Acta Chemica Scandinavica, 1993: 47: 532-534
Printed in Belgium - all rights reserved

Short Communication

Copyright © Acta Chemica Scandinavica 1993
ACTA
CHEMICA SCANDINAVICA
ISSN 0904-213X

B-Selectivity of Sterically Hindered Acyl Chlorides in the
Acylation of 2,3,4,6-Tetra-O-benzyl-a-D-glucopyranose

Mikael Bols,* Henrik Claus Hansen and Bente Irene Smith

Department of Organic Chemistry, The Technical University of Denmark, Building 201, DK-2800 Lyngby, Denmark

Bols, M., Hansen, H. C. and Smith, B. L, 1993. B-Selectivity of Sterically Hindered
Acyl Chlorides in the Acylation of 2,3,4,6-Tetra-O-benzyl-a-D-glucopyranose. —

Acta Chem. Scand. 47: 532-534.

1-O-Acyl sugars occur widespread in nature,' and as a
result their synthesis is important. 2,3,4,6-Tetra-O-benzyl-
a-D-glucopyranose (1) is the ideal starting material for the
synthesis of 1-O-acylglucoses (glycosyl esters can also be
made directly from glucose') and 1-O-acylglucuronic
acids,” since it is readily available,* and the benzyl groups
can be removed in the presence of a glycosyl ester.

Several methods of controlling the stereochemistry of
the acylation of 1 have been reported using special tech-
niques, such as using acyl fluorides in the presence of
cesium fluoride,* or by acylating the Li-salt, pseudo-urea
derivative® or trichloroacetimidate’ of 1. Straightforward
pyridine-catalysed acylation of 1 generally gives mixtures
containing mostly the a-isomer.® In some cases, such as
the p-nitrobenzoate, the pure a-ester has been obtained.?
Recently surprisingly high B-selectivity in the pyridine—4-
dimethylaminopyridine (DMAP)-catalysed pivaloylation
of 1 was discovered.” Thus it was decided to investigate
whether this selectivity might be more general.

First the ratio of a: B esters in the pyridine-DMAP
catalysed-acylation of 1 with a number of different acid
chlorides was studied (Scheme 1) to see whether the
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Scheme 1.

B-selectivity observed for the pivaloyl chloride might be
general. As seen in Table 1 most of the acid chlorides gave
mainly the a-anomer. Only the hindered acid chlorides
pivaloyl chloride, 2,2-dimethylpentanoyl chloride and
2,4,6-trimethylbenzoyl chloride gave predominantly the
B-ester, and the first two gave exclusively B. In case of the

* To whom correspondence should be addressed.
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2,2-dimethylpentanoic ester, the 2,4,6-trimethylbenzoic
ester and the 2-methylpropanoic ester the B-anomer was
crystallised in 86, 24 and 45 % yield, respectively (see the
Experimental), otherwise the mixture of anomeric esters
was obtained as a syrup.

Compared with the acylation of 1 in pyridine without
DMAP (Table 1) it was noted that addition of DMAP
resulted in increased formation of the B-ester which was
especially pronounced for pivaloyl chloride, though this
sterically hindered acid chloride also showed B-selectivity
in the pyridine-catalysed reaction.

This raised two questions: why does the addition of
DMAP lower the a : B-ratio, and why do the sterically
hindered acid chlorides form mostly B-ester? Since
equatorial alcohols are acylated faster than axial,® k,
would be expected to be larger than k, (Scheme 2). The
a : B ratio of the product depends on the first-order rate
constants according to eqn. (1).

a/f=kyk_,+ks)k ks. (1)

Thus if k, and k_, were large (fast mutarotation)
and k, and k; small (slow acylation) the reaction would

lead predominantly to P-ester (o/f~k,k_ /k;k,),
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Scheme 2.



Table 1. The anomeric ratio of esters obtained from the
reaction of tetrabenzylglucose (1) with RCOCI in CH,Cl,—
pyridine 10: 1.

With 0.1 % DMAP Without DMAP
R a:B a:B

10:1%

10:1%

LY

t-Bu
CH;CH,CH,(CH,;),C
CICH,

Cl,CH

CH;CHBr

PhCH,
(E)-CH;CH=CH

Ph

1:6
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2-CIC4H,
2,4,6-Me;CgH,
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while the reverse (slow mutarotation and fast acylation)
would result in predominantly a-ester (/B ~ k,/k,). The
mutarotion of 1 was studied by the optical rotation by the
method described by Swain and Brown, '® and found to be
first order in the sugar concentration. The rate constant
(k,+k_,)at22°Cin CH,Cl,—pyridine 10 : 1 (v/v), 0.1 %
DMAP was 9.7 x 10~° s ! corresponding to a half-life of
120 min, while the rate constant in CH,Cl,—pyridine
10: 1 (v/v) was 3.2 x 10~° s~ ! corresponding to a half-life
of 360 min. The equilibrium contained 55% a-anomer
corresponding to a equilibrium constant of K=0.82. The
larger k, and k _, in the presence of DMAP explain the
increased formation of B-ester, if k£, and k, were increased
to a lesser extent by DMAP. The B-selectivity of the
hindered acid chlorides might be explained in a similar
manner. The acylation of 1 was followed by NMR spec-
troscopy for six acyl chlorides. Since the concentration of
1 was much lower than the concentration of the reagents,
the reaction could be expected to follow first-order
kinetics in sugar concentration. With acetyl chloride,
butyryl chloride, chloroacetyl and (E)-crotonyl chloride
the reaction was almost instantaneous, with a pseudo-
first-order rate konstant k,>5x 103 s~!. The reaction
with pivaloyl chloride and mesitoyl chloride was much
slower. The reaction with pivaloyl chloride was complete
within 6 h and had a pseudo-first-order rate constant
k;~2x10~*s~'. The reaction with mesitoyl chloride
was finished after 48 h and had a rate constant of
1.3x107°s™,

The first four acyl chlorides had k, and &k, much larger
than k, and k _, resulting in the high « : B ratio. The last
two, owing to steric hindrance, had k, smaller than &, and
k _, causing a low a : B-ratio. While pivaloyl chloride had
k,<2x107%s~! the reaction of 2,4,6-trimethylbenzoyl
chloride did not exhibit a large difference in k, and k,
(ky~2x107% and k;~1.1x107%). Therefore, even
though low reactivity in an acid chloride results in
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B-selectivity this selectivity is not necessarily high, since
the ratio k,/k varies considerably.

Experimental

The NMR spectra were recorded on either a Bruker
AC-250 or a AH-90 instrument. Tetramethylsilane
was used as an internal reference. Melting points are
uncorrected. Optical rotations were measured on a Perkin
Elmer PE 241 instrument. Microanalyses were performed
by Leo Microanalytical Laboratory. Concentrations were
performed by rotary evaporation in vacuo at 40°C.

Acylation procedure. 2,3,4,6-Tetra-O-benzyl-a-D-glucose?
(1, 1.0 g, 1.85 mmol) was dissolved in dichloromethane
(10ml) and pyridine (1.0ml, 098 g, 12.4 mmol),
4-dimethylaminopyridine (10 mg, 0.082 mmol) and the
acyl chloride (7.4 mmol) were added in close succession
in that order. The resulting solution was stirred for 24 h
at 25°C. Dichloromethane (20 ml) was added, and the
solution was washed with hydrochloric acid (1 M, 20 ml),
aqueous NaHCO; solution (sat, 20ml) and water
(20 ml). Drying (MgSO,) and concentration usually
left an oily residue of the anomeric esters in 90-95%
yield. The anomeric ratio was analysed by 'H NMR
spectroscopy.

2,3,4,6-Tetra-O-benzyl-1-O-( 2,2-dimethylpentanoyl )-B-D-
glucopyranose (2a). From 1 (50g) and 2,2-dimethyl-
pentanoyl chloride was obtained an oily residue (8.86 g).
Ether-pentane gave crystalline 2a (5.14 g, 85%, m.p.
65-68°C). Recrystallisation gave m.p. 72.0-72.5°C,
[a]® +19.7° (¢ 1.0, CHCl,); '"H NMR (CDCl,): § 0.8
(t, 3H, J=7.5Hz, H-5'), 1.2 (s, 6 H, 2 Me), 1.3 (m, 2 H,
H-4), 1.5 (m, 2 H, H-3’), 3.5-3.8 (m, 6 H, H-2, H-3, H-4,
H-5, H-6, H-6a), 4.5 (m, 3 H, Bn), 4.8 (m, 5 H, Bn), 5.6
(d, 1 H, J,,=8.0 Hz, H-1), 7.1-7.4 (m, 20 H, Bn). 1*C
NMR: § 14.4 (C-5'), 17.9 (C-4'), 24.6, 25.0 (2 Me), 42.2
(C-2"), 42.8 (C-3'), 67.9 (C-6), 73.3, 74.7, 74.8, 75.5 (2 C),
77.2, 80.7, 84.7 (C-2, C-3, C-4, C-5, 4 Bn), 94.1 (C-1),
127.4-128.2 (Bn), 137.9-138.3 (Bn), 176.4 (C=0). NMR
of the mother liquor material revealed no a-anomer
present. Anal. C,; H,3O: C, H.

2,3,4,6-Tetra-O-benzyl-1-O- ( 2-methylpropanoyl ) -B-D-
glucopyranose (2b). From 1 (5.0 g) and 2-methylpropanoyl
chloride (6.25 ml, 6.36 g) an oily residue was obtained.
Crystallisation from ether—pentane gave pure 2b (1.33 g,
24%, m.p. 87-89°C). Recrystallisation from ether—pen-
tane gave m.p. 87-88°C, [a]® +16.6 (¢ 1, CHCl,;). 'H
NMR (CDCl,): 6 1.15(d, 3 H, J=7 Hz, Me), 1.2 (d, 3 H,
J=T7Hz, Me), 2.6 (septet, 1 H, CH), 3.5-3.8 (m, 6 H, C-2,
C-3,C+4, C-5,C-6, C-6a), 4.6 (m, 3 H, Bn), 4.8 (m, 5 H,
Bn),5.6(d,1H,J,,=75Hz,H-1),7.1-7.4 (m, 20 H, Bn).
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BC NMR: 5 18.5, 18.7 (2 Me), 33.8 (CH), 67.8 (C-6), 73.3,
74.8 (2C), 75.4, 75.5, 77.1, 80.8, 84.7 (C-2, C-3, C-4, C-5,
4 Bn), 94.0 (C-1), 127.5-128.3 (Bn), 137.7-137.9 (Bn),
175.3 (C=0). The mother liquor contained the a : § ester
in a ratio of 9 : 1. Anal. C;4H,,0,: C, H.

2,3,4,6-Tetra-O-benzyl-1-O-( 2,4,6-trimethylbenzoyl)-B-D-
glucopyranose (2¢). From 1 (2.5 g) and 2,4,6-trimethyl-
benzoyl chloride using an extended reaction time of
72h, a residue (4.41g) was obtained. Addition of
ether-pentane gave crystalline 2c¢ (1.84g, 58%, m.p.
109-114°C). Recrystallisation from EtOH gave 1.44¢g
(45%) of a product with m.p. 125-127°C, [a]® +5.2°
(¢ 2.2, CDCly). (Lit."" m.p. 129.5-131.5°C, [a]¥+8
(c 2.4, CHCl,), Lit.”> m.p. 131.0-131.5 [a]® + 1.6 (¢ 1.0,
CH,Cl,). C NMR (CDCl,):  20.0 (2 Me), 21.6 (Me),
68.6 (C-6), 73.9,75.3, 75.4,75.1,76.3, 77.8, 81.1, 85.3 (C-2,
C-3, C-4, C-5, 4 Bn), 949 (C-1), 128.0-128.7 (Bn + Ar),
130.5, 135.7 (Ar), 138.3-138.7 (Bn), 140.0 (Ar), 169.1
(COO0).
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