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By use of the principal component analysis method, the principal properties of
45 different monodentate phosphorus ligands, each described by fifteen molecular
descriptors, have been calculated. A principal component model composed of
five principal components was determined according to cross-validation and
accounted for 90% of the variance in the original data table. This model divided
the P ligands into two classes, a small one which contained six polyhalogenated
P ligands, and another which contained 39 different P ligands. Another principal
component analysis was carried out on the large class of P ligands. This model
described 90.5% of the total variance by using four principal components. Among
these a subset of compounds were used for validating the relevance of the
molecular descriptor variables. Two experimentally measured IR-frequencies, the
carbonyl frequencies v,, and vg were used as independent variables and correlated
to the molecular descriptors using the partial least-squares regression (PLSR)
method. The PLSR models showed that the calculated molecular descriptors
contained relevant information concerning the investigated compounds to be
used for deriving the principal properties of the monodentate phosphorus ligands.
The PLSR models for the two different IR frequencies were used to predict the
CO frequencies for P ligands where the IR frequencies have not been reported

in the literature.

An expanding and important field of synthetic organic
chemistry is application of transition metals as catalysts.!
A general feature of such catalysts is that the transition
metals are stabilised by certain ligands of which phos-
phines are the most important single class. In order to
achieve a desired synthetic transformation several condi-
tions must be considered, such as which transition metal
will be the best; which ligand will be the most suitable
and which solvent to employ.

For newly discovered reactions, details of the reaction
mechanisms are often not known with certainty. Hence,
deduction from theoretical considerations based upon
reaction mechanisms cannot be used for determining
which ligand would be the best choice. Any conclusions
in these directions must be inferred from experimental
observations. To this end, screening experiments with
different types of ligand are often carried out. In the
catalytic process, the substrate to be converted interacts
with the transition metal, whereupon bond breaking and
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bond formation occurs. In these steps it is reasonable to
assume that the donating properties of the P ligand, as
well as back-donation from the metal, will play roles for
fine-tuning the catalytic process. It is also reasonable to
assume that effects of steric congestion intervene.

This paper present a multivariate characterisation of
45 different monodentate phosphorus ligands. It is shown
how such a characterisation furnishes methods for the
systematic selection of test ligands for screening experi-
ments when the objective is to find a suitable ligand. The
descriptors used to characterise the ligands were also
used to predict the vibrational carbonyl frequencies of
phosphine-coordinated nickel carbonyl complexes. The
method is based on multivariate characterisation in prin-
cipal component analysis of molecular descriptors of the
ligands. The latent variables thus determined are called
principal properties.>3

Description of the ligands

Data. The different monodentate phosphorus ligands, in
total 45, were characterised by a set of molecular
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descriptors which describe a physical or chemical prop-
erty. A general problem in the present type of investi-
gation is the lack of consistency in measured data from
literature sources. To overcome these difficulties, the
present work is based on descriptors determined using
computational chemistry. The following descriptors were
obtained for phosphorus ligands and used in the multiva-
riate data analysis: H;/kcal mol ™, the heat of formation;
p/debye, the dipole moment; x/eV, the hardness; n/eV,
the absolute electronegativity; eyomo/eV, the energy of
the highest occupied molecular orbital; € yyo/eV, the
energy of the lowest unoccupied molecular orbital;
€Lumo+1/€V, the energy of the level next to & ymo;
€Lumo+2/€V, the energy of the level two up from &, ymo;
€Lumo+3/€V, the energy of the level three up from &, yuo;
0P |[charge] the partial charge on phosphorus;
My, /g mol™! the molecular weight; nc, the number of
carbon atoms; ny, the number of hydrogen atoms;
psA/A2, the polar surface area; vdWA/A2, the van der
Waals surface; v,,/cm ™!, the IR Al stretching frequen-
cies of the carbonyl in Ni(CO);L in CH,Cl,, where L is
a P ligand; vg/cm™!, the IR carbonyl E stretching
frequencies of Ni(CO);L in CH,Cl,, where L is a
P ligand.

The carbonyl frequencies v,, and vg were experiment-
ally determined and compiled from the literature: Grim
and McFarlane,* Moedritzer et al.,®> Bemi et al.,® Grim
et al.,” and Tolman.?®!® The other descriptors were
calculated mainly using semiempirical quantum chem-
istry which furnishes versatile methods for describing
molecular properties. Such methods!!'? were used for
calculating the molecular descriptors: H;, M, €yomos
€LUMO> ELUMO+1> ELUMO+25> ELuMO +3> OF, PSA, and vdWA.
These calculated molecular descriptors can be considered
as point measurements of various molecular properties
which portray different aspects of the energies and elec-
tronic properties of the characterised molecule. The
hardness and absolute electronegativity were calculated
according to Pearson.!* The molecular descriptor data
for the P ligands studied in the present work are summar-
ised in Table 1. However, some numerical values are not
listed, the IR frequencies v,; and vg, due to lack of
literature data. Those ligands where there are no data
are still of interest, since within the ranges of substitution
there is a certain similarity with the ligands which also
have numerical values for the IR frequencies. Thus, it is
reasonable to expect that predictions carried out for
these P ligands will give satisfactory results. Furthermore,
it is reasonable to assume that molecular descriptors
which depend on the same intrinsic properties of the
molecule will be correlated over the set of compounds,
while other molecular descriptors which depend on
different intrinsic properties will be uncorrelated or only
weakly correlated over the whole set of compounds. By
using the principal component analysis (PCA) method,
these features will be taken into account. Hence, the
PCA modelling will reveal which different underlying
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intrinsic properties may influence the experimental
results.

Methods and results

Principal component analysis (PCA). When selecting test
compounds for screening in experimental studies, it is
desirable that the set of selected items span a sufficiently
large range of variation of the properties of the test
compounds. If this is not fulfilled, potentially useful new
procedures run the risk of being overlooked due to too
narrow a choice. If a series of potential test compounds
is characterised and sufficiently described by a single
property descriptor, the selection is a simple task.
However, if the compounds are characterised by several
property descriptors, the selection becomes difficult. In
such cases, a good selection should ensure sufficient
variation in all properties considered. Any data table,
like Table 1, displays two types of variation: horizontally,
the within-compound variation of the molecular
descriptors, and vertically, the between-compound vari-
ation of the molecular descriptors.

A data-analytic method which permits the separate
analysis of these features is principal component analysis.
The essence of the PCA method is that the systematic
variation can be portrayed by fewer variables, the prin-
cipal components, than the number of descriptor vari-
ables present in the original data table. Such a procedure
makes it easy to obtain an overview of the data and
furnishes a tool for experimental design. An example is
given below.

Mathematically, this involves a factorisation of the
original data matrix X, into means (X;), the principal
component scores (#;,), which displays the between-
compound variation, the principal component loading
(par), which describes the within-compound variation of
the descriptors, and residuals (g;) mathematically
described by eqn. (1),

4
X=X+ Y. liDax + i N

a=1

where A4 denotes the number of significant principal
components determined according to, e.g., cross-
validation.

The absolute value of the loading, p,,, tells how much
a certain descriptor variable contributes to the ath prin-
cipal component, whereas the signs give information as
to whether the descriptor variables are negatively or
positively correlated with the principal component.
Detailed accounts are given in Ref. 14.

Cross validation (CV). The essence of the cross-validation
method is to determine the model complexity of the
principal component analysis (PCA) and partial least-
squares regression (PLS) as well as to estimate the
expected prediction error level. The cross-validation
method is composed of a series of calibrations and
predictions. For each of the calibrations in the PLS,
some objects (samples), N, are kept outside the original
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calibration data set which containing 7 objects. The
reduced calibration data set is then composed of (I— N)
objects and the prediction data set of N quantities,
denoted as a cross-validation segment. This is repeated
until all samples have been omitted from the calibration
set once. By using this technique, each of the objects in
the data set is used once as a test objects and different
models are made based on different calibration data sets.
The squared prediction sums of the deleted objects will
then give an estimate of the significance of a PLS
dimension. In PCA the cross-validation is usually done
slightly differently. Here individual observations are
deleted in a pseudo-random way. A PCA based on the
reduced set is then used to predict the deleted observa-
tions. Detailed accounts of one CV method are given
in Ref. 15.

The principal properties. In the principal component
analysis, all quantities and all of the molecular descriptor
variables described above, except v,;, and vy were used.
A model with five principal components was significant
according to cross-validation and accounted for 90% of
the total variance. A score projection of the two first
principal components (Fig. 1) shows that the set of
ligands can be divided into two separate homogeneous
classes. One class accommodating the majority of the
ligands and another, small class containing the polyhalo-
genated phosphorus ligands are, in many aspects, dis-
similar to the other ones. For this reason the
polyhalogenated compounds: PPh(C4Fs), , PPh,CF; ,
P(p-CcH,F);, P(o-C¢H,F);, P(p-C¢H,Cl);, and
P(0-CcH,Cl); were excluded when the final the principal
component model and the predictive models discussed
below were determined. This class of compounds is not
further investigated here, but one phosphine from this
class should also be included in an experimental design
in order also to explore the behaviour of polyhalogenated
P-ligands.

A new principal components model was determined
after the exclusion of the polyhalogenated compounds.
A four-component model was significant according
to cross-validation and accounted for 90.5%

6 T T T |
44
4 f 3 ]
o 5 *
215 2 .
* L8 % . ]
S L 4
Lo ey,
8 2+ £ 1
4 m
%
el 11
6 4 2 0 2 4 6

PC Score #1

Fig. 1. Two way score plot for principal component (PC) #1
versus PC#2 of the whole data set. The principal component
analysis ‘splits’ the phosphines into two different classes.

736

(41.0%+21.5%+ 18.0%+10.0%) of the total variance.
Projections of score and loadings are shown in Figs. 2
and 3. The computed values of the scores and loadings
are summarised in Table 2 and 3.

The score plots in Fig. 2 portray the principal proper-
ties of the compounds as projections of the original
descriptors into the space spanned by the principal
components. The loading plots (Fig. 3) show how the
original molecular descriptors contribute to the principal
components. These plots make it easy to discern how
the descriptors are correlated. The first principal compon-
ent is largely composed of the descriptors eyomo, Hy, 0P,
My, nc and vdWA which are correlated to each other,
and the descriptors &, ymo, €Lumo + 15 ELumo+2 @1 ELumo +3
which are correlated to each other and inversely correl-
ated to descriptors €yomo, 0P, My, ne and vdWA. The
second principal component is composed of the following
descriptors Hg, ny and gyomo, Which are correlated, and
descriptors p, x, 6P and psA which are correlated to
each other and inversely correlated to the descriptors Hy,
ny and gyomo- In principal component #3, the molecular
descriptors: Hy, X, ny, VdWA, My, psA and n¢ are the
most important. H; and x are correlated to each other
and inversely correlated to the others. The numerical
values for the principal component loading, p,, ..., ps,
are given in Table 3.

Validity of the molecular descriptors as predictors for the
IR frequencies. Tolman has shown that the nature of the
phosphine ligand (L) influences the carbonyl stretching
frequencies v,; and vg in Ni(CO);L complexes. Thus, if
the molecular descriptor variables, H;, 1, ¥, N, €uomo>
€Lumo> ---» account for metal-substrate interactions, this
would be detected through a multivariate model such as
a partial least-squares regression model. Two PLSR
models (using PLS1), i.e.,, one response for each (v,
and vg) were derived for prediction purposes. These
models relate the experimentally determined carbonyl IR
stretching frequencies v,; in eqn. (2) and vg in eqn. (3)
to the molecular descriptors,

Var=0o+ 0y He+ o pt+az m+oy-y

4 4 oys vAWA )
VE=Bo+ B He+Byru+Bs-m+Bax
+ - +I315'VdWA (3)

where o, a,, ..., o5 are the regression coefficients in the
predictive model for the IR carbonyl frequency v,,, and
Bys Ba, ..., Bis are the regression coefficients for the IR
carbonyl frequency vg, respectively. The numerical data
for these equations are given in the last rows of Table 3.

The PLSR modelling is accomplished through a set of
partial least-squares (PLS) components. A PLS-compon-
ent represents systematic regression found in the data.
Each P-ligand is represented in the PLS components by
its scalar values called PLS scores. Each variable in the
data matrices, X (which contain the calculated molecular
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Fig. 2. Multivariate principal component score plot for a principal component analysis performed on the large class of
phosphines (39). The principal component scores for the total principal component model are plotted: PC#1 versus PC#2,
PC#1 versus PC#3, PC#1 versus PC#4, PC#2 versus PC#3, PC#2 versus PC#4, and PC#3 versus PC#4. The numbers in the
plots are entries (objects) in Tables 1 and 2.
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Fig. 3. Multivariate principal component loading plot for a principal component analysis performed on the larger class of
phosphines (39). The principal component loadings for the total principal component model are plotted: PC#1 versus PC#2,
PCi#1 versus PC#3, PC#1 versus PC#4, PC#2 versus PC#3, PC#2 versus PC#4, and PC#3 versus PC#4.
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Table 2.
Estimated principal properties Predicted CO frequencies
No. P-Ligand? t t t3 ty Va1 VE
1 PMe,CF5 —3.5701 4.2572 —2.4977 —2.0569 2084+3.0 2008+3.4
2 P(OEt); —4.3058 2.9175 1.8380 1.4480 2076+2.2 1996 +3.2
3 PEt; —4.5605 —1.2396 —0.4057 0.7471 2062+1.9 1977+2.3
4 PBus —3.4094 -1.8188 2.0476 —0.5956 2059+1.5 1974+2.2
5 Plcy-hx)3 —1.6884 —2.7323 2.8849 —1.4912 2056+2.3 1971+3.2
6 PHPh, 0.6450 0.6766 —2.2022 0.1964 2071+1.9 1993+25
7 PPhEt, —0.8779 0.0684 —-1.7713 —0.6244 2068+2.1 1988+2.5
8 PPh,Me 1.1956 —0.0913 —1.8608 0.7672 2068+1.7 1989 +2.3
9 PPh,vin 1.5045 —0.3562 —1.7900 0.9578 2067 +1.6 1987 +2.3
10 PPhs 2.3810 —0.5394 —0.9517 0.7850 2067 +1.1 1987 +1.6
1" PBz5 2.2776 —0.2645 0.0191 —-1.6211 2068+1.8 1989+2.4
12 PPh,Bz 2.5094 —-0.7767 —-0.7151 0.2171 2066+0.9 1986+ 1.4
13 P{p-tol)s 3.1502 —1.0533 0.3734 0.3952 2065+1.1 1984+1.3
14 P(o-CgH4OMe)3 3.5553 —1.3473 1.9604 2.3780 2062+2.4 1980+2.8
15 P(OPh)3 1.7889 4.2146 1.3966 —0.1510 2084+1.9 2009+2.3
16 P(O-p-tol)s 2.4521 3.8068 2.8876 —0.5816 2082+2.9 2007 +3.5
17 P(p-CsHsOMe); 3.1838 0.4721 2.2347 1.1248 2069+2.2 1990+2.5
18 P{o-tol)a 2.8846 —0.9392 0.1483 0.2450 2065+ 1.1 1985+ 1.4
19 P(m-tol)s 29431 —0.8024 0.5002 0.2245 2065+ 1.1 1985+1.3
20 PMe; —5.5761 —0.6602 —1.2883 1.5693 2064+2.8 1980+3.3
21 PPhMe, —1.0595 —0.1296 —2.3847 0.5448 2067 +2.7 1987 +3.2
22 PPh,Et 1.3642 —0.2853 —1.5023 0.4952 2068+ 1.4 1988+ 1.9
23 P(i-Pr)3 —3.7163 —1.8501 0.3945 0.0164 2059+ 1.4 1975+1.7
24 P(t-Bu); —2.4986 —2.7934 0.8729 —0.8233 2056 +1.7 1971+2.2
25 PPhBz, 2.3404 —0.3537 —0.3422 —0.7108 2068+1.2 1988+ 1.6
26 PPh,(OEt) 1.5194 —0.1042 —1.0489 1.0292 2067 +1.7 1988+2.3
27 PPh(OEt), —0.9970 3.9482 0.0661 —1.0183 2082+1.7 2006+2.3
28 P(O-o-tol)3 2.6962 2.3760 2.0278 —0.2451 2076+2.4 1999+2.9
29 P(OMe); —4.9524 3.5912 0.6337 1.9783 2079+2.5 2000+3.4
30 P(n-Pr)3 —3.9803 —1.5517 0.8472 0.1480 2060+1.3 1976 +1.7
31 PPh(i-Pr), —0.3795 —0.6038 —1.0667 —0.6911 2066+1.7 1985 +2.1
32 PPh,(i-Pr) 1.6212 —0.6320 —1.1755 0.4603 2066 +1.2 1986+ 1.7
33 PPhBu, 0.2086 —0.9162 0.0362 —0.7320 2064+1.5 1983+ 1.9
34 PPh,Bu 1.8024 —0.4922 —0.6625 0.0687 2067+1.0 1987 +1.4
35 P(i-Bu)z —3.4285 —1.9994 2.0450 —0.3797 2058+1.5 1974+2.2
36 PPh(cy-hx), 0.7503 —1.1842 0.7965 —1.4140 2063+1.7 1982+2.3
37 PPh,{cy-hx) 1.9487 —0.5515 —0.2424 —0.3876 2066+1.0 1986+ 1.4
38 PBz,Et 1.1907 —0.1020 —0.8542 —1.2876 2069+ 1.6 1989+2.2
39 PBzEt, —0.9128 —0.1577 —1.2484 —0.9851 2067 +1.9 1987 +2.2

?Ligand notation as given in the footnote to Table 1.

descriptors) and Y (which contain the IR carbonyl fre-
quencies), is represented by PLS loadings, similar to the
PC-loadings in the principal component analysis. The
PLSR analysis also includes determination of some stat-
istics and the optimal number of PLS components to be
used in the model. Detailed accounts concerning multiva-
riate calibration and validation are given in Refs. 16
and 17.

Experimental design. The two-way score plots, Fig. 2,
were used for the selection of a small subset of 17
compounds which spans a range of properties (if the
selected molecular descriptors do). This subset was used
as a calibration data set for the PLSR modelling. The
following 17 P ligands with available IR stretching
frequencies were selected: PMe,CF;, P(OEt);, PEt;,
PBu;, P(cy-hx);, PHPh,, PPhEt,, PPh,Me, PPh,vin,
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PPh;, PBz,, PPh,Bz, P(p-tol);, P(0-PhOMe),, P(OPh),,
P(O-p-tol);, P(p-C4H,OMe); . The selection was based
upon a uniform spread in the principal properties. The
data of these ligands were used for PLSR modelling, to
determine the o and B values in eqns. (2) and (3),
respectively.

For v,; and vg two-component PLSR models were
determined as significant according to cross-validation.
The model for v,, was 89% (83.0%+6.0%) and the
model for vg was 88.5% (81.0%+ 7.5%) of the total
variance. In order to evaluate the predictive ability of
these models, they were (i) used to predict the IR
carbonyl frequencies of an independent test set for which
IR data were available and (ii) evaluated by using the
cross-validation method (see above). The independent
test data set contained the following ligands: P(o-tol)s,
P(m-tol);, PMe; , PPhMe,, PPh,Et, P(i-Pr);, P(#-Bu); ,



Table 3. Loadings for the principal component model and regression coefficients for PLSR models for the carbonyl frequencies va; and ve.
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Table 4. Statistical parameters — evaluating the PLSR models
predictive ability.

Prediction using Prediction using

Statistical independent cross-validation
parameters? test data set segments

For vaq

RMSEP 3.60 3.09

k 0.87 0.87

R? 0.89 0.93

For vg

RMSEP 5.09 4.18

k 0.83 0.88

R? 0.88 0.93

?RMSEP: root mean square of error of prediction; k, slope
of correlation line (ypredicted VErSUS Ymeasured): R?, multiple
correlation coefficient.

PPhBz, PPh,(OEt), PPh(OEt),, P(O-o-tol);, and
P(OMe);. The statistics of these predictions are summar-
ised in Table4. The poorest fit was observed for the
ligands PPh(OEt), and P(O-o-tol);. These P ligands are
classified by the PCA model as ‘extreme’ ligands, i.e.,
that they have extreme values of the principal properties
and thus are found in the outer region of this class
of ligands.

It is interesting to note that the derived PLSR models
for the IR carbonyl frequencies can be used to predict
frequencies for P-ligands for which such measurements
not have been carried out. We have used the PLSR
models to determine the IR carbonyl frequencies of all
ligands which belong to the largest class (all except
ligands Nos. 40—45 in Table 1). These results are sum-
marised in Table 2. By studying the sign and numerical
value of o and B for the IR carbonyl frequencies v,, and
Vg, respectively, it can be seen that the molecular para-
meters L, X, 0P, and psA contribute to an increase in the
IR frequency, whereas Hg, €uomo,> ELuMOs ELUMO+1s
€Lumo+2 and ny contribute to a lowering of the
frequencies.

Discussion and conclusion

When many molecular properties are calculated and/or
measured for a series of compounds, it is often found
that some of the property descriptors are correlated to
each other, which means that they depend on the same
underlying intrinsic property. Independent properties will
be described by different principal component vectors.
This is a consequence of the fact that principal compon-
ent vectors are mutually orthogonal. The PCA model
derived for the phosphorus ligands showed that all of
the molecular descriptors contained some information
used to obtain the principal properties. Since these
principal properties could be used as predictors for
describing the influence on carbonyl frequencies in
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Ni(CO); L complexes, one may conclude that the original
molecular descriptors orthogonalised by projections
upon principal components may well be used as real
principal properties for the class(es) of phosphorus
ligands. The result of this PLSR modelling was consid-
ered satisfactory, and our conclusion is that the
descriptors obtained through semiempirical quantum
chemistry methods can be used satisfactorily in multivari-
ate modelling and deriving of the principal properties.

An important conclusion follows from the PLSR mod-
elling: the position of the carbonyl frequencies reflects
the energy of the C—O bond. Coordination of a phos-
phine ligand to the central Ni atom perturbs the Ni-CO
interaction (back donation) which is observed as a shift
in the carbonyl absorption frequencies. The PLSR model
shows that the properties of the P-ligand determine the
properties of the entire Ni(CO);L complex, i.e., the
principal properties of the P-ligand can explain the
variation of carbonyl shift. The implication of this result
can be far-reaching since the PCA score plots allows for
experimental design for the systematic exploration of
phosphorus ligand transition metal complexes for use in
new synthetic procedures. Thorough accounts and
examples of the use of principal properties for experi-
mental design are given in Refs. 18-23.

From the interpretation of the PCA model and the
results from the PLSR model, a chemical interpretation
of the model describing the P-ligand-metal interaction
can be deduced: the dipole moment gives information
about the electronic distribution over the whole molecule
and the partial charge on the phosphorus gives informa-
tion about the electron density on the atom that coordin-
ates directly to the metal atom of the catalyst. Both these
parameters give information about the electron-donating
properties of the P-ligands. The energies of the unoccu-
pied molecular orbital tells how good the P-ligand is at
accepting back-donation of electrons from the metal
atom. The number of hydrogen atoms contributes to the
size of the compound (a high value of ny indicates a
small molecule). Steric effects alter the bond angles and
thus the hybridisation of the phosphorus atom.
Increasing the bond angle between substituents will
decrease the percentage s character in the phosphorus
lone pair, and hence steric effects have important elec-
tronic consequences.

Experimental

Molecular calculations. Energy-optimised structures
obtained by molecular mechanics, the MM?2 routine
implemented in the PCMODEL version 4.0 software,
were subjected to the AM1 (Austin Model 1) routine!!12
implemented in the MOPAC software version 6.0 (A
General Molecular Orbital Package). The AMI routine
was used to calculated the heat of formation, dipole
moment, energies of the occupied and unoccupied
molecular orbitals, and partial charge on phosphorus.
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The final energy-optimised structures from the AM1
computations were used for the calculations of the
van der Waals surfaces (AZ) and the polar surface areas
(A?) using PCMODEL version 4.0 software. The calcula-
tions were done on an Arche 486DX, 50 MHz microcom-
puter under DOS 6.0.

Multivariate computation. Prior to computing the prin-
cipal component models (for both the PLSR and the
PCA methods), each descriptor variable was scaled to
unit variance. This was done to avoid the situation where
different units of measurement of the descriptors distort
the variance structure and thereby bias the projections.
UNSCRAMBLER version 5.0 or The Unscrambler®
version 5.5 software?* under DOS 5.0 on a COMPAQ
486/50DX microcomputer or on an IBM ThinkPad
755Cs under DOS 6.3, was used for the multivariate data
analysis on the scaled data. To avoid overfitting in
deriving the principal component models, the cross-
validation method!® with the maximum number of seg-
ments, was used to determine how many principal com-
ponents were significant.
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