Short Communication

X-Ray Structure of a Second Epimer of a Partially Saturated Methylene-bridged Isoindolo[2,1-a][3,1]benzoxazinone

Reijo Sillanpää,*,a Géza Stájerb and Kalevi Pihlajaa

^a Department of Chemistry, University of Turku, SF-205 00 Turku, Finland and ^bInstitute of Pharmaceutical Chemistry, Albert Szent-Györgyi Medical University, P.O.B. 121, H-6701 Szeged, Hungary

Sillanpää, R., Stájer, G. and Pihlaja, K., 1994. X-Ray Structure of a Second Epimer of a Partially Saturated Methylene-bridged Isoindolo [2,1-a][3,1] benzoxazinone. – Acta Chem. Scand. 48: 84–87. © Acta Chemica Scandinavica 1994.

Within a program aimed at the synthesis of new anorexic agents, aroylcyclohexanecarboxylic acids were allowed to react with 1,2- and 1,3-difunctional reagents. 1-3 The structures of the condensed tetra- and penta-cyclic compounds formed were established by means of ¹H and ¹³C NMR spectral methods, which sometimes turned out to be difficult owing to severe signal overlap. However, the knowledge of the structure is essential, since especially reactions involving 1,3-bifunctional reagents, e.g., amino alcohols containing a cycloalkane ring, may give products that are epimeric about the aryl group and the terminal rings. For this reason, and because of the possible changes in the annulation, which can take place in a manner dependent on the reaction conditions, 2,4-6 elucidation of the steric structure of these compounds is very important. We have used X-ray methods to establish the steric structure of the former group of compounds.^{7,8}

The present work deals with the stereostructure of 6a - p-tolyl-1,4,4a,5,6a,6b,7,8,9,10,10a,12a-dodecahydro-1,4-methanoisoindolo [2,1-a][3,1]benzoxazin-11-one (3a). The structure of the epimeric counterpart, labelled here as (3b), has already been published. Since an NMR spectral study in CDCl₃ solution proved that 3b epimerizes to 3a, the epimer 3a was successfully separated from a freshly prepared sample of 3.

Experimental

Preparation of the compounds. Compound 3a was prepared³ from cis-2-(p-methylbenzoyl)cyclohexane-1-carboxylic acid^{9,10} (1) and 3-endo-hydroxymethylbicyclo[2.2.1]hept-5-en-2-endo-ylamine¹¹ (2), which were refluxed in toluene with p-toluenesulphonic acid as a catalyst. After evaporation of the mixture, purification by

column chromatography (Kieselgel) and crystallization from ethanol yielded **3a**, (m.p. 218–220°C; yield 66%) whereas only the other epimer **3b**⁸ (m.p. 210–212°C; yield 15%) was originally isolated from the mother liquor by fractional crystallization from ethanol.

Crystal data for **3a**. $C_{23}H_{27}NO_2$, $M_r = 349.47$, monoclinic, space group $P2_1/n$, a = 9.612(2), b = 16.801(4), c = 11.549(2) Å, $\beta = 94.06(1)$, Z = 4, V = 1860(1) Å³, $D_c = 1.247$ g cm⁻³, $\mu(\text{Mo }K_\alpha) = 0.73$ cm⁻¹, F(000) = 752, T = 296(1) K, colourless prisms, crystal dimensions $0.15 \times 0.17 \times 0.20$ mm.

Data Collection, Analysis and Refinement. A Rigaku AFC5S diffractometer was used, with graphite-monochromated Mo K_{α} radiation ($\lambda=0.71069$ Å), in the $\omega-2\theta$ scan mode with an ω scan rate 4.0 deg min $^{-1}$ and a scan width of $(1.42+0.30\tan\theta)$. The weak reflections $[F<10\sigma(F)]$ were rescanned up to two times and 3412 unique reflections were measured $(2\theta_{\max}=50^{\circ})$. The data were corrected for Lorentz and polarisation effects. Absorption (DIFABS 12) and decay (-1.2%) corrections were also taken into account.

The lattice parameters were calculated by least-squares refinements of 20 reflections for 3a. The structure was solved by direct methods and refined by full-matrix least-squares techniques to an R-value of 0.061 ($R_{\rm w}=0.056$). The final cycle was based on 1524 independent, observed reflections $[I>2\sigma(I)]$. The heavy atoms were refined anisotropically and the hydrogen atoms were included in calculated positions with fixed isotropic temperature factors (1.2 times $B_{\rm eq}$ of the carrying atom). Neutral atomic scattering and dispersion factors were taken from Ref. 13. All calculations were performed using the TEXSAN¹⁴ crystallographic software. Figures were drawn with PLUTO. The final atomic positional coordinates and equivalent isotropic temperature factors are listed in Table 2.

^{*} To whom correspondence should be addressed.

Results and discussion

X-Ray analysis of 3a gave the solid-state structure (Fig. 1), computed from the final fractional coordinates of the non-hydrogen and hydrogen atoms listed in Table 1. The relevant bond lengths and bond angles are given in

Table 1. Atomic positional parameters and equivalent isotropic temperature factors for **3a** with their standard deviations in parentheses.^a

dovidations in parametrosos.							
Atom	X	у	Z	$B_{\rm eq}/{\rm \AA}^2$			
0(1)	0.7937(3)	-0.1847(2)	0.3530(2)	3.1(2)			
0(2)	0.8766(4)	-0.2015(2)	-0.0219(3)	4.7(2)			
N	0.7716(4)	-0.1797(2)	0.1471(3)	2.7(2)			
C(1)	0.6630(5)	-0.2258(3)	0.3557(4)	3.4(2)			
C(1A)	0.6433(5)	-0.2848(3)	0.2561(4)	3.0(2)			
C(3)	0.4889(5)	-0.3082(3)	0.2230(4)	3.2(2)			
C(4)	0.4104(5)	-0.2312(3)	0.2031(5)	4.3(3)			
C(5)	0.4511(5)	-0.1989(3)	0.1056(5)	4.2(3)			
C(6)	0.5549(5)	-0.2548(3)	0.0574(4)	3.5(2)			
C(6A)	0.6908(5)	-0.2542(3)	0.1384(4)	2.8(2)			
C(8)	0.8676(5)	-0.1647(3)	0.0688(4)	3.4(2)			
C(8A)	0.9607(5)	-0.0980(3)	0.1167(4)	3.0(2)			
C(9)	1.1104(5)	-0.0946(3)	0.0855(4)	4.1(3)			
C(10)	1.1821(5)	-0.0262(3)	0.1542(5)	4.7(3)			
C(11)	1.1661(6)	-0.0312(3)	0.2842(5)	4.6(3)			
C(12)	1.0132(5)	-0.0383(3)	0.3124(4)	3.5(2)			
C(12A)	0.9499(5)	-0.1086(3)	0.2462(4)	2.9(2)			
C(12B)	0.7982(4)	-0.1334(3)	0.2561(4)	2.6(2)			
C(13) C(14)	0.4975(5) 0.7007(5)	-0.3346(3) -0.0625(3)	0.0963(4) 0.2634(4)	4.1(3) 2.7(2)			
C(14) C(15)	` '	-0.0025(3) -0.0286(3)	0.3709(4)	3.6(2)			
C(16)	0.6780(5) 0.5980(6)	0.0391(3)	0.3792(4)	4.3(3)			
C(10) C(17)	0.5372(5)	0.0351(3)	0.2811(5)	3.8(3)			
C(17)	0.5589(5)	0.0429(3)	0.1747(4)	3.9(3)			
C(19)	0.6393(5)	-0.0248(3)	0.1662(4)	3.2(2)			
C(20)	0.4482(6)	0.1498(3)	0.2903(5)	6.1(3)			
H(1)	0.5893	-0.1881	0.3496	4.1			
H(2)	0.6613	-0.2537	0.4271	4.1			
H(3)	0.6942	-0.3318	0.2768	3.6			
H(4)	0.4488	- 0.3454	0.2729	3.9			
H(5)	0.3439	-0.2096	0.2513	5.2			
H(6)	0.4202	-0.1496	0.0726	5.1			
H(7)	0.5667	-0.2498	-0.0232	4.2			
H(8)	0.7504	-0.2938	0.1101	3.4			
H(9)	0.9174	-0.0489	0.0945	3.6			
H(10)	1.1559	0.1434	0.1052	5.0			
H(11)	1.1137	-0.0852	0.0045	5.0			
H(12)	1.1429	0.0225	0.1261	5.6			
H(13)	1.2789	-0.0273	0.1418	5.6			
H(14)	1.2154	-0.0765	0.3144	5.5			
H(15)	1.2046	0.0155	0.3201	5.5			
H(16)	0.9643	0.0090	0.2896	4.3			
H(17)	1.0080	-0.0463	0.3935	4.3			
H(18)	1.0056	-0.1535	0.2685	3.6			
H(19)	0.5600	0.3777 0.3474	0.0880 0.0587	4.9 4.9			
H(20) H(21)	0.4091 0.7185	-0.3474 -0.0528	0.4399	4.4			
		0.0609	0.4535	5.1			
H(22) H(23)	0.5845 0.5179	0.0671	0.4939	4.8			
H(24)	0.6529	-0.0460	0.0916	3.9			
H(25)	0.0523	0.1396	0.2578	7.3			
H(26)	0.4875	0.1923	0.2493	7.3			
H(27)	0.4446	0.1642	0.3696	7.3			
	3. 1 1 10	J. 1 J 12	0.000				

^aThe equivalent isotropic temperature factors for non-hydrogen atoms are of the form $B_{\rm eq}=4/3\Sigma_i\Sigma_j\beta_{ij}a_i\cdot a_j$.

Table 2. Bond distances (Å) and angles (°) in the molecule ${\bf 3a.}^s$

O1-C1 O1-C12B O2-C8 N-C6A N-C8 N-C12B C1-C1A C1A-C3 C1A-C6A C3-C4 C3-C4 C3-C13 C4-C5 C5-C6 C6-C6A C6-C13	1.436(5) 1.416(5) 1.226(5) 1.474(5) 1.360(5) 1.486(5) 1.519(6) 1.557(6) 1.553(5) 1.506(7) 1.533(6) 1.505(7) 1.552(6) 1.530(6)	C8A-C9 C8A-C12A C9-C10 C10-C11 C11-C12 C12-C12A C12A-C12B C12B-C14 C14-C15 C14-C19 C15-C16 C16-C17 C17-C18 C17-C20 C18-C19	1.509(6) 1.517(6) 1.532(6) 1.523(7) 1.532(7) 1.512(6) 1.529(6) 1.522(6) 1.398(6) 1.383(6) 1.382(7) 1.375(6) 1.520(7) 1.582(6)
C1-O1-C12B C6A-N-C8 C6A-N-C12B C8-N-C12B O1-C1-C1A C1-C1A-C3 C1-C1A-C6A C3-C1A-C6A C1-C3-C13 C4-C3-C13 C4-C3-C13 C4-C5-C6 C5-C6-C6A C5-C6-C13 N-C6A-C13 N-C6A-C14 N-C6A-C6 C1A-C6A-C6	112.7(3) 119.4(4) 124.1(4) 112.5(4) 111.1(4) 114.6(4) 101.7(3) 106.2(4) 101.1(4) 99.4(4) 107.5(4) 109.0(4) 100.1(4) 97.7(4) 114.0(4) 117.6(4) 103.8(4) 124.5(5) 127.6(4) 107.8(4) 119.3(4) 101.1(4) 111.9(4)	C8A-C9-C10 C9-C10-C11 C10-C11-C12 C11-C12-C12A C8A-C12A-C12 C8A-C12A-C12B C12-C12A-C12B O1-C12B-N O1-C12B-C14 N-C12B-C14 N-C12B-C14 C12A-C12B-C14 C12A-C12B-C14 C3-C13-C6 C12B-C14-C15 C12B-C14-C19 C15-C14-C19 C15-C16-C17 C16-C17-C18 C16-C17-C20 C18-C17-C20 C17-C18-C19 C14-C19-C18	107.8(4) 113.3(4) 112.3(4) 108.1(4) 110.8(4) 121.8(4) 121.8(4) 109.7(3) 107.9(3) 112.3(4) 100.8(3) 112.6(4) 94.1(4) 120.2(4) 121.3(5) 120.9(5) 118.3(5) 120.9(5) 120.9(5) 120.9(5) 121.9(4)

^a Esds are given in parentheses.

Table 2 and selected torsion angles in Table 3. There exists a close resemblance, to within experimental error, to the corresponding values for the majority of the bond angles and distances of the other epimer 3b.8

However, there are quite large differences in some bond distances and angles between the isomers in the C1–C1A–C6A–N bond chain. For instance, the C1A–C6A and N–C6A bond lengths in **3a** are 1.553(5) and 1.474(5) Å, but 1.576(3) and 1.1448(3) Å in **3b**, respectively. The bond angle C6A–N–C8 is 119.4(4) in **3a** and 124.4(2)° in **3b**. These values may explain why the isomer **3a** is formed more easily than **3b**.

The conformation of the cyclohexane ring (C12A, ..., C12) is a chair (4C_1) with the puckering parameters 16 Q=0.582(1) Å, $\phi=196(1)^{\circ}$ and $\theta=175.0(1)^{\circ}$. The torsion angles of the ring vary from 62.9(5) to 53.2(5)° (see Table 3). These values are very similar to the relevant values for **3b**. The puckering parameters for the oxazine

Fig. 1. The PLUTO perspective view of molecule 3a, including the atomic labelling scheme.

Table 3. Selected torsion angles (deg) for 3a and 3b.

Cyclohexane ring C12-C12A-C8A-C9 62.8(5) 62.9(3) C12A-C8A-C9-C10 -57.3(5) -58.5(3) C8A-C9-C10-C11 53.2(5) 53.9(4) C9-C10-C11-C12 -53.9(6) -54.0(4) C10-C11-C12-C12A 54.6(5) 53.8(4) C11-C12-C12A-C8A -58.7(5) -57.2(3) Oxazine ring C12B-O1-C1-C1A 67.4(5) 55.5(3) O1-C1-C1A-C6A -40.9(5) -26.4(2) C1-C1A-C6A-N 11.2(5) 8.4(3) C1A-C6A-N-C12B -4.3(6) -18.4(3) C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-N-C8 197.5(5) -78.6(3) C14-C12B-N-C8 197.5(5) -78.6(3) C14-C12B-N-C8 197.5(5) -78.6(3) C14-C12B-N-C8 197.5(5) -78.6(3) C14-C12B-N-C8 197.5(6) -87.2(4) -83.9(2) C14-C12B-C12A-C12 38.3(5) 62.9(3)		3a	3b
C12A-C8A-C9-C10	Cyclohexane ring		
C8A-C9-C10-C11			62.9(3)
C9-C10-C11-C12		` ,	
C10-C11-C12-C12A C11-C12-C12A-C8A C11-C12-C12A-C8A C11-C12-C12A-C8A C11-C12-C12A-C8A C28-C12B-O1-C1-C1A C12B-O1-C1-C1A C12B-O1-C1-C1A C12B-O1-C1-C1A C12B-O1-C1-C1A C12B-O1 C12B-O1-C1 C12B-O1 C12B-O1 C12B-O1 C12B-O1 C12B-O1 C12B-O1 C12B-O1 C12B-O1 C12B-O1-C1 C12B-O1 C1 C12B-O1			
C11-C12-C12A-C8A			
Oxazine ring C12B-O1-C1-C1A 67.4(5) 55.5(3) O1-C1-C1A-C6A -40.9(5) -26.4(2) C1-C1A-C6A-N 11.2(5) 8.4(3) C1A-C6A-N-C12B -4.3(6) -18.4(3) C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C12B-O1-C1-C1A 67.4(5) 55.5(3) O1-C1-C1A-C6A -40.9(5) -26.4(2) C1-C1A-C6A-N 11.2(5) 8.4(3) C1A-C6A-N-C12B -4.3(6) -18.4(3) C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)		-30.7(3)	-37.2(3)
O1-C1-C1A-C6A -40.9(5) -26.4(2) C1-C1A-C6A-N 11.2(5) 8.4(3) C1A-C6A-N-C12B -4.3(6) -18.4(3) C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles 02-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	•	67.4(5)	EE E/2)
C1-C1A-C6A-N 11.2(5) 8.4(3) C1A-C6A-N-C12B -4.3(6) -18.4(3) C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C1A-C6A-N-C12B			, ,
C6A-N-C12B-O1 26.3(5) 45.5(3) N-C12B-O1-C1 -57.9(5) -62.6(2) Pyrrolidine ring -17.2(5) -24.6(2) C12A-C12B-N-C8 -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
Pyrrolidine ring C12A-C12B-N-C8 C12B-N-C8-C8A C12B-N-C8-C12A C12B-C12B-C12B C12B-C12B-C12B C12B-C12B-C12B C12B-C12B-C12B C12B-C12B-C12B C12B-C12B-C12B-C12B C12B-C12B-C12B-C12B-C12B C12B-C12B-C12B-C12B-C12B-C12B-C12B-C12B-	C6A-N-C12B-O1		
C12A-C12B-N-C8 -17.2(5) -24.6(2) C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles 02-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	N-C12B-O1-C1	-57.9(5)	-62.6(2)
C12B-N-C8-C8A -6.1(5) 2.4(3) N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles 02-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	Pyrrolidine ring		
N1-C8-C8A-C12A 26.9(5) 21.2(3) C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	C12A-C12B-N-C8		-24.6(2)
C8-C8A-C12A-C12B -36.8(4) -34.4(2) C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C8A-C12A-C12B-N 33.2(4) 36.0(2) Other torsion angles O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)		26.9(5)	21.2(3)
Other torsion angles O2-C8-N-C6A O2-C8-N-C12B O2-C8-C8A-C9 O2-C8-C8A-C12A C14-C12B-O1-C1 C14-C12B-N-C6A C14-C12B-N-C8 C14-C12B-N-C8 C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C14-C12B-C12A-C8A C13.5(7) -0.6(4) -176.5(2) -176.5(2) -160.0(3) -160.0(3) -160.0(3) -180.0(3)			
O2-C8-N-C6A 13.5(7) -0.6(4) O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	C8A-C12A-C12B-N	33.2(4)	36.0(2)
O2-C8-N-C12B 171.9(5) -176.5(2) O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)	Other torsion angles		
O2-C8-C8A-C9 -27.9(8) -35.6(4) O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			` '
O2-C8-C8A-C12A -151.0(5) -160.0(3) C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C14-C12B-O1-C1 68.4(4) 61.4(3) C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C14-C12B-N-C6A -99.7(5) -78.6(3) C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C14-C12B-N-C8 103.1(4) 97.3(2) C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
C14-C12B-C12A-C8A -87.2(4) -83.9(2)			
	_		

^a Esds are given in parentheses.

ring (O1, ..., C12B) are as follows: Q = 0.488(1) Å, $\phi = 194.5(1)^{\circ}$ and $\theta = 131.5(1)^{\circ}$. These values indicate that the conformation of the ring is midway between E_1 and 2H_1 . The puckering parameters for the pyrrolidine ring are Q = 0.369(1) and $\phi = 315.3(1)$ which indicates a distorted envelope conformation.

Corresponding to the structure of 3b, the cyclohexane and pyrrolidone rings are annulated in a trans-diequatorial manner, i.e., the configuration of the starting cis compound 1 has been changed. A similar $cis \rightarrow trans$ epimerisation has been detected for cyclohexane-condensed dihydrouracils4 and very often in the reactions starting cis-aroylcyclohexanecarboxylic We earlier observed that the trans-annulation of sixmembered hetero rings condensed with cyclohexane, and also often that of five-membered hetero rings, is more stable than the cis-annulation. At the same time, it is noteworthy that diendo-annulation takes place on norbornene-oxazine fusion in both epimers. A similar retention of configuration was experienced during the ring-transformation via trans-acylation of the norbornane-condensed azetidones.¹⁷ The stability of this part of the molecule is a consequence of the rigidity of the methylene bridge.

The X-ray results indicate that the p-tolyl substituent of **3a** and the axial annulation hydrogen adjacent to the carbonyl group (H-9) are cis to the pyrrolidine ring. At the other end, the trans-position of the diexo H-3 and H-8 atoms in relation to the aryl group, and consequently the nearness of the tolyl group and the olefin bond, are obvious. In the other isomer **3b**, the tolyl group and the H-9 annulation hydrogen were cis as well as the tolyl

group and the *diexo*-norbornene annulation hydrogens. Thus the two isomers differ only in the mutual positions of the aryl group and the *diexo* H-3 and H-8 atoms.

References

- 1. Stájer, G., Csende, F., Bernáth, G., Sohár, P. and Szúnyog, J. J. Chem. Soc., Perkin Trans. 1. Submitted for publication.
- 2. Sohár, P., Csende, F., Stájer, G. and Bernáth, G. J. Chem. Soc., Perkin Trans 1. To be submitted.
- Stájer, G., Nagy, K., Bernáth, G. and Sohár, P. Unpublished results.
- Pojarlieff, I. G. C. R. Acad. Bulg. Sci. 21 (1968) 245; Chem. Abstr. 69 (1968) 66786s.
- Stájer, G., Szöke-Molnár, Zs., Bernáth, G. and Sohár, P. Tetrahedron 46 (1990) 1943.
- Frimpong-Manso, S., Nagy, K., Stájer, G., Bernáth, G. and Sohár, P. J. Heterocycl. Chem. 29 (1992) 221.
- 7. Pihlaja, K., Sillanpää, R., Stájer, G., and Frimpong-Manso, S. Acta Chem. Scand. 46 (1992) 1021.
- 8. Stájer, G., Sillanpää, R. and Pihlaja, K. Acta Chem. Scand. 47 (1993) 482.

- Fieser, L. F. and Novello, C. F. J. Am. Chem. Soc. 64 (1942) 802.
- 10. Jucker, E. and Süss, R. Helv. Chim. Acta 42 (1959) 2506.
- 11. Stájer, G., Szabó, A. E., Fülöp, F., Bernáth, G. and Sohár, P. J. Heterocycl. Chem. 21 (1984) 1373.
- 12. Walker, N. and Stuart, D. Acta Crystallogr., Sect. A 39 (1983) 158.
- 13. International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, England 1974, Vol. IV.
- 14. TEXSAN-TEXRAY: Single Crystal Structure Analysis Software, Version 5.0, Molecular Structure Corporation, The Woodlands, Texas 1989.
- 15. Motherwell, W. D. S. and Clegg, W. PLUTO78. A Program for Plotting Crystal and Molecular Structures, University of Cambridge, England 1978.
- Cremer, D. and Pople, J. A. J. Am. Chem. Soc. 97 (1975) 1354.
- Bernáth, G., Stájer, G., Szabó, A. E., Szöke-Molnár, Zs., Sohár, P., Argay, Gy. and Kálmán, A. Tetrahedron 43 (1987) 1021

Received May 5, 1993.