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A method is described to simulate EPR and ENDOR spectra of disordered
anisotropic systems with S=1/2 or S=1 that achieves a suitable balance between
computational efficiency and accuracy. Efficiency is obtained by using perturba-
tion theory to treat the hyperfine and nuclear interactions of several (#) nuclei
described by the spin-Hamiltonian:

n
H=pzBgS +SDS + > (LA;S —g;uyBL + LQ.I;)
i=1
There are no restrictions on the relative magnitude of the hyperfine, quadrupolar,
and nuclear Zeeman terms, the electronic Zeeman and fine structure terms
(S=1), nor on the relative orientation of the principal axes of the tensors.

The latter conditions ensure accuracy as long as the electronic terms dominate.
The procedure is particularly useful for organic free radicals and triplet state
molecules with several interacting nuclei, where exact methods are expected to
be slow. The method has been used to simulate EPR and ENDOR spectra of
various disordered systems. A variant of the method which includes microwave
saturation has been employed to investigate the power dependence of the intensity
of |AM;|=1 spin-flip lines in the EPR spectra of radicals with weakly inter-

acting protons.

1. Introduction

The motivation for simulating EPR and ENDOR spectra
is usually the desire to determine hyperfine and quadru-
polar couplings. In EPR, simulation is often employed
to facilitate interpretation of spectra. Reviews of methods
applied to disordered solids have been given in Refs. 1
and 2. In a recent development by Weil and coworkers
the spectra were calculated exactly.® This is often neces-
sary for ions of transition metals. Methods suitable for
EPR simulations of radicals and triplet state molecules
were developed by Lefebvre and coworkers.*> A simplify-
ing feature was that the hyperfine and nuclear Zeeman
interactions could be treated by perturbation theory.
This approximation is utilized in the present paper and
in a commercially available programme.® However, the
latter programme is not applicable to the case with near
coincidence of the magnitudes of the hyperfine and
nuclear Zeeman terms and therefore cannot account for
the ‘forbidden’, |AM,|=1 transitions which frequently

* To whom correspondence should be addressed.
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occur in solid-state EPR spectra of organic radicals.* A
unique feature of the EPR and ENDOR simulation
programs developed by us is that the hyperfine, nuclear
Zeeman and nuclear quadrupolar interactions are treated
with perturbation theory without making any assump-
tions of the relative magnitudes of the terms. Some
results have been published in separate papers.” !
ENDOR spectra are commonly much simpler and
fairly straightforward to interpret without simulation in
solutions and in single crystals. However, in disordered
solids (termed ‘powders’ in the following) the ENDOR
spectrum may not be trivial to interpret. The spectral
lines are often broad and the couplings are usually
anisotropic. It may be difficult to determine accurately
the magnitude and anisotropy of the interactions from
the observed spectral features without performing simula-
tions. Attention must also be paid to the orientational
selectivity of ENDOR. The EPR spectrum from a powder
sample is a superposition of spectral intensities from all
possible orientations. Anisotropy of the magnetic inter-
actions results in different resonance conditions for each
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orientation. In ENDOR the signal originates from a
single position in the EPR spectrum, where the EPR
resonance condition is met only for a certain range of
orientations. In cases when the EPR spectrum is domin-
ated by a single anisotropic interaction it is sometimes
possible to resolve portions that correspond to a single
orientation. Rist and Hyde were the first to use the
dominating g-anisotropy of Cu and Ag complexes to
obtain single crystal-like ENDOR spectra at g-value
extrema in the powder EPR spectrum.!? In free radicals,
especially carbon centred species, there is usually no
single dominating interaction and it is impossible to
obtain such ‘single crystal’ spectra. Instead, ENDOR
spectra are made up of a large number of orientations.
Computer simulation can take into account the orienta-
tional selectivity and predict the ENDOR spectrum at a
specific position in the EPR spectrum. Paired with other
EMR methods and the chemical and physical knowledge
of the species, ENDOR simulations can facilitate the
determination of hyperfine and quadrupolar couplings.
It should be emphasised that the lack of a dominant
g-anisotropy in many free radicals can actually be an
advantage in some cases. An example is when the single
crystal EPR spectrum consists of an odd number of lines
and the g-anisotropy is small. In the centre of the
corresponding powder spectrum contributions from all
orientations will more or less overlap. An ENDOR
spectrum obtained at this position will contain contribu-
tions from practically all directions. In this case it may
be possible to observe all the principal components of,
e.g., a hyperfine tensor in the same spectrum. This is
demonstrated by the simulations made on both the
biphenyl!?® and the naphthalene radical cations.'*
Several powder ENDOR simulation methods have
been described in the literature. Methods to compute
ENDOR signals from transition metal complexes
obtained at arbitrary field positions have been developed
by Hoffman,'>:'® Henderson,!” Yordanov!® and their
co-workers. In general it is impossible to resolve the
g-value extrema of all three principal values in EPR
spectra, in order to obtain single crystal-like ENDOR
spectra from all three principal directions. Instead signals
acquired at general positions in the EPR spectrum must
be analysed. Orientational selectivity was taken into
account in their theories but ENDOR probabilities were
not computed. Kreiter and Huttermann'® have described
a general theory to calculate powder ENDOR spectra
due to arbitrary zero-field splitting, hyperfine and quad-
rupolar interactions. Magnetic energies and wave-
functions were calculated by exact diagonalization of the
spin Hamiltonian. ENDOR transition moments were
calculated to zeroth order, neglecting hyperfine enhance-
ment effects. A similar theory has been described briefly
by Keijzers et al.?* Powder proton ENDOR of ionic
radicals generated on catalyst surfaces has been analysed
by Clarkson et al.?! using a theory originally due to
Dalton and Kwiram.?? The method is based on perturba-
tion theory, where transition moments are calculated to
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first order and relaxation effects are partially taken into
account. Orientational selectivity was neglected, as the
method assumed that all possible orientations are
observed simultaneously in the ENDOR spectrum, inde-
pendent of the EPR field position.

The method developed by us??® for ENDOR spectra of
S'=1/2 radicals is based on the same perturbation treat-
ment as that used for EPR spectra.”® The theory differs
from the usual perturbation schemes for multiple nuclei
in that quadrupolar couplings of the same order as
hyperfine coupling can be treated. ENDOR frequencies
are calculated neglecting second-order hyperfine contri-
butions. ENDOR transition moments are computed
to first order, including quadrupolar interactions and
hyperfine enhancement effects. First-order formulas
given previously’*? neglect quadrupolar interactions.
Orientational selection is taken into account in a similar
way as in Ref. 17. The treatment is particularly suitable
for the simulation of powder spectra with several mag-
netic nuclei where the exact theory may result in slow
calculations.'*2°

2. Theoretical basis

The simulation programmes are based on similar prin-
ciples in all cases to treat the electronic, hyperfine and
nuclear interactions of the spin Hamiltonian

H=psSgB +SDS + Y (LA;S — g;uyBIL + L,Q,1,)
i=1

n
=H.+ H+ ), (Hy+ Hy+ Hy) (1)
i=1

The principles are: (a) the electronic terms H, + Hy domin-
ate, but no assumption is made about the relative magni-
tude, (b) no assumption is made about the relative
magnitudes of the H,, H, and H, terms, and (c) the g,
D, A and Q tensors need not have parallel principal
axes. (a) allows perturbation theory to be used. To first
order the perturbation from each nucleus can be treated
separately, which is computationally efficient in the case
of several interacting nuclei. (b) takes automatically into
account ‘forbidden’ transitions which occur, e.g. when
the hyperfine interaction is anisotropic and of a similar
magnitude as the nuclear Zeeman term. This feature was
already included in the classical programme by Lefebvre
and Maruani.* The treatment here is more general, as it
includes the nuclear quadrupole interaction on an equal
footing. Thus, the usual assumption?5-28 that the hyper-
fine interaction is much larger than the quadrupole
interaction is not invoked. Consequently, the simulation
programmes can be applied to species with large nuclear
quadrupole interactions.” The condition (c) is applied in
several previous simulation programmes, including the
initial ones by Lefebvre and coworkers.*> The assump-
tion is necessary, e.g. in the simulation of single crystal
or powder spectra of free radical® or triplet state molecule
spectra® containing several inequivalent magnetic nuclei.

The calculation of the line positions and intensities is



carried out by diagonalization of the perturbation matrix
H;=H,+H,+H, for each nucleus. This treatment is
still only first order with respect to H, (S=1/2) and
H .+ H; (S=1). The treatment of the perturbation oper-
ator is slightly different for the S=1/2 and S=1 cases.
The calculation of the line intensities requires special
consideration in the case of ENDOR.?® A summary of
the programs is given in Table 1. Details are given below.

3. First-order S=1/2 EPR spectra

It is assumed that the electronic Zeeman term is domin-
ant. The perturbation operator consisting of the hyper-
fine, quadrupolar and nuclear Zeeman interactions for
each nucleus is then’

H;=(I;A;97/9)S, + L,Q;1; — uyg; B/, 2)

Uy is the nuclear magneton, £/ =B/B is the unit vector
along the static field B. The matrix elements of H; are
calculated in an Mgm;, basis. The matrix elements’ are
repeated here for completeness

{m|Hy|m) = (M/g)V.m,
{m|H,ylm+ 1) = (M/g)[I(I+ 1) — m(m + 1)]'/?
x 0.5(V, + iV,)

where V=A-g-/.
The non-zero matrix elements of H, are

<m|Hb|m> = —bzm9

{m|Hylm £ 1) = —[(I+1) — m(m + 1)]"?0.5(b,  ib,)
(4)

(3)

where b=gyuyBZ.
The matrix elements of H, are

{m|H,|\m) =[3m*—I(I +1)]0.50,.
{m|Hylm £ 1) =2m+ D[ £+ m+ )T F m)]*?
X 0.5(Qx F iQ,.)
{m|Hj\m+2)=
[(T£m+ D)TEm)IFm— 1) +m+2)]2
X 0.5[0.5(Qxx — Oyy) £ i04] (5)

The first-order energies denoted E'(p;) and E'(g;) and
the eigenstates are computed by diagonalizing the per-
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turbation matrix H;. The eigenstates are of the form

+1
lP:> = Z apmim>
m=-—1

o1 (6)
lgi>= ) Iqu|m>

To simplify the notation we have deleted the subscript i
of the coefficients and the nuclear eigenstates [m). Further
the indices p and ¢ are associated with M;=1/2 and
—1/2, respectively. Numerical (I>2) and analytical
(I<2) methods to calculate the energies and eigenstates
have been described.”?°

The EPR transition

/2, p1, 2.2 (=1/2,91, 92 ... q1)

is denoted by the subscript /. The first derivative powder
EPR line shape at the static magnetic field B is approxi-
mated by the formula

d
EEX(B): f L

where s is a Gaussian or Lorentzian function, with a
width which may be orientation dependent, see eqn. (22)
below. Here ¢ and 6 are the polar angles describing the
orientation of the magnetic field. The integration is
performed using Gaussian quadrature.*

To first order one has

sin ed%?(;S(B_B')I'> do do (7)

Bi=hv/gus— Y [E'(p:) — E'(9.))/8ks, (®)
i=1
where gZ2=/gg/.
The expression for the transition probability 7, is
I, = n3B1|GI*B,/4
Bi= H {pilgiyl? €)
i=1

|GI>=(¢,9%¢1) — (¢9°(1)*/8’

¢, is the unit vector along the direction of the microwave
magnetic field B;. B, can be computed, using eqn. (6):

2

IKpilai>P? = (10)

Z (akp)*bkq
k

The factor |G|> does not vary appreciably with the
orientation for systems with small g-factor anisotropy.?’

Table 1. EPR and ENDOR programs (in FORTRAN77) available from the authors.?

Electronic Nuclear Equivalent Variable Orientation Power
Type S terms terms Order nuclei linewidth distribution dependence
Anisotropic EPR 12  H, Ho+H,+H, 1,2 Yes Yes S,P No
Anisotropic EPR 12 H, H,+H,+H, 1 No Yes S, P Yes
Anisotropic EPR 1 He+ H; H,+H,+H, 1 No Yes S, P No
Anisotropic ENDOR 1/2 A H,+H,+H, 1 No No S,P No
Isotropic EPR 12  H, A 1.2 Yes No

®The programs, except the last one, are described in the text. Plus signs between terms imply treatment without assumption
about their relative magnitudes. Orientation distributions S, single crystal; P, polycrystal, can be treated.
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Very good agreement was achieved between experi-
mental and calculated powder spectra, even when the
hyperfine and quadrupolar interactions were of compar-
able magnitude as in the case of the CISS radical® A
typical routine application has been to confirm assign-
ments made by ENDOR by simulation of EPR spectra.
In Fig. 1 experimental and simulated spectra obtained
from hippuric acid powder X-irradiated at room temper-
ature are shown. The predominant radical R1 with the
structure Ph—CO-NH-CH, has previously been charac-
terised by single crystal and powder ENDOR.?33° The
"N nuclear quadrupole interaction is smaller than the
hyperfine term and affects the EPR spectrum only to a
minor extent. In contrast to the case with 3°Cl and ¥’Cl
in CISS mentioned above, nuclear quadrupolar couplings
with '*N can therefore as a rule not be deduced by fitting
of the simulated EPR spectrum to the experimental one.
In the ENDOR spectrum of R1 (Fig. 5), however, the
effects of the quadrupolar splittings are visible and can
be analysed.”® The second species, R2, is a cyclo-
hexadienyl radical formed by net hydrogen addition to
the phenyl ring.3%

3.1. Second-order correction to the hyperfine energy. Even
though the energies are calculated by diagonalization of
the matrix obtained from eqn. (2) the procedure outlined
above is still a first-order perturbation treatment with
respect to the hyperfine interaction. Second-order correc-
tions have previously been computed under the assump-
tion symbolized by H,>H,+ H,>H, for a system with
a single nucleus.?’” No assumption was made on the
relative magnitudes of the H, and H, terms. Formulae
for the special case when in addition H,> H, have also
been given.26:28

In the program KVASEC for S=1/2 systems a second-
order correction term has been implemented, neglecting

Exp.

Sim.

R1

R2
—/\/—/\_’//\/__

33|80 ' 34'00 l

Field [G]
Fig. 1. EPR powder spectra of radicals in X-irradiated hip-
puric acid (a) experimental, (b) simulated spectrum composed
of the components R1=Ph-CO-NH-'CH, and R2=cyclo-

hexadienyl radical. Parameters for simulation were taken
from Refs. 23 and 30.

T 1 T T T T T
3320 3340 3360 3420 3440 3460 3480
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the cross terms between different nuclei. The terms in
eqn. (1) responsible for the second-order corrections can
be written

H" = (IAv)S, + (1AW)S,, (11)

The unit vectors v and w are perpendicular to the unit
vector u=g//g. One obtains

1 3I+1 3
E~<§ p):(4gu33>—1 Y Y Tulpllia>qlllp

q=1 af=1

2I+1 3

1
E”<_§q>:—(4ngB)"l X Y TulplLley<qlllp

p=1 af=1
(12)
for the M = 1 1/2 states, with the definitions
T.p = (A)zp ~ (Au)(Au)g + D,

Uy U Us
Daa = Ala AZu Aaa
Aig Az Asg

By applying the closure relation and noting that Dg,=
—D,g one can show that the right hand expressions are
real quantities, as expected. We have not succeeded,
however, to verify by analytical methods that the expres-
sions (12) are equivalent to the formulae given in
Refs. 26-28 when the condition H,+ H,>H, applies.
The equations have therefore been tested numerically by
comparing the line positions and intensities obtained by
diagonalizing the full Hamiltonian with those of the
present theory for the system shown in Table 2. The
agreement for the line positions is good except for a few
lines of low intensity. The intensities agree very well.

3.2. Second-order effects from several nuclei. Two cases
which are of practical importance are the second-order
hyperfine splittings due to equivalent nuclei and the effect
of a large hyperfine splitting on a small one. In a first
approximation, the first case has been treated as in
isotropic systems.*’ The nuclear spins I are coupled to
obtain the resultant spin angular momentum /,. The
number of times the value I, is obtained (multiplicity
M,) can be calculated analytically for the I=1/2 case.
An algorithm has been implemented in the programs
described here to obtain the I, and M, values for any
nuclear spin. The Hamiltonian has no elements which
are off-diagonal in /,, and one can therefore obtain the
energies and add the spectra of each I, weighted by M,.
This procedure has been applied to simulate the spectrum
of Ags®* in zeolite (Fig. 2). The experimental spectrum
contains in addition signals from other species, but the
agreement of the parts attributed to '°°Ag,®>* with
the simulation is good. The agreement with a simulation
based on exact theory is also satisfactory.3? This gives
support for the correctness of the formulae (12) for
second-order corrections for the special case of axial




Table 2. Line positions and intensities for a radical with g,=
2.0003, g,=2.024, g,=2.0215 and with a 81Br nucleus with
A,=100G, A,=-20G, A,=-32G, Q,=-982G, Q,=
—9.82G and Q,=19.64G at a microwave frequency of

9500 MHz.

Position/G Intensity
2nd 2nd
Orientation order Exact order Exact
Bl X 3229.7 3229.5 0.191 0.1910
3314.4 33144 0.0589 0.0590
3329.8 3329.8 0.1935 0.1937
3371.4 33713 0.0589 0.0590
3419.3 3419.4 0.0565 0.0562
3456.1 3456.1 0.1911 0.1910
3466.4 3466.4 0.0565 0.0563
3555.9 3556.0 0.1935 0.1938
BlY 3281.6 3282.0 0.0225 0.0195
3298.07 3299.1 0.0192 0.0223
3331.9 3331.9 0.2274 0.2304
3350.7 3351.0 0.2274 0.2303
3351.5 3351.8 0.2308 0.2278
33711 3370.8 0.2308 0.2278
3401.1 3401.0 0.0226 0.1097
3424.6° 34235 0.0192 0.0221
B|Z 3308.4 3308.9 0.2500 0.2501
3338.8 3339.0 0.2500 0.2498
3370.8 3370.7 0.2500 0.2499
3404.4 3403.9 0.2500 0.2501

?Lines with the biggest difference between the second-order
and exact positions.

Fig. 2. Experimental and simulated spectra of Ags?
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symmetry. The quadrupolar interaction for 7> 1/2 nuclei
is not taken into account in the algorithm, however.

The other case of practical interest involves the shift
of transition frequencies in ENDOR or field positions in
EPR due to cross-terms to second order between non-
equivalent nuclei. The cross-term for a system with two
nuclei is

1
E* (Elhl’z) =(2gupB)~!

3
><< > T?}(m|1$”i1)1><P2|1§-2’Ip2>)(13)

ij=1
with the definitions
T = (A(I)A(Z))ij - (A(l)“)i(A(z)“)j

The different nuclei are denoted by superscripts (oper-
ators, matrices) and subscripts (wavefunctions) 1 and 2.

Equation (13) involves the computation of
{pJI®|py> over the states p, given by eqn. (7) for the
two nuclei (x=1 and 2). In the present implementation
the computation of the matrix elements is done in a loop
over the nuclei without storage of preceding elements.
The second-order cross-term between two nuclei can
therefore not be computed. The cross-term has a form
differing from that obtained under the condition
H,>H,.*® The correctness of eqn. (13) therefore needs
to be established before it can be applied. The neglect of
the cross-term is of significance especially in the simula-
tion of ENDOR spectra from ligand nuclei of transition
metal ions like Cu?*, where the central nucleus has a

J |
— i ~ J
V \r“’“/ ~ Lf(w exp.
Ay W
|
;' ! J
)t i — sim.
(i f”
|
L L N A 1 . ]
3000 3200 3400 3600 3800
Gauss

+

in zeolite showing second-order hyperfine splittings due to three

equivalent "%°Ag nuclei. The parameters are 9,=1.958, g, =1.981, A;=218.8G, A, =221.6 G, linewidth=4 G peak-peak of
first derivative. The experimental spectrum was provided by Prof. J. Michalik.
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large anisotropic hyperfine coupling. The cross-term gives
rise to frequency shifts which cannot be accounted for
with the ENDOR simulation programme described
below. From eqn. (13) follows that cross-terms do not
appear when the two nuclei have isotropic hyperfine
couplings. This is in accordance with the result in Ref. 28.
An implicit assumption in the treatment here and in
Ref. 28 is that the nuclei are not equivalent. This case is
treated separately in our programs for the special case
that the nuclear quadrupole interaction is negligible. The
case with equivalent nuclei having large quadrupole
interactions cannot be treated with the programme pre-
sented here.

4. Calculation of EPR spectra of S=1 molecules

Simulations of S=1 EPR spectra excluding hyperfine
and nuclear interactions were first performed by Kottis
and Lefebvre.® They calculated exactly the transition
fields and intensities from the electronic Zeeman, H,,
and zero-field splitting, H, terms. In our implementation
the hyperfine, nuclear Zeeman and quadrupole terms
were taken into account under similar conditions as for
the S=12 case, ie. H,+H;»H,+H,+H,'* No
assumption is made of the relative magnitudes of the
terms within the two groups or about the orientation
of the tensor axes. The treatment follows closely the
§=1/2 case and only the differences are highlighted.

Field strength: The field strengths at which the trans-
itions occur for a constant microwave frequency are
calculated from an equation!® of the form

F(B,A) = —4g°(upB)® + (12g*d + 9g* A% + 27¢*) (np B)*
—[6g%(A* +2d) (A% + d) + 54ef1(up B)?
+ (A2 +4d) (A2 +d)? +27f* =0, (14)

where g*=¢/9?¢/,d=D,D,+D,D;+D,D;, e= —/gDg/,
f=—-D,D,D;, and A=hv. D,, D,, and D, are the
principal elements of the zero-field splitting tensor and
¢ =B/ B is specified with respect to the principal axes of
the zero-field splitting tensor.

Transformation of coupling tensors: The condition that
the field equation is expressed in the zero-field splitting
coordinate system makes it necessary to transform the
principal axes and the field vector as follows

W=y u (15)

where v is the matrix of direction cosines of the D tensor,
u is a vector in the laboratory system and u’ the corres-
ponding vector in the D-axis system.

Transition intensity between electronic states o and
B: The electronic part of the Hamiltonian is diagonalized
at each of the fields (3 in general) obtained from
eqn. (14). The resulting state vectors C, and C, were
obtained in the T basis that diagonalises the zero-field
Hamiltonian. In (10) the intensity I,; was computed
under the assumption that the g-factor anisotropy could
be neglected. It was further implicitly assumed that the
same expression was valid for the single crystal case as
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for a disordered system. In connection with the develop-
ment of the ENDOR programme a distinction between
the two cases became necessary.?® The intensities for the
single (s) and polycrystal cases (p) are

I3 =g Bi|CE x Cy- gt1

I8 =313 BHIGCE x Cy” = |(C¥ x Cy) - 9/}

(16a)
(16b)

£, is a unit vector parallel to the microwave magnetic
field B, . B, is assumed to be linearly polarised perpendic-
ular to the static magnetic field. In practice the g-
anisotropy of organic S=1 molecules is negligible, and
the spectrum shape is unaffected by the intensity factor
in single crystals. Therefore, in the implementation
eqn. (16b) is used. With an isotropic g the formula
becomes the same as in Ref. 10.

Hyperfine interaction: Because of the zero-field term a
transformation of the hyperfine term like in the S=1/2
case cannot be performed. The calculation is therefore
performed with the original operator. The nonzero
matrix elements of the hyperfine term are

Coym|S+A-Tjo, m) = V¥m,
(rom|S-A-Ha.m+ 1D (17)
=120+ 1) =mm 1)V +iVy®)

where V'$* is obtained by putting B=a in the expression

3
V= —i Y A4,;(C¥ x Cp); (18)
i=1
(Note that C, is a complex vector so that V$* is not
zero.) The matrix elements of the quadrupole and nuclear
Zeeman terms are given by eqns. (4) and (5).
The positions of the hyperfine lines are obtained as

AB,,= — AW, /(dW/dB) (19)

where AW, is the energy separation for the transition
(ap)—(Bq).

The minus sign in eqn. (19) accounts for the fact that
a positive energy difference corresponds to a negative
field shift. The quantity (dW/dB) is the factor which
converts energy separations into field shifts. For values
of zero-field splittings much less than guzB we have
(dW/dB=gpg). In the general case one has to evaluate

(dW/dB) = —(0F/3B)/(3F/6A) (20)
at
B=B,.

The resulting formula, see Ref. 10, obtained by differen-
tiation of eqn. (14) is implemented in the program.

The intensities of the hyperfine lines are computed as
in the S=1/2 case. Several nuclei are treated by using a
product basis of nuclear spin functions. The matrix of
nuclear interactions is block diagonal with respect to the
nuclei to first order. Consequently, as in all other pro-
grams presented here, each nucleus can be treated
separately.

This program was applied in the analysis of the
trimethylene methane data.’




This S=1 molecule is characterized by an isotropic
factor, g=2.002, D=0.0248cm™!, |E|<0.0003cm™%,
and a hyperfine structure with six protons with A=
(—14, —38, —26) MHz. The principal axes of the proton
coupling tensors are related by a threefold symmetry axis
of the molecule. Owing to the relatively small zero-field
splitting the spectrum is characterized by two strong
AM =1 transitions and a weak AM,=2 transition. The
spectrum consists of 3 x 4°=8192 transitions. An algo-
rithm which lumps together degenerate transitions and
eliminates lines weaker than a treshold value has been
implemented to reduce the computation time. As shown
before the hyperfine patterns of the M,=1-0 and
M =0- —1 transitions differ.3®* By simulation of single-
crystal spectra, the signs of the hyperfine tensor compon-
ents could be determined relative to the sign of the fine
structure.” The AM, =1 powder spectrum in Fig. 3a took

D<0
D>0
T T 1 o 1 i 1 M ¥ M 1 M 1
310 320 330 340 350 360 370
(a) Field [mT]
r Ll T 1 v T 1 M T
164 166 168 170 172
(b) Field [mT]

Fig. 3. (a) Simulated AM;=1 EPR spectrum of trimethylene-
methane, C(CH;)3, in polycrystalline methylenecyclopropane,
with D>0 and D<O0, respectively. Parameters were taken
from Ref. 9. (b) Simulated AM;=2 EPR spectrum of C(CH,)3
in polycrystalline methylene cyclopropane. See Ref. 52 for
an experimental spectrum.
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less than 1 h to compute on a modern PC (Pentium
200 MHz processor). As can be seen by comparing the
simulation for D>0 with that for D<0 a difference is
also obtained in the powder. As shown before the correct
assignment is D>0.° The AM,=2 part is less time
demanding. A simulated spectrum is given in Fig. 3b.
The spectrum compares favourably with that experiment-
ally obtained. To our knowledge S=1 powder spectra of
such complexity as from TMM have not been simulated
before. The program was designed to handle also the
cases with a quadrupolar term comparable to the hyper-
fine and nuclear Zeeman terms. Systems of this type
containing chlorine and bromine have been investigated
by ODMR.3* We have not attempted to simulate the
spectra, however.

5. Simulation of microwave power dependence
of satellite lines

The radiation dose can be measured from the yield of
free radicals by EPR. The alanine EPR dosimeter has
gained general acceptance. In the so-called stable alan-
ine radical (SAR) the deaminated radical species
CH;C'HCOO~ dominates the spectrum. The radical
interacts weakly by dipolar interaction with three protons
of an adjacent alanine molecule.®® This gives rise to
|AM,|=1 spin flip lines.?” In the absence of microwave
saturation the signal intensity depends linearly on P2,
where P is the applied microwave power. To obtain high
sensitivity relatively high microwave power is often
applied. The main lines normally saturate at lower power
than the satellite lines. At high power the intensity of
the satellite lines therefore grow in comparison with the
main lines. Most computer simulation routines available
today do not take this dependency into account. A
phenomenological method!! has therefore been devised
and implemented in one of the computer codes described
in this paper. The implementation is based on a theory
of continuous saturation by the microwave field.*® In the
case when all the lines are well resolved, the EPR
absorption of a line centred at B, of intensity B, is

B Bogu(B — By)
1 2 .
1 + C,BoBi(B— By)

The equation applies to the homogeneous saturation
case.

Inhomogeneous contributions give rise to additional
broadening. The EPR absorption can be calculated ana-
lytically in the limiting case when the inhomogeneous
line width greatly exceeds the line width of the spin
packet.3*4° It is customary to use Lorentzian and
Gaussian functions for the homogeneous and inhomo-
geneous line shapes gy and g;. Under these assumptions
one has for a line centred at B, of intensity B,

g1(B— By)
(1 +K,BoBN)'?

Constants K, and K, and C; and C, are proportionality

SH(Ba Bl)=C1 (21)

SI(Ba Bl)=K1B1Bo (22)
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constants. The forms of expressions (21)—(22) suggest a
phenomenological equation for the effect of saturation
in a spectrum composed of L lines
& Pig(B—B)

S(B,P)=K,P?y L (23)

P L e piipy
Experimentally, the linewidth of the SAR depends on
the orientation.'" It is therefore assumed that the shape
function g has an orientation dependent width w given
by the equation

w2 =/T)*/ (24)

T is a tensor specified by its principal values and the
direction cosines of the principal directions. The formula
agrees with that of Pilbrow when the g-anisotropy is
neglected.?

For the stable alanine radical (SAR) a modified for-
mula (23) had to be employed to predict correctly the
relative intensities of the main lines at high microwave
power. For the main lines a saturation factor
(I4+P/Py)™™ was used in place of the factor
(14 PB,P/Py)~* used for the satellite lines. The parameter
P, was estimated from the saturation behaviour of the
experimental spectra. The parameter » was chosen empir-
ically in the range 0.5<u0<1.0 to conform with the
extreme cases of completely inhomogeneous and homo-
geneous broadening.

Except for the saturation factor, the expression for the
spectrum is identical to that of the unsaturated case.
This factor accounts for the difference in saturation
between lines of different transition probability B,.
Satellite lines due to nuclear ‘spin flip’ transitions occur
when the hyperfine coupling is strongly anisotropic and
of comparable magnitude to the nuclear Zeeman coup-
ling. These ‘forbidden’ lines will not saturate as easily as
the main lines. Any program which takes forbidden
transitions into account may be employed, e.g. the clas-
sical program by Lefebvre and Maruani.* Our treatment
is based on the theory presented above for the S=
1/2 case.

In Ref. 11 simulations for single crystal and poly-
crystalline SAR were obtained at different microwave
powers. The satellite lines became of comparable intensity
to the main lines in the experimental and simulated
spectra at high microwave power. The radical trapped
after X-irradiation at room temperature of ammonium
tartrate is ~OOC-C’(OH)-'CH(OH)-COO~.*' As
Judged from the magnitudes of the hyperfine interactions
with the B and hydroxy protons, spin flip lines are to be
expected also in this case. The simulations in Fig. 4
support this prediction. Experimental studies of this
system are in progress in our laboratory in search of a
sensitive EPR dosimeter.

6. First-order S=1/2 ENDOR spectra

6.1. Calculation of ENDOR transition frequencies. The
first-order theory for S=1/2 EPR forms the basis for
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Fig. 4. Simulated first derivative X-band spectra at different
microwave power levels of X-irradiated ammonium tartrate.
The simulated spectra are calculated using tensor data for
the —-OOC-"C(OH)-CH(OH)-COO ™ in Ref. 41: (a) unsaturated
spectrum, P=0.1 mW; (b) saturated spectrum, P=64 mW,
Po=05mW, x=0.7 [see eqn.(23) for explanation of

parameters].

calculation of corresponding ENDOR transition frequen-
cies and intensities. The perturbation (11) gives no energy
contribution to first order and the ENDOR transition
frequency between two nuclear eigenstates |4;> and |k;),
AM =0, is obtained as

Juw, = E(h)) — E'(k;)| (25)

where |#;) and |k;) belong to the same M, -manifold, i.e.
either the |p;) or the |g; >-manifolds defined in eqn. (6).
Note that in general the eigenstates are mixtures of
nuclear spin states. E'(h;) and E'(k;) are the first-order
nuclear energies of the two states, defined in section 3.
The neglect of higher-order terms is justified for hyper-
fine interactions (hfi) smaller than 40—50 MHz, measured
at high magnetic field. For larger interactions the second-
order corrections of section 3.1 can be applied. However,
they are not implemented in our ENDOR program, since
the major application is to measure small hfi unresolved
in EPR spectra. Neither are second-order terms due to
cross-terms between different nuclei included in eqn. (25).
Second-order split/shifts due to magnetically equivalent
nuclei with small hfi are generally too small to be resolved
in broad powder ENDOR lines. For the four equivalent
protons of naphthalene”*, described in Ref. 14, each
first-order resonance line is shifted and split into four
lines. The split/shift can be calculated with a formula
given by Iwasaki.?” The largest second-order splitting,
which occurs for the hyperfine tensor component of
—7.9 MHz, is ca. 0.023 MHz. Since the linewidth is
0.6 MHz the splitting is not resolved. The second-order
splitting might be noticeable for larger hfi measured in
single crystals. Splittings/shifts of up to 0.2 MHz have




been observed by Toriyama and coworkers** for methyl
protons with a hfi of ca. 60 MHz in a single crystal of
CH;COOLi-2H,0. A more important effect is that of
second-order terms in small hfi in the presence of nuclei
with very large hfi, as described in section 3.2. These are
not taken into account in eqn. (25), but if necessary
eqn. (13) can be applied.

6.2. Calculation of ENDOR transition moments. The
probability for a radiation-induced transition in ENDOR
between nuclear spin states |h;><>|k;>, AM =0, for a
nucleus with spin I, is given by Fermi’s golden rule:?*42

P=2nW?p(w) (26)

where p(o) is the frequency distribution function of the
radiation and

W2 =|{®(M,, h, h;)|By* (1598 — ). gikn];)
j=1

J

X |(D(Ms7h’ k1)>|2 (27)

The label 4 is an abbreviation for the states 41, ..., h;_4,
Rit1s ..., h, of the nuclei which remain unchanged in the
transition. The first-order eigenfunctions for M= +1/2
are given by:

|q)(+ 1/25 hl’ e hn)>
=|+1/2a hl’ LR hn>+

<_1/29 q19-~~5qn| Z Hz”|+ 1/2, hla '~~ahn>
Z i=1

4142---4n +gugB
X|_l/27q1"-'9qm> (28)

where the outer summations runs over all nuclear states
lg:> in |—1/2,q1, ..., > =1—1/2>|g:Dlq2) ...1g,>. The
labels in @ (+1,2, Ay, ..., h,) identify the state labels of
the leading term in the first-order expression. Energy
terms smaller than the order of guzBx 1072, caused
by the nuclear interactions H;, have been neglected
in the denominator. The corresponding expression for
|®(—1/2, 44,95, ...,q,)> is obtained by exchanging
places of all /#; and ¢;, and plus and minus signs in
formula (28). In the special case of a single nucleus (27)
becomes

W2 =|<@(M,, h)|B;* (159S — gxinD)| DM, k)>I.

(29)

The use of first-order wavefunctions is important to
predict ENDOR transition moments properly. As
described by Schweiger and Giinthard,?® first-order
moments show good performance, whereas zero-order
formulas may differ from exact values by orders of
magnitude. The transition moment in a single crystal is,
in general, anisotropic and depends on the orientation
of the molecule relative to the static and the RF field.?*-%°
In powders transition moments require integration over
the directions of both the static and the RF field, as
discussed further below. Zero-order transition moments
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only show orientational dependence when the static field
is oriented away from the principal axes of the hyperfine
tensor.*? Further, zero-order calculations are insufficient
to predict hyperfine enhancement effects.

The Hamiltonian operator used in eqn. (27) represents
the interaction between the RF field, B,, and the electron
and nuclear magnetic moments. The square of the matrix
element W, the transition moment, selects the allowed
transitions and predicts the relative intensities, neglecting
relaxation effects. The overall intensity of an ENDOR
line is determined by the balance between different
nuclear and electronic relaxation pathways. A model of
relaxation in solution ENDOR has been worked out by
Freed and co-workers.*> However, only a few experi-
mental investigations** have been made of relaxation in
ENDOR of solid samples at low temperatures. Further,
the detailed knowledge of all relaxation rates needed in
a theoretical model makes the calculations complex and
has not been incorporated in the present method. The
use of transition moments to predict intensities while
neglecting relaxation can still in many cases give a
sufficiently good fit to enable a spectral interpretation,
as demonstrated in Refs. 13, 14 and 23.

6.3. Formulae of ENDOR transition moments in single
crystals. The squared transition moment, eqn. (27), cal-
culated with the first order wavefunctions (28) is given
by23

W?=(B,/B)*|<h|ICr|k)[? (30)

for a transition between nuclear states |h)<|k>, AM =
0 of a nucleus with spin 7 in a single crystal. The nuclear
index i has been dropped to simplify the formula. The
term C is defined in Table 3, where symbol A is the
hyperfine matrix, 1 is the identity matrix, vy is the
nuclear Larmor frequency. Symbols B, and r are the
strength and direction of the RF field B,, which is
oriented perpendicular to the static field direction ¢. The
static field B has the strength B.

Equation (30) covers the case of strong nuclear quad-
rupolar interactions (nqi), compared to the hyperfine
coupling, when the usual Am;= +1 selection rule breaks
down. In Table 3 the equation is collected as eqn. (a)
together with formulae neglecting nqi. With zero quadru-
polar interaction eqn. (30) can be simplified to an analyt-
ical formula, eqn.(b) of Table3, first reported by
Toriyama et al.?* First-order formulae under similar
assumptions have also been reported by Dalton and
Kwiram.?? Without nqgi the nuclear spins are quantised
along the direction:

k = CZ/|C¢. (31)

The nuclear wavefunctions are then eigenstates |m; ) to
the operator I,=I-k. Introducing two orthogonal unit
vectors p and q, which are perpendicular to k, the
operator ICr in eqn. (30) can be expanded as:

ICr =1-k(kCr)+1I-p(pCr) +1-q(qCr) (32)
Inserting eqn. (32) into the general eqn. (27) and using
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Table 3. Square of first-order ENDOR transition moments, W?, in multiples of (B,/B)? in a single crystal for a transition
between nuclear states |h)<>|k)>, AM;=0 of a nucleus with spin /.

Equation number

and application W2 (in multiples of (B,/B)? Refs.
a. Arbitrary A, Q
Modest g-anisotropy? [<h{ICK| k)2 23
b. Q=0
Arbitrary A
Modest g-anisotropy® f+2[rCCr—(rCC/)?/(/CC/)) 23, 24P 25°
c. Q=0

B // principal axis z of A
B, // principal axis x of A
Isotropic g

d. Q=0
Arbitrary A, g

fiZVNZH - MsAx/VN]2

Notation:
C=M,Ag/g—vn1

23, 24,> 25,5 45°

f+2[rCCr — (rC/)® + (rC/ —rgg/ vn/g?)2 — (rCC/ —rggt £ Cl VN /G 2/ CCY) 25°

Formulas for W2 when Q =0, eqns. (3b)-(3d) apply to |hD> =|m,+ 1),

|k> =|m,). Wavefunctions |m,) are eigenfunctions of the operator

fE2=00+1) —m(m+t /4 |, =]k where k=C¢/|C/]|

#The g-anisotropy is here defined as modest if g fulfills: (1/g?)rgg? <1 when r- ¢/ =0.2Corresponding expressions have been
published in Refs. 24 and 25 [eqn. (b)] and 24, 25 and 45 [eqn. (c)].°Adapted to the notation of this paper.

the identity
rCCr = (kCr)? + (pCr)? + (qCr)? (33)

eventually gives eqn. (b) in the table. Equation (a) and
hence also (b) in Table 3 assumes that the g-anisotropy
is small enough that the relation (1/g*)rgg//g*«1 is
valid. Here r is assumed to be perpendicular to 7, the
configuration found in conventional ENDOR spectro-
meters. The relation is fulfilled for most free radicals
since their g-anisotropy amounts only to a few percent
of the isotropic value.

For large g-anisotropy but neglecting quadrupolar
interactions Schweiger and Giinthard®® have derived a
very accurate formula, given in our notation as eqn. (d)
in Table 3. The equation shows perfect agreement with
exact numerical calculations even for g-anisotropies
exceeding 30% of the isotropic value.? Inspection of the
equation gives that it agrees with eqn. (b) if rgg//g*-
terms are neglected. For g-anisotropies up to a few
percent these terms have negligible effect. For a larger
anisotropy of 10% eqn. (b) is, as a rule of thumb,
accurate to within 1-2% of the more exact value of
eqn. (d) in Table 3. Table5 shows a comparison of
transition moments calculated for a methylene proton in
Cu'-doped a-glycine which has the principal g-values,
2.0434, 2.0715 and 2.2644% (Table4). The relative
difference between the two equations varies from 0.4%
up to 1.5% of the ‘exact’ value. The largest discrepancy
occurs for the M,= +1/2 transition with B along crystal
axis b and B, along a.

6.4. Properties of ENDOR transition moments. Two
important properties of ENDOR transition moments in
solids are the so called hyperfine enhancement effect, and
the dependence of the orientation of the RF field.?37254¢
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Table 4. The g and hyperfine tensors? of the methylene
proton 1 in Cu"-doped o-glycine single crystal obtained
at 4.2 K.

Principal Direction cosines®

Tensor value®

g 2.0434 —0.234 0.652 0.721
2.0715 —-0.718 0.379 —0.581
2.2644 0.656 0.654 —0.378

A, 6.35 0.561 0.776 —0.288
1.99 —0.661 0.211 —-0.721
1.14 —0.499 0.595 0.631

®The g-tensor and the methylene proton hyperfine tensor
data were taken from Ref. [46]. °Hyperfine values in MHz.
°With respect to axes a, b and ¢’, see Ref. 46.

Table 5. Comparison of squared first-order ENDOR transition
moments, W?, (arbitrary units) of proton 1 in a single crystal
of Cu'-doped a-glycine.

M, W? according to W? according to

B, B Table 3, eqn. (b), Table 3, eqn. (d),
parallel parallel neglecting rgg/- including rgg/-
to axis to axis terms terms
a b + 16.05 16.30
- 26.10 25.83
a c’ + 16.31 16.38
— 26.34 26.25
b a + 15.98 16.21
- 26.30 26.05
b c’ + 16.01 16.13
—  26.32 26.18
c’ a + 17.20 17.33
— 25.20 25.05
c’ b + 16.97 17.09
— 2498 24.86




Both effects can be illustrated by considering a simple
case first discussed by Whiffen.*® The g factor is assumed
to be isotropic and the quadrupolar interaction to be
zero. The static and the RF fields are directed parallel
to two principal axes, say z and x, of the hyperfine tensor
A; ie. ///z and r//x In this case eqns. (a) and (b) of
Table 3 will become eqn. (c), first given by Whiffen.*®
The term A, is the principal component of A along x.
The enhancement factor 1— M A, /vy reflects that the
hyperfine field produced at the nucleus gives an important
contribution to the RF field in driving the nuclear
transitions. The effect, first recognised by Abragam,*” is
commonly known as ‘hyperfine enhancement’. The
enhancement factor would be equal to one if the inter-
action between the electron and the RF field would be
neglected in the transition moment eqns. (27) and (29).
The enhancement effect can be very large for nuclei with
small magnetic moments, such as *N. For nuclei with
large magnetic moments, such as protons, the effect is
less pronounced. However, it can still cause unexpectedly
low intensities for the low-frequency transition, making
it difficult to detect in a powder sample, as illustrated by
the para protons of the biphenyl radical cation studied
in Ref. 13. The hyperfine tensor has the principal com-
ponents A, A, A,: —26.9, —7.9 and —18.3 MHz. For
the assumed ¢ and r directions eqn. (c) gives the values
3.7 (M,= +1/2) and 0.0 (M;= —1/2), making the latter
transition difficult to detect.

The dependence on the RF field orientation in the
enhancement factor is reflected in eqn. (c) in Table 3 by
the term A,, the component of A along B,. The frequency
and the probability of the transition are thus governed
by different components of the hyperfine tensor. This is
a general property of ENDOR moments in solids and
for a fixed orientation of B it is a function of the
orientation of B, in the plane perpendicular to B. For
the para protons discussed above the squared enhance-
ment factor for B//z will vary between 1.6 and 3.7 (M=
+1/2) and between 0.5 and 0.0 (M;= —1/2), depending
on the orientation of B,.

6.5. ENDOR transition moments in powders. Calculating
the squared transition moment W2 in a powder sample
requires integration of W? over angle | for each set of
0 and ¢. Angles 0 and ¢ are the polar coordinates of B,
and the angle V relates the orientation of the molecule
to the RF field direction for each direction of B.*! In a
powder all molecules with the same orientation with
respect to B will have the same resonance frequency, but
they will be randomly oriented relative to B,. The
variation in W with the orientation of B, can be signific-
ant, as pointed out by several authors.?*?>** Although
the effect of the RF orientation has been known for a
long time it has, to the best of our knowledge, never
been fully taken into account when calculating ENDOR
transition moments in powders. Analytical integration
of eqn. (30), over the distribution of B, directions in the
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plane perpendicular to B gives the expression®

W20, ¢) = J w26, 0, ) dy

¥

1 /B,\?
== <—> (a*C?*a. — a*C/ - aC?) (34)
2\ B

where o is a vector with the components <{A|L|k), <A|I,|k)
and <h|I,|k), and a* is obtained by complex conjugation
of the components. The nuclear index i has been dropped
for simplicity. The integration is done in a similar fashion
as done by Kottis and Lefebvre® for triplet state EPR
spectra. Analytical integration avoids the need for a time
consuming numerical integration of W? over V.

6.6. The ENDOR powder lineshape. The first-derivative
powder lineshape at the ENDOR frequency f and static
magnetic field B is approximated by the formula:*®

d
a?x(B,f) = L sin § L Y [s(B—B,)I,2

d _
X (E{zk: t(f—ﬁk)lek>:| do d6 (35)
where

Wi = J Wi (6, o, V) dy (36)
v

The summations run over the EPR transition fields
B,(8, ¢) and the ENDOR transition frequencies f;,(9, ¢),
with the corresponding transition moments [;(6, ¢) and
W, (8, ¢, ¥). Each nucleus with non-zero nqi gives rise
to (2I+1)> EPR transitions and 2I(2I+1) possible
ENDOR transitions. ENDOR transitions between all
nuclear spin states within the same Mg-manifold of a
nucleus are more or less allowed. Similarly EPR trans-
itions between all initial and final nuclear spin states
with different M -value are allowed. With zero ngi the
number of ENDOR transitions reduces to 4/ with the
selection rule AMs=0, Am;=+1. Here m; is the
quantum number of the nuclear spin operator I, along
the nuclear quantization axis k given by eqn. (31). The
EPR component lineshape function s acts as a weighting
function. It selects the EPR transitions that contribute
to the ENDOR signal at a particular field setting. Further
we assume that only nuclear transitions which have an
energy level in common with the EPR transitions that
are in resonance will give an ENDOR response. The
function ¢ is a convolution function describing the line-
shape of a specific ENDOR transition. The functions s
and 7 can be selected as Lorentzian or Gaussian shaped.
The integration over Y is described above. Integration
over 8 and ¢ are performed using Gaussian quadrature
as described in Ref. 4.

The structure of eqn. (35) can be derived from the
general principles of powder ENDOR lineshapes outlined
in Refs. 15 and 16 and is similar to eqn. (3) in Ref. 19,
although we calculate transition moments W to first
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order and take into account the dependence of W on
the RF field direction, see eqns. (34) and (36). The
intensity dependence in J; due to g-anisotropy is neglected
and we assume constant, isotropic linewidths for the
lineshape functions. Neither spin relaxation nor instru-
mental effects on the lineshape are included in eqn. (35).

It should be noted here that the orientational selectivity
depends on the ratio between the electron spin—spin
relaxation rate (T') and the electron spin-lattice relaxa-
tion rate (T.').?* Orientational selectivity is efficient if
T.' « Tr.!, which is the common situation for transition
metal complexes and radicals in frozen solution above
77 K.“® The ENDOR spectrum is then the sum of all
transitions that are connected to the EPR transitions in
resonance. In the other limit, when T '>» T7.!, the
ENDOR spectrum is the sum of all possible orientations
irrespective of which part of the EPR spectrum that is
monitored. This situation has been encountered for
organic radicals at very low temperatures, <4 K.?>%

T T T

T
1 2 3 4

T

o -
o
~

Frequency [MHz]

Fig. 5. Experimental (solid line) and simulated (dotted line)
powder ENDOR spectra at 110 K of X-irradiated hippuric
acid. Only the region of '*N-signals is shown. The spectra
were obtained at the centre of the EPR spectrum (Fig. 1) with
microwave frequency 9.57367 GHz and B=3415.3G.
Hyperfine and nuclear quadrupolar tensor parameters were
taken from Refs. 23 and 30.

T T T v T T T T 1
10 20 30 40 50

Frequency [MHz]

Fig. 6. Simulated powder ENDOR spectrum of the tyrosyl
free radical in ribonucleotide reductase from Escherichia coli.
Proton hyperfine tensor parameters were obtained from
Ref. 49. Letters label line positions listed in Table 6.

This case is not implemented in eqn. (35), but has been
treated for 7=1/2 nuclei by Dalton and Kwiram.??

The ENDOR program developed by us has been
applied to simulate spectra of a-proton hyperfine coup-
lings'314 as well as to spectra caused by !“N-hyperfine
and quadrupolar couplings.?® Shown in Fig. 5 are experi-
mental and simulated ENDOR spectra®® of X-irradiated
hippuric acid obtained at 110 K. Only the region of “N-
signals is shown. The nitrogen nucleus has the prin-
cipal hyperfine components: —7.58, -8.47, —9.44 MHz
and quadrupolar components —0.843, +0.582,
+0.261 Mhz.2> ENDOR signals from a-proton hyperfine
couplings in aromatic rings of m-radicals have been
observed in a number of systems: biphenyl *,!3
naphthalene *,!4 perylene’ *,?! the tyrosyl radical*® and
p-benzoquinone ~.%° In all these cases the hf tensors
were anisotropic and the powder EPR spectra fairly
unresolved. ENDOR simulation has proved to be essen-
tial in the interpretation of the spectra in several of these
cases.!>142t A simulation of the ENDOR spectrum of
the tyrosyl free radical, R-CyH,-Ph'-O, in ribonucleo-
tide reductase from Escherichia coli is shown in Fig. 6.

Table 6. Experimental and simulated powder ENDOR line positions for the tyrosyl free radical, R-CzH,-Ph'-0, in ribonucleotide

reductase from Escherichia coli.

Simulated Experimental

line position/ line position®?/ Tensor Coupling
Transition? MHz MHz Proton® component constant
b 16.8 16.8 [2,6]-proton A, 48
c 18.2 18.2 [2,6]-proton A, 7.6
d 18.2 18.3 [3,5]-proton A, -7.8
e 243 24.3 [3,5]-proton A, -19.7
f 27.9 278 [3,5]-proton A, —26.9
g 41.8 41.8 B-methylene A, 54.8
h 43.3 43.2 B-methylene A, 57.8
i 44.8 448 B-methylene Ay 60.8

aFor labeling refer to Fig. 6 of this work and Fig. 3 in Ref. 48. ®See Table | in Ref. 48. °For proton labeling see Fig. 1 in Ref. 48.
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Hyperfine parameters were taken from the experimental
work by Bender et al*® The lineshape is caused by
hyperfine couplings from a-protons on the tyrosyl phenol
ring, Ph’, and B-protons on the B-carbon. The simulation
corresponds to the experimental spectrum shown in
Fig. 3 in Ref. 48. The agreement between experimental*®
and simulated line positions is excellent (Table 6). The
simulation program written in Microsoft FORTRAN is
available upon request to the authors. Details of the
program can be found in Ref. 51.

7. Conclusions

Computer simulation using simple formulas calculated
by perturbation theory may be one way to facilitate
interpretation of complex powder EPR and ENDOR
spectra. Although single-crystal samples may be preferred
due to the higher spectral resolution offered, many
samples cannot be obtained in other forms than powders.
In these cases there are few alternatives but to attempt
to elucidate as much information from the powder
spectra as possible. The computer program developed by
us to simulate S=1/2 and S=1 EPR and S=1/2
ENDOR spectra of anisotropic systems have been
applied to analyse disordered systems with good
performance.
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