Letter

Hydride Affinities of Organic Cations in Solution

Vernon D. Parker

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300

Parker, V. D., 1992. Hydride Affinities of Organic Cations in Solution. — Acta

Chem. Scand. 46: 1133-1134.

The reactions of organic cations with active C-H containing
compounds often result in a formal hydride transfer (1).

R* + R,R,R,C-H —> R-H + R,R,R,C* (1)

The mechanisms of these reactions are usually not obvious
since a two-step process consisting of an initial electron
transfer followed by a hydrogen-atom transfer gives rise to
the same stoichiometry. Pertinent examples of formal
hydride transfer reactions which have been interpreted as
both single-step'*? and two-step electron/H atom trans-
fer'®? processes include those from NADH models' and
from some metal alkyls.? it has been proposed that in
hydride transfer reactions between methylarenes and
9-arylfluoren-9-yl cations electron transfer progresses
further in the transition state than nuclear motion of
the migrating hydrogen.> While it is generally possible to
evaluate the feasibility of an initial electron transfer re-
action from the pertinent electrode potentials, thermo-
chemical data for the hydride transfer step in solution are
not available.

The free energy of (R-H) heterolytic bond dissociation
can be derived from the isodesmic reaction relationship*
illustrated in Scheme 1. The electrode potential difference
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below the line is related to the difference in the free energy
changes above the line by eqn. (2). The data required to

AGhydride(R—H)sol = AGhom(R_H)sol — F. AEONHE(H._R+)sol 2

evaluate AG,44(R-H) include the bond dissociation free
energy [AG,..(R-H)] in solution and the difference in
reduction potentials of H* and R*.

The standard reduction potential of H" in aqueous
solution [E°ye(H")] has been estimated to be equal to
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+0.18 V.3 Since the hydride transfer reactions of interest
generally take place in non-aqueous solvents, it is necessary
to derive the standard potentials for the reduction of H" in
these solvents. The thermochemical cycle for this conver-
sion is illustrated in Scheme 2. The free energy of transfer
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of hydride from water to solvent [AG, (H™)**] and the
difference in solvation energies of H' [AAG,,,(H")**"] in
water and the non-aqueous solvent are the quantities
necessary to make the conversion. The former is experi-
mentally inaccessible while the latter has recently been
evaluated for acetonitrile (AN) and dimethyl sulfoxide
(DMSO) solutions.®

Linear regression of AG,(X)*™*! data for I", Br~ and
ClI~ available’ for AN (r = 0.98), DMSO (r = 0.996) and
N, N-dimethylformamide (DMF) [r = 0.999] with the cor-
responding free energies of hydration (AG,,)’ provided
relationships to calculate AG,(H")**!. The predominant

Table 1. Hydrogen atom reduction potentials and hydride-ion
free energies of transfer from water to non-aqueous solvents.

Solvent Ene(HV AG,(H™)*=/kcal mol~"
Water +0.18° -

AN —-0.62° 17.2¢

DMSO ~0.58? 16.69

DMF -0.60° 17.9°

2Value from Ref. 5 converted to the NHE. ®Calculated with
relationships in Scheme 2. °From the linear regression eqn.
(see the text): AG,*™*N = —0.465AG,,s — 23.3 (r = 0.98).
9From the linear regression eqn. (see the text): AG,*PMC =
~0.50AG,4 — 26.8 (r = 0.996). °From the linear regression
eqn. (see the text): AG,*MF = —0.475AG,,, — 234 (r =
0.999).
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Table 2. Free energies of heterolysis of C-H bonds to hydride ion and carbenium ions.?

R-H Solvent AGyon(R-H)? Ewe(R) AGiygige(R-H)®
Ph,C-H DMSO 79.3 0.43¢ 102.6
PhCH,H AN 85.1 0.49° 96.4
PhN(CH,)CH~H AN 80 -0.61° 80.2

3All free energies in kcal mol~'. ®Calculated using the relationship described in Ref. 6. °Relationships in Scheme 1. ?Electrode
potential from Ref. 8 adjusted to NHE. °Electrode potential from Ref. 9 adjusted to NHE.

factor in determining AG,(X™)*™*! of the spherical halide
ions appears to be the free energy of hydration. Since H™ is
spherical as well, it is reasonable to estimate AG (H™)*~*!
from the regression equations. These values are summa-
rized in Table 1 along with the corresponding E°y,z(H")
evaluated using the relationships from Scheme 2.

The recent evaluation of the reversible reduction poten-
tials of the proton in water and non-aqueous solvents
[E°nue(H)so] has provided eqn. (3) for the evaluation of

AGhom(H_A)sol = 1'364pKa(H_A)sol + FAEONHE(A'_H+)SOI (3)

bond dissociation free energies in solution [AG,,(H-A)} ¢
The availability of electrode potentials for both the oxida-
tion and reduction of methylarene radicals, eqn. (4),%°

R +e = R* )

along with the pertinent pK, values,' make it possible to
evaluate AG g4(R-H),, using egns. (2) and (3). The
three examples illustrated by the data in Table 2 show that
cleavage of hydride ion from these compounds in non-
aqueous solvents is indeed a highly endergonic process and
is not expected to take place in the absence of a hydride
acceptor. The utility of the data, however, lies in the
evaluation of equilibrium constants for reactions (5)."

R*+ R-H = R-H + R'* (5)

Heterolytic (C-H) bond dissociation from methylarene
radical anions is a much more favorable process. The
thermochemical cycle which provides the relationship (6)
to calculate AGyqiqe(R-H™ ")y is illustrated in Scheme 3.
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Application of eqn. (6) to the pertinent data for toluene
radical anion in AN results in AG,4iq(PhNCH,~H™ "),y equal
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to 12 kcal mol~'. The equilibrium constant for reaction (7) in

PhCH,~* + PhCH,* = PhCH," + PhCH, 7

AN at 298 K is thus equal to about 10%. In this case the
mechanism of reaction (7) is not obvious from the thermo-
chemical data since the equilibrium constant calculated
for electron transfer is nearly as great as that for hydride
transfer.

A previous attempt'” to evaluate AG,4ig.(R—H),, was
hampered by the assumption that AG (H™)*™*N is negli-
gibly small. This assumption was based on the fact that the
free energy of hydration of H™ is only a fraction of that of
H* and thus the corresponding AG,(H™)*4N should also
only be a fraction of that of H*. This assumption does not
take into account the fact that anions are notoriously
destablized in non-aqueous solvents relative to water be-
cause of the lack of hydrogen bonding in the former.
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