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The synthesis of the first organogallium(I) compounds
were reported only in late 1992: Uhl er al. reported the
synthesis of the Ga(I) alkyl GaC(SiMe);, Me=CHj;
X-ray diffraction showed that the compound was tet-
rameric with a tetrahedral Ga, core in the crystalline
phase.! A similar structure has been reported for the
analogous boron compound [BCMe,],.” Schnéckel and
coworkers reported the synthesis of cyclopentadienyl-
gallium(I), Ga(CsHs), which was characterized by the
parent peak in the mass spectrum and by 7'Ga, '*C and
'H NMR spectra in solution, but could not be isolated
from the solvent.* More recently the same group has suc-
ceeded in synthesizing monomeric pentamethylcyclopen-
tadienylgallium or GaCp*.*

GaCp* was synthesized as described in Ref. 4. '*C and
"H NMR spectra indicated that the liquid sample con-
tained about 7% 1,2,3,4,5-pentamethylcyclopentadiene,
Cp*H, and traces (<19%) of toluene.

The gas-phase electron diffraction data were recorded
on a Baltzers Eldigraph KDG-2 instrument with a con-
ventional inlet system made of brass. The nozzle tem-
perature was 60 + 5°C. Structure refinements were based
on data from six plates recorded with a nozzle-to-plate
distance of 50 cm and three plates recorded with a dis-
tance of 25 cm. Atomic scattering factors were taken from
standard sources.” Backgrounds were drawn as poly-
nominals to the least-squares adjusted difference between
total experimental and calculated molecular intensity
curves. The resulting modified molecular intensity curves
extended from s=17.50 to 130.00 nm ' with increment

* To whom correspondence should be addressed.
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8s=1.25 nm~"' (50 cm plates) and from s=35.00 to
270.00 nm~' with increment 8s=2.50 nm~' (25 cm
plates) (Fig. 1).

Structure refinements were based on a molecular model
of Cs, symmetry as shown in Fig. 2. Methyl groups were
assumed to have local Cy, symmetry with the symmetry
axes coinciding with the exocyclic C-~C(Me) bonds. The
orientation of the methyl groups is such that one C-H
bond points away from the metal atom as indicated in the
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Fig. 1. Experimental (dots) and calculated (lines) modified
molecular intensity curves for GaCp*. The vertical scale is
arbitrary. Below: Difference curves.




Fig. 2. Molecular model of GaCp*, point group Cg,,.

figure. The molecular geometry is then determined by six
independent parameters, e.g. the endocyclic C(Cp)-
C(Cp) bond distance, the exocyclic C(Cp)-C(Me) bond
distance, the Ga-C and C-H bond distances, the valence
angle £ CCH and the angle between the C(Cp)-C(Me)
bonds and the Cs ring plane, which we denote by
£ Cs,C-C and define as positive when the exocyclic
bonds are bent towards the metal atom.

Since the NMR spectra indicated that the liquid
sample contained several percent of Cp*H, the mole frac-
tion of such an impurity was refined as an additional var-
iable. The structure of Cp*H has never been studied by
gas electron diffraction. A molecular model was therefore
constructed from the known structure of the dimer Cp*,
by breaking the bond between the rings and adding a
hydrogen atom.®

The six independent structure parameters and the most
important root mean square vibrational amplitudes of
GaCp* were refined by least-squares calculations on the
molecular intensity data under the constraints of a geo-
metrically consistent r,-structure, along with the mole
fraction of the possible impurity of Cp*H. Non-refined
vibrational amplitudes were fixed at the values in InCp*.”
The mole fraction of Cp*H was found not to be signifi-
cantly different from zero; x =2.6(22)%,. The values ob-
tained for the major structure parameters are listed in
Table 1. The estimated standard deviations calculated by
the program have been multiplied by a factor of 2.0 to
include the added uncertainty due to data correlation®
and further expanded to include an estimated scale un-
certainty of 0.1%, . Experimental and calculated radial dis-
tribution (RD) curves, obtained by Fourier inversion of
the connected experimental and calculated modified mo-
lecular intensity curves, are compared in Fig. 3.

The Ga atom (Z = 31) is the heaviest atom in the mol-
ecule. The terms representing the five Ga—C bond dis-
tances and the five non-bonded Ga—-C(Me) distances are
the largest terms in the molecular intensity curve, and the
corresponding peaks are the largest single peaks in the
RD curve. The good agreement between experimental
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Table 1. Interatomic distances (r,), root mean square vibra-
tional amplitudes (/) and valence angles in Ga(n-CzMe;) and
mole fraction of the 1,2,3,4,5-pentamethylcyclopentadiene
impurity.®

r, /
Ga—C 240.5(4) 8.4(5)
C—C(Cp) 142.0(3) [4.0]
C—C(Me) 152.2(3) [4.5]
C—H 111.7(4) 8.6(4)
Nonbonded distances:
Ga—C(Me) 343.9(8) 14.5(5)
C(Cp)—C(Cp) 229.7(4) [5.8]
C(Cp)—C(Me) 262.1(3) 7.1(5)
C(Cp)—C(Me) 377.4(3) 7.7(5)
C(Me)—C(Me) 320.8(3) [13.1]
C(Me)—C(Me) 519.1(3) 10.3(12)
Ga—H 361(2) 76(12)
Ga—H 442(1) 32(9)
h° 208.1(5)
£ CCH 110.5(7)
£ Cg,C—C 0.2(3)
X(Cp*H) 2.6(22)%
R-factors (%) 2.7(50 cm) 6.6(25 cm) 3.7% (total)

? Distances in pm, angles in degrees. Estimated standard
deviations in parentheses in units of the last digit. Non-
refined amplitudes in square brackets, see text. ° Perpendi-
cular distance from the Ga atom to the Cg ring. °R=

[z W{Iexp - ,calc)z/z Wlexp2]1/2'

LR R R R R R AR RN R

0 100 200 300 400 500 600
r/pm

Fig. 3. Experimental (dots) and calculated (lines) radial dis-

tribution functions of GaCp*. The vertical scale is arbitrary.

Below: Difference curve. Artificial damping constant
k=25 pm?Z.

and calculated curves obtained for the Cs, model shows
that the five Ga—C bond distances must be equal or
nearly equal. If the metal atom in GaCp* were mono-
hapto-bonded to the ring, the peak representing the five
Ga-C(Cp) bond distances would split into one peak at

173



SHORT COMMUNICATION

197 pm representing the Ga—C o-bond distance, another
peak at about 280 pm representing two nonbonded Ga—
C(Cp) distances, and a third peak at about 360 pm rep-
resenting two more nonbonded Ga—C(Cp) distances. The
peak at 340 pm representing the five nonbonded Ga-
C(Me) distances would be split in a similar manner. Such
a model is clearly incompatible with the GED data.

The refinements therefore confirm the conclusion based
on ab initio molecular orbital calculations on the unsub-
stituted Ga(CsHs);®> the metal atom is pentahapto-
bonded to the ring. The Ga—C bond distance obtained by
the MO calculations, Ga—C =242.0 pm, is also in good
agreement with the experimental value.

In Fig. 4 we compare the M-C bond distances in gas-
eous MCp*, In—C=259.2(4) pm’ and TI-C =266.3(5)
pm,” and M-Cl bond distances in the gaseous mono-
meric monochlorides, MCl, Ga-Cl=220.2 pm, In-
Cl=240.1 pm and TI-Cl=248.5 pm.'® The similarity of
the M—C and M-CI bond distance curves suggests that
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Fig. 4. M—C bond distances (in pm) in gaseous MCp* and

M—CI bond distances in gaseous monomeric monochlorides
MCI, M=Ga, In or Tl
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both M-C and M-Cl bond distances are determined by
the size of the metal atom.

The Ga-C vibrational amplitude in GaCp*, 8.4(5) pm,
is not significantly different from the metal-carbon am-
plitude found in gaseous InCp*, 9.0(7) pm.” Both M-C
bond distances and vibrational amplitudes thus indicate
that metal to ring bonding is about equally strong in the
two compounds. The reason for the ellusiveness of
GaCp* is therefore probably not an inherent instability of
the compound, but rather the unavailability of a suitable
Ga(I) starting material.
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