Short Communication

A Convenient Method for the Preparation of Nitrilotriacetic $Acid-d_9$

Finn Radner*,† and Lars-G. Wistrand

Nycomed Innovation AB, Ideon Malmö, S-221 00 Malmö, Sweden.

Radner, F. and Wistrand, L-G., 1996. A Convenient Method for the Preparation of Nitrilotriacetic Acid- d_9 . – Acta Chem. Scand. 50: 94 © Acta Chemica Scandinavica 1996.

Nitrilotriacetic acid [N(CH₂COOH)₃,NTA] is a versatile and useful ligand of great environmental concern and a number or reports on its complexes have appeared in recent years. As a part of a study of Ti(III)-NTA complexes we needed NTA- d_9 of high isotopic purity, but to our surprise no synthetic procedure was available in the literature. Standard base- or acid-catalyzed exchange techniques yielded no exchange of the non-labile protons of either NTA or its triethyl ester. A number of preparations of glycine- d_5 have been presented, and 28 and 70-100% deuteriation, respectively, was observed upon treatment of glycine with platinum black and D₂O.² Using the procedure described below we obtained NTA- d_9 with an isotopic purity of >99.8, i.e., only traces of NTA- d_8 and no traces of other products could be detected by careful examination by mass spectroscopy.

Experimental

Materials. $PtO_2 \cdot xH_2O$ (Janssen, 99.99%) was stirred with D_2O and evaporated three times prior to use. NTA (Jansen, 99%) and D_2O (CIL, 99.9% D) were used as received.

Instrumentation. Mass spectra were recorded on a VG Quattro II instrument equipped with ESPC electrospray.

Preparation of NTA-d₉. NTA (1.0 g), PtO₂ (0.1 g) and 10 ml D₂O were mixed in a tight Teflon vessel and placed in a steel bomb which was heated to 150° C for 30 h. The catalyst was filtered off and the solvent removed by evaporation. After two repetitions an essentially quantitative yield of the completely exchanged product was obtained. Recrystallization from D₂O yielded crystals of NTA-d₉ of > 99.8% isotopic purity.

Acknowledgements. We thank Dr. P. Michelsen for running the mass spectra and Professor Martyn Symons, Essex, for helpful discussions.

References

- (a) Mottola, H. C. Toxicol. Environ. Chem. Rev. 2 (1974) 99;
 (b) Koch, S. Z. Chem. 27 (1987) 309;
 (c) Egli, T. In: Ratledge, C., Ed., Biochemical Microbial Degradation, Kluwer, Dordrecht, Netherlands 1994, pp. 179;
 (d) Summers, S. P., Abboud, K. A., Farrah, S. R. and Palenik, G. J. Inorg. Chem. 33 (1994) 88.
- (a) Sprinson, D. B. and Rittenberg, D. J. Biol. Chem. 184 (1950) 405; (b) Paul, S. D., Ramamurthy, J. and Chawla, A. S. Indian J. Chem. (1965) 369.

Received June 1, 1995.

^{*} To whom correspondence should be addressed.

[†] Present address: Chemical Physics, Lund University, PO Box 124, S-221 00 Lund, Sweden.