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Anthraquinones comprise the largest group of naturally
occurring quinones and they have been used both as pig-
ments and medicines since ancient times.' In modern
times the use of synthetic dyes has reduced the impor-
tance of natural pigments, but medical interest in them is
increasing. This is reflected in the huge number of articles
considering synthesis of anthraquinone-derived anthracy-
clinones with anti-tumour activity.>~® Anthraquinone
monomers and dimers have also shown activity against
human immunodeficiency virus type 1 (HIV-1).” The im-
portance of a complete analysis of the nuclear magnetic
resonance spectra of those compounds is thus obvious.

In 1977 Hofle published the first major NMR work on
anthraquinone aglycones.® He started out with unsubsti-
tuted 9,10-anthraquinone, which is fully symmetrical and
therefore easy to assign. He then considered 1-acetoxy-
and 2-acetoxy-9,10-anthraquinone and compared the
chemical shifts of the substituted anthraquinones with the
unsubstituted anthraquinone. When examining his assign-
ments of shifts of 1- and 2-acetoxy-9,10-anthraquinones
it is clear that all the chemical shifts to carbons of the
A-ring and C-9 and C-10 are assigned, leaving the as-
signment of the shifts to the carbons of the C-ring ten-
tative. This is due to the overlap/small differences in
chemical shifts for the H-5/H-8 and H-6/H-7 protons.
This is the case for all 9,10-anthraquinones with an asym-
metrically substituted A-ring and no substituents in the
C-ring. This leads to complete assignment for only the
symmetrically substituted anthraquinones, leaving a large
number of tentative assignments for the asymmetric
cases.

The other major work was that of Berger and Cas-
tonguay and dealt with hydroxy- and methoxy-substituted
9,10-anthraquinones.>!° Unlike Hofle they appear to
have had no problems in assigning the '*C shifts of the
C-ring. Having in mind that their original work was done
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on a 90 MHz spectrometer using 'H-noise and noise off-
resonance decoupling techniques as assignment tools,
there is little doubt that the signals belonging to the C-ring
are only tentatively assigned.

Our conclusion is that no full assignments of the 'H
and '*C shifts of anthraquinones asymmetrically substi-
tuted in the A-ring and unsubstituted in the C-ring have
been presented. The current presentation of the complete
'H and "*C chemical shift assignment of 1,2-diacetoxy-
9,10-anthraquinone (Fig. 1) is thus, to the best of our
knowledge, the first full NMR analysis carried out on a
compound of this type.

This analysis is possible because unlike most an-
thraquinones of this kind, H-5 is separated from H-§, and
H-6 somewhat separated from H-7 at 400 MHz.

This makes possible selective decoupling of H-5 and
H-8 and also irradiation of H-5 and H-8 to create NOE
effects. To decide which is H-5 and H-8, examination of
the molecule shows that C-9 couples only to H-8, whereas
C-10 couples to H-4 as well as to H-5 via three-bond
couplings. Selective decoupling of H-8 will thus make C-9
a singlet, whereas decoupling of H-5 will give both C-9
and C-10 as doublets. The results are presented in Fig. 2.

In addition to assigning H-5 and H-8, this experiment
also assigns C-9 and C-10 and this assignment is the
reverse of Hofle’s, a possibility mentioned in his work.
NOE measurements on irradiating H-5 and H-8 give H-6
and H-7, respectively.

Fig. 1. 1,2-Diacetoxy-9,10-anthraquinone showing number-
ing system for anthraquinones.
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Fig. 2. '3C NMR spectra showing signals of C-9 and C-10
while selectively decoupling H-3, H-8, H-5 and H-4. The pro-
ton decoupled is indicated at the right side of each spectrum.

With a fully assigned proton spectrum the protonated
carbons were determined using proton—carbon correlated
two-dimensional NMR and the spin—echo Fourier trans-
form (SEFT) experiment. The assignment of the shifts of
C-6 and C-7 is again the reverse of Hofle’s, a possibility
left open in his work. C-1 and C-2 are easily determined
from an undecoupled '*C-spectrum since C-1 couples
with H-3 by a three-bond coupling, whereas C-2 couples
with H-4 in a three-bond coupling and H-3 in a two-bond
coupling.

Finally, the assignment of the shifts of the quaternary
carbons, C-11, 12, 13 and 14 remains. The region from
ca. 135-132 ppm gives three of the quaternary carbons
and the protonated C-6 and C-7 (Fig. 3). Selective de-
coupling of H-8 removes the three-bond coupling to C-11
and the C-11 signal will change. The same will happen to
C-12 on selective decoupling of H-5. Fig. 3 shows a
change in the signals at 132.4 and 134.0 ppm while ir-
radiating H-8 and H-5, respectively. The doublet at
132.2 ppm is the shift of either C-13 or C-14. The ap-
pearance of a singlet while irradiating H-3 proves it to be
the shift of C-14, a result which Fig. 3 clearly shows. The
complete assignment and the coupling constants of the
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Fig. 3. '>C NMR spectra showing the region from ca. 135—
132 ppm while selectively decoupling H-3, H-8, H-5 and H-4.
The proton decoupled is indicated at the right side of each
spectrum.

'H and '3C spectra of 1,2-diacetoxy-9,10-anthraquinone
are summarised in Table 1.

Experimental

1,2-Diacetoxy-9,10-anthraquinone.  1,2-Dihydroxy-9,10-
anthraquinone (Fluka) was stirred in equal amounts of
pyridine and acetic anhydride for 3 h at room tempera-
ture.!’ The solution was poured into water, filtered and
the derivative was washed with several portions of water
until no trace of pyridine remained.

The 400.13 and 100.62 MHz 'H and *C NMR spectra
were obtained at 297 K on a Bruker AM 400 WB in-
strument equipped with a 5 mm 'H/*C dual probe. All
90° transmitter and decoupler pulses were carefully cali-
brated (7-15 ps). Ca. 50 mg of the sample were dissolved
in 500 pl of deuteriochloroform. The carbon signal and

Table 1. 'H and '3C NMR shifts (8) and coupling constants (Hz) of 1,2-diacetoxy-9,10-anthraquinone.

Proton ) o m p Carbon

H-3 7.60 8.54 — —_ C-1 C-5 C-9 C-13

H-4 8.27 8.54 —_— —_ 141.91 126.90 181.33 126.29

H-5 8.22 7.62 1.58 0.62 Cc-2 C-6 C-10 C-14

H-6 7.73 7.62 7.42 1.23 — 148.33 134.03 181.56 132.17

H-7 7.74 7.42 7.99 1.58 C-3 Cc-7 c-11 0-C=0 Methyl

H-8 8.16 7.99 1.23 0.62 128.62 134.24 132.39 168.33 20.76

Methyl  2.47 c-4 c-8 c-12 0-C=0  Methyl

Methy! 2.34 126.15 127.11 134.01 167.68 20.56
1-Bond C-3 Cc-4 C-5 C-6 Cc-7 Cc-8
Couplings 167.47 168.61 165.56 163.27 163.27 165.56
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the residual proton signal of the solvent were used as
secondary references for the chemical shifts (77.00 and
7.25 ppm, respectively). The homonuclear Overhauser en-
hancements were measured by means of NOE difference
spectroscopy by saturating the relevant proton signals on
resonance for 5 s using weak irradiation. The enhanced
resonances were identified by subtracting the unperturbed
FID with off-resonance irradiation from the perturbed
FID, followed by Fourier transformation and phasing.
Selective decoupling was performed by irradiation of a
specific proton at its exact frequency at a low power level,
while recording carbon. The directly bonded '*C signal
changes into a singlet, while the remaining '*C absorp-
tions show residual coupling. The spin—echo experiment
was performed using the gated decoupler mode whereas
the 2D heteronuclear one-bond correlation experiment
was performed in the normal mode. Both experiments
were optimised for a 165 Hz one-bond coupling. The
simulation of the 'H spectrum to give the ortho, meta and
para couplings, was performed by means of the PANIC
program available in the Bruker Software Library.
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