities, respectively, $I(t = 0.5 \Sigma \epsilon_z z^2)$ is the ionic strength, z the ionic valence, and η the coefficient. Note here, the overall or apparent mobilities of Co$^{2+}$ and OH$^-$ are equal to their actual mobilities owing to the complete ionization of the strong reaction electrolytes CoCl$_2$ and NaOH and the absence of EOF in agarose gel (Ref. 9, pp. 106 and 137).

The absolute mobility of hydroxide ion, m_{0,OH^-}, obtained from Ref. 12, is 20.5×10^{-8} m2 V$^{-1}$ s$^{-1}$, and the absolute mobility of $m_{0,Co^{2+}}$ ($= 5.7 \times 10^{-8}$ m2 V$^{-1}$ s$^{-1}$) is calculated from the equivalent conductivity ($\lambda_0 = 5.5 \times 10^{-3}$ m2 S mol$^{-1}$) of Co$^{2+}$ in infinite dilute solution with $m_0 = \lambda_0/F$ (F is the Faraday constant).

For the reasons mentioned above, in this paper the theoric velocity of the boundary should be calculated with eqn. (7), which is obtained from the insertions of eqns. (3)–(6) into eqn. (1):

$$\mu_{obs}^\pm = \frac{m_{act,Co^{2+}}^\pm \epsilon_{Co^{2+}}^\pm - m_{act,OH^-}^\pm \epsilon_{OH^-}^\pm}{(\epsilon_{Co^{2+}}^\pm - \epsilon_{OH^-}^\pm) \kappa}$$

(7)

In order to avoid the effect of proton and hydroxide ion produced in electrolysis on this run and on the next run, the run time should be short (e.g. 10 min), and a
new anolyte and catholyte, each in 400 ml, should be used for each run.

3. Results and discussion

In order to achieve an optimum experimental conditions, we performed a series of experiments at different constant voltage. As shown in Fig. 2, at high voltage, such as 100 V, the electric current intensity alters with time obviously, whereas at low voltage, e.g. 25 V, the intensity is constant with time but the precipitate zone is short. Thus, in most runs, we use a constant voltage of 50 V, under which the intensity is almost constant with time and the precipitate zone is longer in contrast to that for 25 V.

As shown in Fig. 3, even when the concentrations of Co^{2+} and OH^-, C_{Co^{2+}} and C_{OH^-} (C_{Co^{2+}} = C_{OH^-} is set here), alter from 0.004 to 0.008 and to 0.014 N, the current intensities are almost constant among different runs. This directly shows the validity of the background electrolyte KCl to create a uniform and constant current intensity [equivalently, electric field strength, see eqn. (3)] over a whole conductor.

According to eqn. (7), the velocity of the boundary is proportional to the current intensity. Thus the higher the intensity, the faster the velocity. This prediction is, as shown in Fig. 4, in agreement with the experiments of MCRB. It is revealed that the correlation coefficient (CC) is equal to 0.9984 (n = 8).

As shown in eqn. (7), if one increases the concentrations of Co^{2+} and OH^-, C_{Co^{2+}} and C_{OH^-}, synchronously and keeps other conditions constant, one can achieve a constant boundary velocity. This prediction is proved by the experiments in Fig. 5, which show that the boundary velocities for the five runs are almost completely constant. It is calculated that the CC between μ_{obs} and μ_{the} is 0.9895 (n = 5).
It is clear from the results above that the predictions of eqns. (1) and (7) are quantitatively in agreement with the experiments of MCRB, and an excellent relationship exists between the theoretical and observed velocities, viz. \(\mu_{\text{obs}} \) and \(\mu_{\text{the}} \). Thus, some of the MCRBES are directly verified by experiment.

Acknowledgements. This work was supported partly by the National Natural Scientific Foundation of China (approved no. 297 750 14), partly by the Education Board of Anhui Province (approved no. 97TL 465), and partly by Wannan Medical College.

References

Received August 19, 1997.