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The efficiency and reliability of electrochemical kinetic simulations by orthogonal
collocation and finite difference methods have been examined quantitatively in
calculations, using typical examples of homogeneous reaction—diffusion kinetic
problems. Orthogonal collocation has been found to be more efficient than finite
difference methods, but a proper selection of the integrator for ordinary differential
equations and a careful choice of method parameters is essential for this. On
the other hand, finite difference methods seem more reliable in problems with
discontinuous boundary conditions and homogeneous reactions, especially those

of second erder.

Numerical solution of partial differential equations (PDEs)
is frequently used to obtain theoretical predictions to
kinetic problems in electroanalytical chemistry.! Among
various direct numerical techniques which have been
suggested for this purpose, finite difference (FD) methods?
and orthogonal collocation® (OC) seem to be the most
popular. An intensive use of finite difference calculations
in electrochemical kinetics has been initiated by Feldberg,*
and since that time various FD schemes have been
proposed and explored."*'® Orthogonal collocation,
initially suggested for electrochemical simulations by
Whiting and Carr,'' has been extensively utilized and
improved by Speiser and co-workers,'>> as well as
other authors®*?® (only references to most prominent
papers dealing with kinetic problems in one-dimensional
geometry are given here).

The applications of OC to electrochemical kinetic
problems are sometimes accompanied by claims that this
method is faster than, and in many aspects superior to,
FD calculations.'**? However, the arguments reported
in the electrochemical literature to support these claims
are not fully convincing, despite the fact that a few com-
parative studies of FD and OC methods have already
been performed.?”*® For example, Magno et al.*’ found
OC to perform worse than simple explicit FD calculations
with nonuniform space integration steps. The conclusions
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of these authors seem to disagree with the later study by
Su and Speiser,”® who compared computational times
required for the simulation of cyclic voltammograms by
the Crank—Nicolson and spline OC methods and who
found OC to be rather more efficient.

A clarification of the above issue appears to be impor-
tant in our search for the best numerical methods suitable
for the solution of a large class of electrochemical kinetic
problems. A comparison of the quality of various numeri-
cal algorithms is also useful for the development of
general programs for electrochemical kinetic simula-
tions.>?*733 Therefore, in the present work an attempt has
been undertaken to provide some answers to the above
question. In particular, the essential matter of the relative
efficiency of the FD and OC methods has been discussed
quantitatively. The problem of the reliability of the
considered algorithms has also been addressed.

Selection of problems

In any comparative study there occurs the difficulty of
selecting representative examples on which the com-
parisons are to be made. In the case of electrochemical
kinetic problems there is a considerable number of physi-
cal phenomena which may occur and which, if taken into
account, can have an influence on the results of the
comparisons: diffusion, homogeneous reactions, convec-
tion, migration, adsorption and various types of electrode
reactions. Other factors may also be important, such
as the kind of simulated transients, geometry of the
electrodes, etc.*
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In the present work the discussion has been arbitrarily
restricted to problems involving diffusional transport
coupled with homogeneous reactions of first and second
order only. Such a selection results from the conviction
that this is the class of problems to which the numerical
methods considered are most frequently applied. In
addition, the usual difficulties associated with the homo-
geneous reactions (formation of thin reaction layers)
provide a severe test for any numerical method.

As an example of first-order homogeneous kinetics the
standard pseudo-first-order catalytic mechanism (1) and
(2)** has been selected, which involves formally two

A+e =B (1)
B%‘A (2)

species A and B and requires a solution of two corre-
sponding PDEs. For this mechanism analytical solutions
are available, which simplifies the accuracy comparisons.
Two kinds of transients have been simulated: the
potential-step chronoamperometric transient (CA) under
limiting current conditions and the linear potential
scan voltammetric transient (LSV).>* Simulation of the
potential-step transients is a difficult test for numerical
techniques, owing to the discontinuous boundary con-
ditions at the initial time moment ¢ =0.

As an example of second-order homogeneous kinetics
the system of Pedersen and Svensmark*® has been chosen.
In a simplified version of this mechanism (Ref. 1, p. 146
and Ref. 35) four species: A, B, C and D are involved in
three reactions (3)—(5). A steady state is assumed?” for the

A+e =B (3)
B+C—-A+D (SET) 4)
B + D — products (fast coupling) 5)

transitory species D. Consequently, the kinetic PDEs for
only the first three species need to be solved. The reader
is referred to the original work® for the details of
the derivation. For this system LSV curves only were
simulated.

Semi-infinite diffusion conditions and planar electrodes
have been assumed in both examples. In the following
text, the CA calculations for mechanism (1) and (2), the
LSV calculations for mechanism (1) and (2) and the LSV
calculations for the mechanism (3)—(5) will be referred to
as problem 1, problem 2 and problem 3, respectively.

Selection of methods

Another difficulty which is inherent in the present study is
that OC is a rather complicated method, as compared
with FD algorithms. There are many more factors that
can have an influence on its overall efficiency. In par-
ticular, various trial polynomials can be selected, various
algorithms for integrating sets of stiff ordinary differential
equations (ODEs) arising in this method can be chosen
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and various input parameters for these algorithms can be
assumed.'""®

For the present study the simplest variant of the OC
has been accepted, i.e. the collocation using Legendre
polynomials,>!'** based on a fixed set of collocation
nodes with the first node at the electrode surface and the
last one at the minimal distance L from the elec-
trode, at which practically no concentration changes can
be expected during the time interval of interest on
the basis of the estimated diffusion rate (Ref. I, pp. 14
and 40). Since this variant seems to possess the worst
numerical properties, as compared with other proposed
modifications,''"?® its comparison with FD provides the
most stringent test for OC. The principles and equations
according to which the discretization of the kinetic PDEs
has to be performed and corresponding ODEs derived are
described in detail in Refs. 12 and 24. This discretization
has been applied here.

For the solution of the system of stiff ODEs two
integrators have been chosen: the STIFF3 program,
reported by Villadsen and Michelsen® and recommended
for electrochemical simulations by Pons,?* and the
STINT program, written by Tendler et al.***” and recom-
mended by Rice.*® The main reason for this selection is
that the source texts of both these programs are available,
which makes them accessible to every electrochemist will-
ing to include them in a program. The STIFF3 integrator
is based on the semi-implicit Runge—Kutta integration
method of Caillaud and Padmanabhan,*® but it involves,
in addition, a simple automatic integration step-size selec-
tion mechanism. This program is fairly simple and easy to
understand. However, it is not very efficient, since it
requires frequent Jacobian matrix evaluations for the
ODE system. Its other disadvantage is that analytical
expressions for the Jacobian matrix have to be provided
(Ref. 3, p. 322) and that time has to be treated as a
dependent variable in these expressions (Ref. 3, p. 320).
This makes its use for most electrochemical kinetic
problems impractical (with the possible exception of the
modelling of the CA transients), owing to very cumber-
some expressions for the Jacobian matrix, arising in
problems with time-dependent boundary conditions.
STINT uses a variable-step and variable-order cyclic
composite method,*® and it is much more complicated
than STIFF3. It can evaluate the Jacobian matrix by
numerical differencing, which is very convenient in prac-
tice. The A-stability of the STIFF3 integrator (Ref. 3,
p. 319) and the stiff stability of STINT?*® are good reasons
to believe that these integrators do not impose constraints
on the values of the B-parameter arising in the OC dis-
cretization.'*'*?* Hence, one can select this parameter
simply on the basis of the physical rationale for the
considered kinetic problems (see later). There are not
many other integrators available for stiff ODEs. Library
packages such as DDEBDF, LSODA or METAN, used
by Speiser,? are probably somewhat more efficient than
STINT, which is considered to be a moderately efficient
integrator.*® Owing to the above circumstances, in the



present work the STIFF3 program has been used only in
conjunction with problems 1 and 2. STINT was applied
to all the problems. For problem 3 only numerical
evaluation of the Jacobian matrix was used.

Out of the FD methods the following algorithms have
been selected for the comparisons: the classic explicit'?
(EX), Runge-Kutta second-order’ (RK2) and Crank—
Nicolson*® with the matrix solution technique suggested
by Rudolph*' (CNR). The “point” formulation of
these FD algorithms (Ref. 1, p. 31) has been assumed.
“Parallel” calculation of diffusional and homogeneous
chemical reaction terms (Ref. 1, p. 143) has been used in
the EX and RK2 methods. Among the traditionally used
FD techniques the selected algorithms are potentially of
the greatest importance, due either to their simplicity
(classic explicit and Runge-Kutta) or to their accuracy
(Crank—Nicolson). The application of the Rudolph
technique*! of solving the set of coupled linear equations
for the concentrations of the reacting species at new time
levels in the CNR algorithm followed the description by
Britz,** including the implicit calculations of the con-
centrations at the electrode.*® Five-point approximations
for the gradients (Ref. 1, p. 63) at the electrode have
been utilized. Linearized expressions (Ref. 1, p. 150) for
second-order kinetic terms of the-mechanism (3)-(5) have
been assumed in the CNR algorithm.

The computer programs corresponding to all the above
algorithms have been written in the “C” language** and
compiled using the TURBO C+ + compiler (v. 1.01)
for an IBM-compatible PC. The integrators STIFF3
and STINT, as well as other FORTRAN procedures
necessary for the OC method and presented in Ref. 3,
have also been translated into “C”. The calculations have
been performed using an IBM-compatible PC with an
Intel 80386 processor and a 80387 math co-processor,
operating at 25 MHz, under MS DOS.

Computational

In the case of the catalytic mechanism (1) and (2) the
reversibility of both reactions (1) and (2) has been
assumed in the programs. However, x, = 0 was used as an
input value in all the calculations.

In problem 1 the dimensionless time 7= ¢/t has been
introduced, where ¢ is the physical time variable and 7 is
an observation time (Ref. 1, p. 17). Consequently, the
dimensionless rate constant was K;=«t. The determined
quantity was G,/G3™ — 1, where G, was the calculated
dimensionless concentration gradient of species A at the
electrode and G3"* was the analytical expression (6) for
this gradient, given by Delahay and Stiehl.**

G =(nT)” " exp(—KT) + K" edf[(K;T)"*]  (6)

The value of log |G,/G3™ — 1| corresponding to T=1
was considered as a measure of the solution error in most
of the calculations, in a way analogous to that in Ref. 1.
The concentrations were normalized by the bulk concen-
tration c3 of A. Thus the initial concentration values of A
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were equal to 1 and those of B were equal to zero. In the
case of FD calculations this initial condition was modified
for the space grid point at the space coordinate x =0 (i.e.
at the electrode), where a concentration of A equal to zero
and a concentration of B equal to unity were assumed.
Such a formulation of initial conditions obtains accurate
results in the FD calculations of the CA transients in
limiting current conditions.*®

In problem 2 the dimensionless time was T = Fvt/RT,
as usually defined in the theory of the LSV method,>*
where v is the potential scan rate and F, R and T have
their usual meaning. Consequently, the dimensionless rate
constant was K;=«/(Fv/RT). Since the LSV curves for
the catalytic mechanism do not exhibit a peak (except at
small x;), it was not possible to discuss the accuracy of the
calculations in terms of the peak parameters obtained by
various methods. Instead, the value of log |G ,/G5™ — 1|,
corresponding to 7= 16, was selected as a measure of the
error. Simultaneously, the dimensionless starting poten-
tial (Ref. 3, p. 49) of +6.5 was taken. It was assumed
arbitrarily that with these parameters the stationary state,
characteristic for the catalytic mechanism,*’ is already
reached at T=16 (which corresponds to the dimen-
sionless potential of —9.5), at least when K> 1, so that,
according to Ref. 47, G3™ is given by egn. (7). Most of

Gy =K} (7)

the calculations for problems 1 and 2 have been per-
formed assuming K;=1, in a manner analogous to that
in Ref. 1.

In the case of problem 3 similar normalizations to those
of problem 2 were used (a normalized set of kinetic
equations is given and described in Ref. 1, p. 146).
Reversibility of the electrode reaction (3) has been
assumed. The dimensionless homogeneous rate constant
of the (coupled) reactions (4) and (5) K= 1, the ratio of
bulk concentrations cg /c3 = 3 and an initial dimensionless
potential of +8 were taken for the calculations. Under
these conditions the calculated LSV curves were peak-
shaped. A heavy run was performed with the OC method
in order to obtain maximally accurate values of the
peak parameters: T;°=8.6302240473 and x;*=
0.437 369 062 26, where y is a nondimensional current
function, defined in the usual way.?* Therefore, the quan-
tities: log |7,/T5*—1| and log |x,/x;* — 1|, where T,
and x, are simulated peak parameters, were used as
measures of the error involved in the calculations. The
above values of Tp and x;™ are probably accurate to
about 7-9 significant digits.

Equal diffusion coefficients, D, of all the species con-
sidered have been assumed for simplicity in all the calcula-
tions. The dimensionless space coordinate X = x(D1) /2
was introduced in the CA case and X = x(DRT/vF)~"?in
the LSV case.

In the FD calculations constant integration steps H
and 3T for the space and time coordinates were used,
except for the Crank—Nicolson method in problems 1 and
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2, where calculations based on the grid of unequal spatial
integration steps (Ref. 1, p. 90 and Ref. 48) have also been
performed. The transforming function (8) suggested by
Feldberg,** with a=1, was applied in that case. The

y=In(1 + ax) ®)

integration step-size H was determined from the input
values of 7 and the assumed values of the dimensionless
diffusion coefficient A = 8 7/H 2, which were 0.4 for the EX
and RK2 methods, 1 for the CNR method with uniform
space integration steps, and 3 for the CNR method with
non-uniform space integration steps (in the latter case this
was the maximal A-value for the first integration step at
X =0). The necessary number of integration steps along
the X-coordinate was obtained, based on the assumed
simulation layer L for the whole time interval T,
considered.

Taking into account the estimated rate of diffusion
(Ref. 1, pp. 14 and 40), the assumed thickness of the
simulation layer (in X-units) was L=6T"2_in problems
1 and 2 and L=3T'2 in problem 3. The corresponding
B-parameter in the OC discretization'>'*** was = L~2
The values of T, were T., =1 for problem I,
Tpax = 16 for problem 2 and T, =10 for problem 3.
The computational times given below represent the
duration of the solution processes within the entire
intervals T, of T.

max

Results and discussion

The accuracy and speed of the accepted variant of the OC
method depend on the following factors: the number N of
the internal collocation points, which (together with the
number of kinetic PDEs) determines the dimension of the
ODE set to be solved, the initial integration step-size
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8T, along the T-coordinate, the tolerance parameter &,
which determines the desired accuracy for a single ODE
integration step, and the number of tabulation points N,,
i.e. the number of (usually equidistant) time instances at
which one wishes to determine concentrations and their
gradients at X =0. Such parameters form a typical set of
input data for the ODE solvers with automatic integra-
tion step-size selection algorithms, and have also to be
specified in the case of the integrators STIFF3 and
STINT. However, the way in which these parameters are
used by the ODE solvers can be different in different
programs. Therefore, their influence on the results has to
be recognized in every particular case. In the STIFF3
integrator, for example, the desired number of tabulation
points has an effect on the integration step-size used, since
in every call to the program the end of the last integration
step is forced to coincide with the current tabulation
point. In STINT the grid of integration steps is entirely
independent of the grid of tabulation points, and inter-
polation on the integration grid is used to obtain
tabulated results. The error test parameter € also has a
somewhat different meaning in both programs. During
the integration this parameter is compared with some
estimates for the errors of the components of the ODE set,
taken with appropriate weighting factors. Both the error
estimates and weighting factors are different in different
methods. For example, in STIFF3 the error weighting
factors equal to unity have been assumed on input for all
the components of the ODE sets. STINT calculates such
factors automatically. The effect of the above parameters
on the accuracy and efficiency of the calculations is
analysed below.

Effect of 8T, on accuracy. Since the ODE systems
emerging from the OC discretization are stiff, the initial
step-size 87, should preferably be of the order of the
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Fig. 1. Dependences of the relative error of the gradient at X=0 and 7=1 on ¢, obtained for problem 1 with the OC method
and the STIFF3 integrator (a) or the STINT integrator (b). Values of NV are indicated in the figure. The broken line joins points

on the curves for which € is optimal (see text).
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reciprocal of the largest eigenvalue of the Jacobian matrix
of the ODE system at T=0 (Ref. 3, p. 324). Then unne-
cessary automatic time-step adjustments are minimized
and possible troubles with the numerical stability (for too
high 8T,) avoided. The determination of the eigenvalues
is not a simple task for the present calculations, owing to
the rather large dimensions of the ODE sets and their
complexity. Therefore, various 87, -values were tested, by
trial and error, and it was found that the computational
time did not significantly depend on this choice, but a
smaller 87, produced somewhat more accurate results.
Therefore, 8T, = 10~'* was assumed for further calcula-
tions. This is about the smallest acceptable value, at least
for the STINT integrator, for the following reason. In
calls to STINT the minimal and maximal allowable time
step sizes have additionally to be specified. The minimal
step size should be much smaller than any expected value
of the integration step, in order to avoid problems with
the automatic step size selection when the error criterion
is not met in a single iteration. Therefore, 102 times the
initial integration step (i.e. 107'%) was taken for this
purpose. Such a small value is on the verge of machine
accuracy. The maximal allowable time step ten times
larger than the tabulation interval was arbitrarily
assumed. The maximal allowable order of 7 of the
integration method in STINT was assumed in all the
calculations, in order to utilize fully the capabilities of this
program.

Effect of € and N on accuracy. The accuracy of the OC
computations was found to depend strongly on two
parameters: the number N of internal collocation points
and the tolerance parameter €. This result is rather
obvious, since N reflects the quality of the representation
of the concentration profiles by the orthogonal polyno-
mial expansions in X, while ¢ determines the accuracy
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Fig. 2. Dependences of the relative error of the gradient at
X=0 and 7T=16 on ¢, obtained for problem 2 with the OC
method and the STINT integrator. Values of NV are indicated in
the figure. The broken line joins points on the curves for
which € is optimal (see text).

of the ODE integration in T. Figures 1-3 show the
dependences of the calculation errors on € at various N.
It can be seen that for any fixed N-values these errors
generally decrease with decreasing &, if initially a large €
is selected, until a minimal error, allowed by a given N, is
reached. It can also be seen that higher N allows better
accuracy to be achieved. However, in Fig. 2 one does not
observe a further decrease of the errors with N for N > 13.
Apparently, this reflects the fact that eqn. (7) does not
give a fully correct gradient value in that case, i.e. the
steady-state limiting current is not, in fact, yet attained at
T =16, as was assumed.
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Fig. 3. Dependences of the relative error of the LSV peak position (a) or LSV peak height (b) on €, obtained for problem 3 with
the OC method and the STINT integrator. Values of N are indicated in the figure. The broken line joins points on the curves for

which € is optimal (see text).
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The smaller the value of ¢ is taken, the better accuracy
of ODE integration can be achieved, but the greater the
computational time becomes. Therefore, an optimal €, -
value for computations can be defined as a maximal
g-value for which the minimal error allowed by a given N
is already reached. The broken lines in Figs. 1-3 indicate
that in the case of the STIFF3 integrator and problems 1
and 2, g, is roughly equal to the error reached in the
calculations. For STINT it is about 100 times lower. For
problem 3, €, is about 10* times lower than the errors.
Concrete values of €,,, used in further calculations are
collected in Table 1. In the case of problem 2 the optimal
€ values for N>15 have been determined by linear
extrapolation of the g, ,-values for N <15, assuming a
linear dependence of the error on N. Such a dependence is
fairly well obeyed for the data from Fig. 1.

The identification of the optimal e-values is a simple
task when exact solutions are known and plots such as
presented in Figs. 1-3 can be made. In practice, one does
not know the solutions (if one did, why do the simula-
tions?), so that g,,, have to be determined in a different
way. For example, one can make calculations with
gradually decreasing € and observe how the ratios of the
step-by-step calculated values of the quantity of interest
converge to unity (or zero on the logarithmic scale). The
value of € for which further decrease of € does not bring
these ratios substantially closer to unity can be then
selected as €.
Efficiency comparisons. The efficiency of a given integra-
tion method for the electrochemical kinetic PDEs can be

-2

EX

CNReq

-84 suntaon

STIFF 3(100) STIFF3(8000)

STINTn (100)

log |G/GR* —1|

=104

-1 1 3 5
log (ct)

Table 1. Optimal values, €,,, of the tolerance parameter ¢,
for various numbers, N, of the internal collocation points.?

Problem 1 Problem 2 Problem 3
N  STIFF3 STINT STIFF3 STINT STINT
5 1.371€E-3 1.371E-5 1.472E-1 1.472E-3 1.233E-6
8 3.192E-5 3.192E-7 5768E-3 5.768E-5 1.047E-8
10 1.114E-7 1.114E-9 3.319E-4 3.319E-6 1.941E-9
13 1.429E-9 1.429E-11 1.556E-5 1.556E-7 5.035E-11
156 1.396E-10 1.396€-12 1.578E-6° 1.578E-8° 1.928E-12

18 1.811E-13 1.811E-16 5.093E-8° 5.093E-10° 2.410E-14
20 7.745E-15 7.745E-17 5.164E-9° 5.164E-11° —

?xE-y=xx10"". ®Values obtained by linear extrapolation.

conveniently characterized quantitatively by plotting its
error vs. computational time (ct) involved.! Efficient
methods produce small errors in short computational
times. Figures 4 and 5 present such logarithmic efficiency
plots obtained in the present work. The plots for the OC
method have been obtained assuming the optimal values
of the tolerance parameter € from Table 1. As can be seen,
the efficiency of the OC calculations strongly depends on
the ODE integrator used and on the number of tabulation
intervals N,. STIFF3 is about 1-2 orders of magnitude
less efficient than STINT. When using STINT, there is
a slight difference between the calculations based on
analytical Jacobian matrix evaluation and those which
use numerical approximation for the Jacobian matrix.
The first option is only marginally faster, owing to the fact
that the Jacobian matrix evaluation was performed only
rarely by STINT during the calculations. This also

0
( b) STINTn (100)
STINTa(8000)
/snm-n( 8000) STIFF 3(8000}
=
=
) -2
®
&<
(O]
2
©
g
2 4
STINTa(100)
STIFF 3(100)
- 6 . .
-1 1 3 5

log (ct)

Fig. 4. Efficiency plots for the simulation of problem 1 (a) or problem 2 (b). Notation: EX, Classic explicit FD algorithm with
equal space integration steps; RK2, Runge-Kutta second-order FD algorithm with equal space integration steps; CNReq,
Crank—Nicolson FD algorithm with equal space integration steps; CRNun, Crank—Nicolson FD algorithm with unequal space
integration steps; STIFF3, OC algorithm using the STIFF3 integrator; STINTa, OC algorithm using the STINT integrator
with analytical Jacobian matrix evaluation; STINTn, OC algorithm using the STINT integrator with numerical Jacobian matrix
evaluation. For a given FD algorithm, each point on the curve corresponds to a different number of integration steps along
7: 100, 200, 500, 1000, 2000, 5000 or 8000. For a given OC algorithm, values of the number N, of tabulation points are given
in braces and each point on the curve corresponds to a different number N of internal collocation points: 5, 8, 10, 13, 15 or 18.

The computational time is given in seconds.
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Fig. 5. Efficiency plots for the simulation of problem 3, error of the LSV peak position (a) or LSV peak height (b). Notation
as in Fig. 4. The points for 100 (and 100 and 200) integration steps along 7 are not displayed for the CNR (and EX and RK2)
algorithms, respectively. With such numbers of integration steps negative concentrations were observed in the calculations.

indicates that the stiffness of the ODE systems was not
very pronounced in the present calculations. The effect of
the number of tabulation intervals N, is the most con-
siderable when the number N of internal collocation
nodes is small. When using a small N (such as for example
N=35), OC is evidently less efficient than all the FD
methods taken for comparison. However, OC becomes
superior when N > 10 and when a fast integrator, such as
STINT, is used. It yields extremely small errors (e.g.
relative errors 10~" in Fig. 4a) which would not be
possible to attain in the same ¢t by the FD algorithms.
The high efficiency of the OC is particularly noticeable
when small N, is satisfactory for the applications of the
results obtained, as is usually the case for the CA trans-
ients (Fig. 4a) and with the LSV curves for problem 2
(Fig. 4b). In the latter case the inadequacy already
pointed out of eqn. (7) to provide accurate G5"*-values is
also visible in Fig. 4b. This obscures to some extent the
conclusions regarding the efficiency of the OC method
in that case. However, it is rather clear that the higher
efficiency of OC would be seen in Fig. 4b if the exact
G3™-values were known and could be used in the error
analysis. OC performs more poorly when transient curve
characteristics such as LSV peak parameters T, and y,
have additionally to be determined, as it is in the case of
problem 3. In order to obtain these parameters one addi-
tionally has to interpolate between the tabulated transient
curve values. In the present work the parameters T, and
xp Were determined by a parabolic interpolation between
the three maximal tabulated y values, followed by an
analytical calculation of the maximum of the parabola
obtained. The accuracy of this procedure significantly
depends on N,. Small N, values, such as N,=100 in
Fig. 5, are not sufficient to assure an accuracy of the peak
parameters comparable with that which, in principle, is

possible for the tabulated transient curve values them-
selves. Therefore, at small N, a further increase of N for
N>=10 cannot improve the accuracy of the peak
parameters in Fig. 5. Consequently, one has to use rather
high N,-values in such cases, which increases the ct
necessary for the OC calculations. However, when one
accepts expending more computational time, it can still be
more profitable to use OC rather than FD methods, since
with high N, OC assures much smaller errors of the peak
parameters than do the FD methods with the number of
time integration steps equal to the number of OC tabula-
tion steps N,. When analysing Fig. 5 one has to remember
that the values of 7'2°° and y;* are not perfectly accurate.
They have been obtained assuming N =20, N, = 8100 and
¢ =10""° (for STINT), i.e. extreme values which lie at the
limit of technical possibilities of the programs used.
Therefore, Fig. 5 provides the rates of convergence to T e
and Ap s which can be achieved by the OC and FD
methods, rather than true accuracies and efficiencies.

One should treat Figs. 4 and 5 with a certain caution.
Complex algorithms can usually be programmed in many
different ways, at different levels of generality, using
different programming languages, different compiler
optimizations, etc., as well as executed on different com-
puters. This applies to OC and to more complicated FD
programs, such as those for the CNR method. Therefore,
the above results of the relative efficiency of the OC and
FD methods do not have an absolute character, and some
departures from them can occur in particular implemen-
tations.

Reliability for discontinuous boundary conditions. Effi-
ciency is an important, but not the only, property
required from the numerical solution methods in elec-
trochemical kinetics. Another important feature is their
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ability to cope with discontinuous boundary conditions.
In the present study this difficulty occurs for problem 1.
The potential step at 7= 0 leads, in the case of the revers-
ible reaction (1), to the singularity of the concentration
gradients, in accordance with eqn. (6). Neither FD nor
OC methods can truly reproduce this singularity in the
numerical solution, since both these methods are based
on finite differencing in time, which can give only finite
values of the gradient. Consequently, large errors are
usually expected in the simulated gradient close to T=0.
A reliable numerical method should quickly damp out
these errors. Figure 6 shows how the errors of the
gradient evolve in time in the case of the OC method
and the CNR algorithm, which is the most accurate from
the FD methods considered. It can be seen that in both
cases the error is greatest initially and then, on average,
decreases with time. Close to 7= 0 both the CNR and OC
algorithms give poor results. When the number of internal
collocation points is small (N = 5) then in the whole time
interval T'e [0, 1] the OC method gives larger errors than
the CNR method with a minimal number (100) of time
steps used. However, when N is sufficiently large (e.g. the
curve for N=18 in Fig. 6), the accuracy of the OC
method within T e [0, 1] becomes better than that of the
CNR method, with a maximal number (8000) of time
steps used.

The poor reliability of the OC method with small N,
when dealing with discontinuous boundary conditions,
can also be seen in the concentration profiles. Figure 7
compares the concentration profiles of the species B in
problem 1, obtained with the OC and CNR methods at
three time instants. As can be seen, at each time instant
the CNR algorithm gives concentration values which are

0
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R CNReg (100)
_I
§< CNRe )
& NReq (8000
= 81
©
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Fig. 6. Dependences of the relative error of the simulation of
problem 1 on 7, obtained with the Crank—Nicolson algorithm
with equal space integration steps (CNReq) and the OC
method with 1000 tabulation points V,. Values of the number
of integration steps for 7 variable in the CNR algorithm are
given in braces. Values of N are provided at the respective OC
curves.
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Fig. 7. Concentration profiles of species B in problem 1 at
(a) T=0.01, (b) 7=0.1 and (c) T=0.5. Notation: ( )
analytical prediction based on eqn. (11) in Ref. 45; (——«—-)
results of the OC method with 5 internal collocation points;
(OO 0) results of the CNR method with equal space
integration steps and 100 time integration steps along
Te[0O,1].




very close to the accurate ones, even though the number
of time integration steps is very small (100). No negative
concentrations are observed. As opposed to this, the
values obtained by the OC method with a small N are
only roughly approximate at the collocation nodes,
especially when T is small (Fig. 7a). In addition, con-
centration values between collocation nodes deviate
considerably from the analytical prediction. Even at T as
large as 0.5 (Fig. 7c) one still observes non-physical,
oscillatory behaviour of the concentration profile. This
behaviour is related to the inability of the finite set of
collocation polynomials, resulting from the small, finite
number N of collocation points, to represent rapid spatial
changes of the concentration. The problem has already
been pointed out by Whiting and Carr,'' but apparently
it has not been considered to be very serious, since for
large T a good accuracy has been obtained. However, in
the simulation of the potential-step transients, one should
rather pay attention to the good accuracy for small T,
when the most dramatic changes in the physical processes
occur. A related and even more serious deficiency of the
OC algorithm is that non-physical, negative concentra-
tions are frequently observed, both at the collocation
nodes and between them, as clearly seen in Figs. 7a and
7b. The quite large magnitudes of the negative concentra-
tions at collocation nodes cannot be explained exclusively
by the round-off errors occurring during the numerical
integration. Use of higher N improves the accuracy of
concentration profiles for small T, but the negative con-
centrations are observed even with N = 18 (Fig. 8). These
problems also occur in more advanced OC algorithms, as
observed by Speiser,?? albeit in a less drastic form.

Reliability for fast homogeneous reactions. Another
important property which determines the quality of
the numerical methods used in electrochemical kinetic

15
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ce(X, T)
o
T

0.0+

-05

X

Fig. 8. Concentration profiles of species 8 in problem 1 at
T=0.01. Notation: ( ) analytical prediction based on
eqgn. (11) in Ref. 45; (—— «—-) results of the OC method with
18 internal collocation points.
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Fig. 9. Relative errors of the gradient at X=0and 7=1, in
the simulation of problem 1, as a function of log K. Notation
as in Fig. 4. The curves for FD algorithms refer to 1000
integration steps along 7. For the OC method, values of N
used are indicated in the figure.

simulations is their reliability in the solution of fast
homogeneous reaction—diffusion problems. For such
problems thin reaction layers occur, which is a serious
difficulty. The above calculations have been performed
assuming K;= 1 or K=1 for reactions (2) or (4) and (5).
This is a rather small homogeneous rate constant, for
which the above difficulty practically does not occur.
Therefore, the investigation of the error behaviour for
larger rate constants is relevant. Figure 9 compares
dependences of the error on log K, obtained with various
methods for problem 1. It can be seen that the considered
variant of the OC method performs in a similar way to the
FD methods, i.e. there is always a region of K; (around
10~'-10) in which the errors are minimal, but for K;
larger than some limiting value (around 10 in Fig. 9)
there is a systematic error increase with K;. Although the
OC algorithm produces rather smaller errors, in a wide
range of K;, than do the FD methods, for large K; it
behaves equally poorly. This deficiency is significantly
reduced in more elaborated variants of the OC method,
such as spline collocation,'® where K; up to 10" can
succesfully be considered.®®

Figure 9 gives useful information about the accuracy
with which kinetic currents can be calculated in the
presence of homogeneous reactions by the OC method.
However, in view of the frequently observed negative
concentrations the question of the reliability of such
calculations arises, especially for fast second-order
kinetics. For the first-order reactions the sign of a
homogeneous kinetic term in a PDE changes in the same
way as the sign of the time derivative for a concentration.
Therefore, if the concentration becomes negative, such a
kinetic term will act as a negative feedback in the respec-
tive ODE, tending to force the negative concentration
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back to non-negative values. Similar behaviour occurs for
second-order bimolecular kinetic terms if the concen-
tration of only one species is negative. However, when
both concentrations in a second-order kinetic term are
negative, their product becomes positive and there is a
positive feedback in the respective ODE, which may lead
to the increase of the absolute value of the negative con-
centration, and consequently may destabilize the solution
process. In the cases of sporadic occurrence of negative
concentrations, when their magnitude is at the level of
machine accuracy and when they clearly result from
round-off errors, this problem can be eliminated by
locally changing the sign of the kinetic term within the
procedures of numerical integration, in order to impose
realistic constraints on the values of the numerical solu-
tion.”? However, such a strategy cannot be applied and
physically justified in the cases when one observes larger
negative concentrations, as it happens when the number
of collocation points N is small. In such a case the
negative concentrations apparently reflect the inherent
properties of the solution of the ODE set, resulting from
the low-order polynomial expansion of the concentration
profiles, and are not associated with the errors of the
numerical integration of this ODE set. Another reason
can be the existence of multiple solutions to the ODE
problem, when non-linear homogeneous kinetics are
involved.” The numerical integration is likely to fail in
such cases, oscillating between physical and non-physical
solutions, especially when they lie close to each other.
These problems appear to be a serious deficiency of the
OC method, as opposed to FD calculations, where the
occurrence of negative concentrations can successfully
be eliminated,*? and it leads to the question whether the
good accuracy of this method is not, at least in some
cases, fortuitous. This also raises certain doubts about the
numerical stability of this method. Statements can be
found in the literature? that the stability of solutions is
inherent in the OC. Apparently, such statements result
from the fact that one can use stable integrators for
solving the ODE sets in this method. The above example
of second-order homogeneous kinetics shows that this is
only half of the truth. One is interested in obtaining stable
solutions of the PDEs and not only those of the ODEs.
For this, the polynomial expansions of the concentrations
have also to be stable, in the sense that the difference
between the solution of the resulting ODEs and the
correct solution of the PDEs does not grow and remains
sufficiently small for any time value. Stability, as under-
stood in this way, seems to be difficult to examine and
to prove in a general way for electrochemical kinetic
problems.

Conclusions

The results obtained in the present work reveal that OC
possesses both advantages and disadvantages, as com-
pared with the FD algorithms for electrochemical kinetic
simulations. The advantage of OC is that very high
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accuracy and efficiency of the simulations can be achieved
with this method, if a proper ODE integrator and proper
values of the parameters such as the number N of internal
collocation points, tolerance parameter € and the number
N, of tabulation steps, are chosen. The disadvantage is a
rather doubtful reliability of this method in the simulation
of discontinuous boundary conditions and homogeneous
reactions. These features make OC simulations an art
rather than routine. The successful use of the OC requires
more experience and skill than do the FD calculations.

For practical applications of OC the following hints
can be helpful. One should use a fast integrator for stiff
ODEs, with 8T, as small as possible and with € close to
optimal. The number of internal collocation nodes used
should be at least 10. Certainly, N = 5 or 6 nodes by various
authors®* is not enough, if OC is to be competitive with
FD methods and sufficiently reliable. One has to pay
attention to negative concentrations and/or second-order
homogeneous kinetic terms.
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