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Linear free energy relationships (LFERSs) and extra-thermodynamic relationships
(ETRs), i.e., similarity and analogy models of physical organic chemistry, are
mathematically and statistically equivalent to the models much used in chemo-
metrics and data analysis, i.e., PCA, PLS, and SIMCA. Examples of early
LFERs and ETRs include the Bronsted, Hammett, Taft, and Hansch
relationships.

Much of the early development of chemometrics derives from this equivalence.
Thus, the interpretation and derivation of LFERs and ETRs as the first terms
of serial expansions of perturbation theory applied to moderate structural change
lead first to the SIMCA method for classification and discriminant analysis
(pattern recognition), then to the approach of principal properties for the
characterization of structural fragments, compounds, and materials, and finally
also strongly influenced the development of PLS and its use in structure—effect
relationships such as quantitative structure—activity relationships (QSARs).

The interpretation of chemical data by a combination of physical organic
chemistry models and chemometric principles often leads to interesting conclu-
sions as illustrated by some examples.

Chemometrics in its present form was started in the
1960s to cope with the ever increasing size of chemical
data sets.!® In analytical chemistry, spectroscopy and
gas chromatography started to provide many variables
per analytical sample, often several hundreds. Similarly,
other branches of chemistry were becoming increasingly
flooded by large data sets from spectroscopy, kinetics,
electrophoresis, process sensors, etc.

Strangely, no statistical methods were available that
could cope with data with very many variables, particu-
larly if the number of observations (objects, samples,
cases) was relatively small which was often the case in
chemical data sets.

Analytical chemometrics. To begin with, the analytical
chemometricians borrowed data-analytical methods from
electrical engineering and computer science > to solve
problems related to ‘pattern recognition’, i.e., classifica-
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tion and discriminant analysis. This tradition has con-
tinued with the use of expert systems, neural networks,
and genetic algorithms — methods that have never gained
much popularity outside analytical chemical applications
of chemometrics.

Organic chemometrics. In organic chemometrics, how-
ever, methods were transplanted from psychology, i.c.,
factor and principal components analysis (PCA) and
similar approaches, for the analysis of both reactivity
and other data.®’

The latter methods model a data matrix Y with the
elements y, (i=1,2,...,N,and k=1,2, ..., K) as a con-
stant plus an expansion of 4 product terms [eqn. (1)]

Yu=CFruly Frulptryls+ - +ratiy ey (1)

Here the constant ¢, and the parameters r,, are specific
for the kth column of Y, containing data from, for
instance, reaction series k, while the parameters ¢;, are
specific for the ith row of Y, corresponding, for instance,
to substituent i. In organic chemistry applications, the
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number of ‘components’ (product terms), A4, is usually
1, 2 or 3. The model is not exact, which is due to
experimental variability, measurement errors, and model
inadequacies. The residuals, e,, express this non-
exactness and are the deviation between the data and
the model.

Malinowski et al® and ourselves pointed out the
equivalence of model (1) and relationships used in phys-
ical organic chemistry for relating reactivity data to each
other. The Bronsted, Hammett, Taft, Yukawa-Tsuno
and Marcus relationships are examples.'*'> In the
Bronsted relationship the single t-parameter scale relates
to the pK, of a series of bases or acids, and the data (y)
are typically the logarithmic rate constants of reactions
catalyzed by the bases or acids. The Hammett relation-
ship defines a substituent parameter scale (1,=o;) based
on the pK, of substituted benzoic acids, which then
models y;=logarithmic rate or equilibrium constants of
reaction series differing in the corresponding substitu-
ents (i).

From a chemical point of view, model (1) can be
interpreted as the quantification of the ‘analogy principle’
of organic chemistry. As well put by Hammett:!® ‘From
its beginning the science of organic chemistry has
depended on the empirical and qualitative rule that like
substances react similarly, and that similar changes in
structure produce similar changes in reactivity ... Linear
free energy relationships constitute the quantitative spe-
cialization of this fundamental principle.’

7-13

Latent variables and physical organic chemistry ‘effects’.
The physical organic chemistry foundation of models (1)
and (2) were initially formulated as the existence of one
‘effect’ for each term in the model. Thus, the Hammett
equation indicated the presence of a single mechanism
of interaction between substituent and reaction center —
the inductive effect — and the multiple term extensions
of Taft, Yukawa-Tsuno, etc. indicate the presence of two
or more ‘effects’. With the ‘similarity model’ interpreta-
tion,” '3 however, the resulting ‘components’ need not
be seen as clean ‘chemical effects’, but rather local
directions in a multidimensional space which best sum-
marize the given data, so-called latent variables. This
interpretation has caused some controversy, but at the
same time made the interpretation of linear free energy
relationships (LFERs) and extra-thermodynamic rela-
tionships (ETRs) easier in that their foundation is less
related to first principles models than initially believed.

Principal components and factor analysis in
chemistry

The equivalence between model (1) — the factor analysis
and principal components model — and the ‘linear free
energy relationships’ of physical organic chemistry then
led us to two things: (a) we derived ‘optimal’ substituent
parameters for the Hammett relationship using principal
components analysis of a fairly large data base of organic
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reactivity data,'® and (b) we generalized somewhat the
derivation and interpretation of model (1) as a second-
order ‘Taylor expansion of data matrices’.!!** Polanyi,
Hammett, Leffler and Grunwald, and Palm'” had already
started this derivation, where basically model (1) is
shown always to be valid as long as there is only limited
variation — i.e., similarity — between the ‘objects’ (i=
1,2,....,N).

Principal properties. Eqn. (1) can be used to model any
data measured on any series of similar objects — e.g.,
substituents, solvents, amino acids, detergents, chromato-
graphic columns, catalysts or materials — as long as the
measurements are related to this similarity. The score
values (¢;,) resulting from the analysis of a table of
‘properties’ measured on a set of similar objects can be
used as quantitative scales modelling the inclusion of
these objects in other systems, just as the Hammett
substituent scale, o;, can be used to model the effect of
an aromatic substituent (i) in any reaction. Indeed the
derivation of new types of ‘substituent scales’ has been
continued with the work of Hellberg,'® Skagerberg,'’
Jonsson?® and Sandberg?!+*? (amino acid and nucleoside
scales), and Carlson er al*® (solvents, carbonyl com-
pounds, amines, Lewis acid catalysts). The scales are
now often called principal properties.®*

The SIMCA method for classification and discriminant
analysis. The derivation of model (1) by means of second-
order perturbation theory led us to postulate?>:2¢ that a
method of ‘pattern recognition’ could be based on the
separate modeling of each class of similar objects by
means of a principal components model, i.e., eqn. (1).
This led to the development of the SIMCA method for
‘pattern recognition’ that has turned out to be one of
the more useful methods of chemometrics.?>-2¢

The principle of SIMCA is very simple. A ‘training
set’ of multivariate data measured on a class of similar
objects can be used to develop a model of type (1). If
there are several classes, this results in several models.
New incoming objects for which the same multivariable
data have been measured are then classified according to
how similar their data vectors are to the various class
models. This similarity is measured by (a) the score
values (7;,) resulting from fitting a data vector to a class
model, and (b) the residuals (e;) after the fitting. To be
judged similar to a class, the score values of the new
object should all be within the typical ranges of the class
model (expressed as a Hotelling’s 7'%), and the residual
standard deviation (often called the distance to the
model) should be within a tolerance interval defined by
the F-distribution and the residual standard deviation of
the class model.

The SIMCA method has been used to classify chemical
compounds as toxic or not,?’ beta-adrenergic or not,?®
etc., and also to classify chemical reactions according to
their mechanism.?*:3° In an early application it was used
in the non-classical carbonium ion controversy with



conclusive results Winstein

interpretation.3°

supporting the

PLS (partial least squares) projections to latent
structures

With principal components models one could often see
a relationship between the position in the ‘class’
(described by the score values, #;,) and the values of
other measurements made on the ‘objects’ (compounds,
samples, etc.) such as biological activity, chronological
age, etc. With the PLS models developed by Herman
Wold and co-workers between 1975 and 1982,31733 these
relationships were formally modeled by a generalization
of model (1), eqns. (2a) and (2b).

Xge=C+ Pyl + Pl +ralin+ - Hradigtey  (2a)

Vim = Cm + Stmlis + Samliz + Samlis+ *** + Samlia + fim
(2b)

Because the ‘scores’ ¢ are the same in the models of X
(2a) and Y (2b), PLS provides a relationship between X
and Y built up as a sequence of linear components (ryf;;
and s,,,%;4 above), eqn. (2¢).

Vim = Cm + bimXis + bamXiz + b3uXiz + *** + bgmXix + fim
=Cn + Ekbkm-xik +f;'m (20)

PLS is a quantitative similarity/analogy model and
has been used for a large array of quantitative relation-
ships in chemistry, as well as biology, psychology, techno-
logy, and other areas. In chemistry, the most well known
are multivariate calibration (MC) in analytical chemistry,
and multivariate QSAR in medicinal and bio-organic
chemistry.

Multivariate calibration (MC)

Here a number of ‘signals’, e.g., spectroscopic abs-
orbances at given wavelengths/frequencies, are related to
the amounts of various analytes in a set of ‘calibration
samples’.>* Apparently, this is a different type of model
from the LFER/ETR of physical organic chemistry, but
interestingly it has the same shape and form, and hence
may be a related interpretation.

Clearly, a linear relationship between a set of ‘analyte’
concentrations and a set of absorbencies at different
wavelengths/frequencies is valid only for very similar
samples. Hence, we can see the ‘multivariate standard
curve’ of multivariate calibration as the idealized form
(first order perturbations) of a general relationship
between analyte concentration and spectral absorption
at different wavelengths/frequencies. According to the
LFER/ETR interpretation, this type of relationship
should be valid between any property (here denoted y)
— not only analyte concentrations — and any type of
signals measured on the samples, provided that the
samples are similar, including a limited variation of the
property, y. This explains how we can ‘calibrate’ on y =
[strength of paper] using near infrared reflectance (NIR)
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spectra as ‘signals’, as well as on y=[taste of whisky]
using gas chromatograms as ‘signals’.

Example, multivariate calibration. As an example, we
present the first analytical chemical application of multiv-
ariate calibration, based on the fluorescence spectro-
scopic determination of lignin sulfonate (LS), humic
acid (HA), and optical whitener (OW), in sea water.>*
The main difficulty at the time was that all three analytes
— LS, HA, and OW - had very similar excitation—
emission spectra, and hence were difficult to determine
precisely in the presence of the others.

The UV emission spectra of 16 mixtures of three
constituents were recorded between 320 and 540 nm. The
emission intensities at 27 equally distributed wavelengths
were used. In this way a calibration set consisting of a
16 x 27 data matrix X was formed, which described the
emission at the frequencies. The concentrations of the
three constituents for the spectra formed a 16x3
matrix (Y).

Interestingly, the appropriate use of the whole excita-
tion—emission spectra in the data analysis gave an attract-
ive solution; the three constituents could be precisely
determined (R2=0.99 and 02 =0.94) even in the presence
of the others, and the (overlapping) spectral regions
associated with each analyte could be identified as illus-
trated in Fig. la—c.

The predictive capability of the model was further
investigated by preparing nine new mixtures. Their spec-
tra were recorded and digitized as before. These samples
were not used to update the model, their spectra (X-
data) were fitted to the model and the concentration of
the constituents were predicted. The composition of the
new samples (17-25) were well predicted, except for the
sample 25, see Fig. 2a-c. Interesting, this sample did not
fit well to the X-space of the model, i.e. the spectrum
was atypical for the samples in the calibration set shown
by its class distance (DModX) which is much larger
than of the other samples.

Quantitative structure-activity relationships,
and quantitative sequence-activity models,
QSAR and QSAM

The similarity/analogy models such as the Hammett
relation can be extended to more complicated systems
including those of biology. It was found by Hansch that
a model of type (1) could model many data sets where
the biological activity had been measured on a series of
similar chemical compounds.®’ These models are often
called QSARs for quantitative structure-activity relation-
ships.3®3° The Hansch models needed at least two
‘scales’, the ordinary Hammett scale (o;), plus a ‘lipophil-
icity scale’ denoted as w;. Typically the square of the
latter is also needed in the model, indicating the need
for third-order terms in the perturbation model.

Instead of a separate estimation of the substituent
scales such as m; and o;, one may directly include a large
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Fig. 1. The PLS regression coefficients plotted against the
variable number (ordered with increasing wavelength) for
the three different constituents: (a) ligninsulfonate, (b) deter-
gent and (c) humic acid.

number of ‘raw properties’ in the QSAR model. If, in
addition, many sites in the molecule are modified, the
resulting number of variables is large, even if only a few
parameters are used to describe the change at each site.

An interesting property of the PLS model, as well as
the other chemometric models based on eqn. (1), is that
any number of collinear (correlated) variables can be
incorporated into the analysis without difficulty. As long
as a small number of model dimensions, components
(4), is used in the modeling, the model parameters as
well as its predictions are stable.

The PC and PLS components have the same shape as
the ‘effects’ in the physical organic chemistry models,
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Fig. 2. Predicted values of the three constituents. Samples
1-16 are used as the training-set and 7-25 as the test-set.

making it tempting to interpret them in the same way.
This is closely related to the concept of latent variables
— inherent properties — that we indirectly observe via a
number of measured (manifest) variables.

Hence, we arrive at PLS models as generalizations of
the few-term similarity/analogy models, and simultan-
eously, as generalizations of linear regression models
with very many and collinear variables. The fact that
PLS works well in practice may indicate that these
interpretations are related, and that either or both may
be used for the interpretation of actual cases.

PLS modeling is widely used in QSAR, from few term
models to 3D QSARs with tens of thousands of structure



descriptors in COmFA and GRID models.%~4? This type
of application concerns some of the most complicated
systems that chemistry deals with, and it is a credit to
the philosophical foundations of these models in physical
organic chemistry, i.e., quantification of the analogy
principle, that they work so remarkably well.

We illustrate this approach with some examples, a
QSAR of dipeptides, structure classification of a set of
enzymes and a general overview of all enzymes in an
entire genome.

Example, dipeptides (inhibiting angiotensin converting
enzyme. A series of 58 dipeptides which inhibit angio-
tensin-converting enzyme was characterized by the three
principal properties z;, z, and z; in each of the amino
acid positions. Thus each dipeptide was characterized by
six values. In addition, to account for weak non-linear
behavior between the biological data and the physico-
chemical characterization, square terms (S1*S1, etc.) and
cross-terms (C1*C2, etc.) of the z-scales were added. The
biological activity was expressed as 6 +log(1/ Is,), where
I, is the concentration (in puM) inhibiting 50% of
angiotensin-converting enzyme. The biological data are
from a compilation by Cheung et al.*®

A QSAR was calculated based on the complete set of
58 dipeptides.?*** PLS analysis resulted in a model with
two significant latent variables according to cross-valida-
tion (R*=0.78 and Q?=0.68) and thus explained well
the variation in biological data (Fig. 3). The joint influ-
ence of the two latent variables on the original variables
can be expressed as scaled and centered PLS regression
coefficients (CoeffCS) as shown in Fig. 4. The plot shows
that it is the z; and z, scales in position 2 are the most
influential scales. The response surface in Fig. 5 illustrates
the relationship between the settings of the two most
influential scales and the biological activity.

The system studied in this example is complex but still
it is possible to derive a rather simple model with good
predictive capability. One possible explanation is that
the LFER principle also is applicable in this and in
similar systems.

6
A‘ 41 a2
a3
5 s
Y3 a7 3
o A8
g4 ‘0
a
§ 413 A‘I 215412
[¢] .5@?} a 416
418
3 a 455
Azf A 126
A
2 A 44
448
T T - T 1 T
2 3 4 5 6
Predicted

Fig. 3. The observed biological activities plotted against the
calculated activities for the dipeptides.
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Fig. 4. Variable influence of the biological activity in the
dipeptide example expressed as regression coefficients.
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Fig. 5. Response surface plot showing the influence of the
z, and z, scales in position 2 on the biological effect. The
other variables (z-scales) are kept constant at their average
values.

Examples of quantification of peptide sequences based on
an ACC description followed by multivariate analysis. In
many peptide QSAR and classification problems the
number of amino acids in the investigated sequences
differs between the compounds in the set. For example,
so called signal peptides usually consist of 15-35 amino
acids. Other examples are enzymes that can vary in
magnitude by a factor of 10 (commonly between 100
and 1000 amino acids). It is also imperative to use
multivariate methods to describe and discriminate parts
of proteins, e.g., sequences with similar 3-D folding.
The multipositional description used in the dipeptide
example above also has a limitation in that a shift of an
important sequence of amino acids by one or a few
amino acid positions will result in a remarkable shift in
the multivariate description. To cope with this problem,
we have proposed auto cross covariances (ACC) of
sequences based on principal properties of amino acids
as a preprocessing method.*>*¢ This preprocessing
method gives a set of variables that are independent of
the sequence length. The number of created variables is
dependent only on the number of lags used in the ACC
approach and the number of principal properties used.

521



WOLD AND SJOSTROM

6 - +108
| ] ‘%? 3
44 <106 «81 *99 : <109
2] | . 0112
. 1 -86‘2@ i 0 |
1 T 51 i
1 .8 *115
2 328
-2 4 78..%|
152
o <98 .0
] 189 .
6 1 111
A — N :
5 0 5

1]

Fig. 6. PLS discriminant score plot based on an ACC descrip-
tion showing a difference between TIM barrels (Nos. 91,
107-115) and the remaining cyfoplasmic proteins.
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Fig. 7. A PCA score plot based on an ACC description of all
the enzymes in Mycoplasma pneumoniae.

Some classification applications investigated by principal
component or PLS discriminant score plots of ACC
variables are shown in Figs. 6 and 7. The first example,
shows a score plot of a series of proteins, nine of which
have a specific highly symmetrical folding type, the
so-called TIM barrels. The TIM barrels are easily dis-
criminated from cyfoplasmatic proteins, despite the low
sequence homology among most of the TIM barrels
(Fig. 6). The second example shows a principal compon-
ent score plot based on an ACC representation of all the
enzymes in mycoplasma, one of the first determined
whole genomes.*” A score plot (Fig. 7) shows interesting
features, however, the interpretation is outside the scope
of the present paper.

Discussion and conclusion

Chemistry provides a very interesting field for scientific
modeling. On the one hand, chemical systems are simple
enough to allow some interpretation of resulting model
parameters in terms of first principles, and this also
allows good experimental control and hence a reasonable
experimental reproducibility. On the other hand, chem-
ical systems are so complicated that any modelling
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involves large approximations of various kinds — strict
first principles or ab initio models are not possible for
any chemical system of interest if solvent and reactants
are included in the model.

The ETR and LFER models of physical organic
chemistry, exemplified by the Brénsted, Hammett, Taft
and Hansch models, have the same theoretical founda-
tion as thermodynamics. They can be derived as first-
and second-order perturbations of continuous multi-
variable systems, and hence have general, but local
applicability. The latter means that the ranges (usually
of structure variation) that these models cover are limited.

This theoretical foundation also makes these models
‘similarity models’, which are always applicable to data
measured on a set of ‘similar’ systems. This, in turn,
lends the same interesting interpretation to the isomorph-
ous chemometrical and statistical models, namely the
principal components, factor, and PLS models.

This isomorphism between physical organic and chem-
ometric models could provide a needed bridge between
the fields, and encourage a cultural and informational
exchange to everybody’s benefit. This is well illustrated
by the profound importance of PLS modeling to solve
multivariate calibration problem in analytical chemistry
as illustrated by the example above.

In analogy to the Hammett substituent scales we have
also shown how to develop scales for other types of
substituent and series of molecules, in particular scales
for amino acids. The scales can then in turn be used in
similarity models with the same foundations as the ETRs.

We also foresee that this type of scale, to characterize
series of substituents or molecules as well as QSAR
modeling, will strongly increase in the future. The reason
is the fast development of new screening methods for
biologically active compounds in combination with use
of combinatorial chemistry. This means that the accessib-
ility of biological data for series of compounds will
increase and consequently the need for QSAR modeling.

Substituent scales will also have a profound impor-
tance for the development of combinatorial chemistry.
This is because substituent scales can be used as design
variables in statistical experimental designs,**48-5° which
makes it possible to make balanced series of compounds
for combinatorial libraries. Such series will be much
more suited to QSAR analysis followed by rational
optimization of the structure than to randomly synthe-
sized libraries. This is because designed libraries will span
the possible analog space more efficiently than a ran-
domly generated library.

The fast development in biochemistry and molecular
biology also means that there will be many and interes-
ting problems for chemometrics to deal with, where here
we have just shown some examples. The genome projects
create enormous amounts of sequence data and here
questions about similarities and differences between sets
of sequences are well suited to analysis by chemometrical
methods. The new field of bioinformatics would thus
benefit much from the development of chemometrics.



Thus we foresee increasing interest in chemometrical
methods and a bright future for chemometrics. However,
of utmost importance for chemometrics to be used and
to develop in the right way is that chemometrics stays
close to applications in chemistry and related fields.

Acknowledgements. Support from the Swedish Natural
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