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The advantageous approach of using an experimentally designed training set as the
basis for establishing a quantitative structure-activity relationship with good pre-
dictive capability is described. The training set was selected from a fractional factorial
design scheme based on a principal component description of physico-chemical
parameters of aromatic substituents. The derived model successfully predicts the
activities of additional substituted benzamides of 6-methoxy-N-(4-piperidyl)salicyl-
amide type. The major influence on activity of the 3-substituent is demonstrated.

Quantitative structure-activity relationships (QSARs)
have provided valuable aid in optimizing the properties of
lead structures and rationalizing the structural features es-
sential for activity of therapeutic agents.! A recent review
article on this subject summarizes studies on CNS drugs.’

In order to develop a useful relationship with a broad
predictive capability, the training set, i.e. the compounds
included in the model, should span the available structural
space as efficiently as possible. Today there are several
methods available for the design of test series.> Experi-
mental factorial design based selection methods provide
such a tool for obtaining much information with a minimum
number of observations (experiments).* They are widely
used owing to their ease of performance and interpretation.

In this paper we have used a series of potential anti-
psychotic benzamides 1, with affinity for the dopamine D,
receptor, developed in our laboratories® to exemplify the
approach whereby the training set compounds were se-
lected based on an experimental design scheme followed by
a QSAR analysis using the PLS method.é Previously, simi-
lar approaches have been applied to chlorinated aliphatic
hydrocarbons,” halogenated ethers® and peptides.’

The benzamides (1) examined in this paper have N-
benzyl-4-piperidinyl side chains and they display different
requirements on nitrogen and aromatic substituents as well
as side chain conformations compared with benzamides
having N-ethyl-2-pyrrolidinylmethyl side chains (2).'%'
The latter type of benzamide has been subject to extensive
QSAR studies'?™ and the present piperidinyl benzamides 1
have been investigated in a classical multiple regression
QSAR involving substituents in the 3-, 4-, 5- and 6-posi-
tions.’
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Fig. 1. Numbering convention for the benzamide series 1 and 2.

Method of calculation

Experimental design. In a two-level factorial or fractional
(reduced) factorial design scheme each variable is assigned
a high level (designated +) and a low level (—). The num-
ber of experiments to be performed is 2¥~", where N is the
number of variables and r a reduction factor chosen so that
2¥r > N. It is important to include as many relevant
physicochemical variables as possible when describing the
substituents. However, to use the original variables in a
design, even a highly reduced one, would involve too many
compounds and be impractical. One method of circum-
venting this problem without losing too much information
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and, at the same time, lowering the dimensionality, is to
use a principal component analysis (PCA) of multiproperty
characterization.'® The number of significant components is
determined by cross-validation.'” The resulting principal
components (latent variables) can be considered as princi-
pal properties (PP) of the original multiproperty descrip-
tion.' The signs of the PPs can then be used as a guide in a
factorial or fractional factorial design.'®

The benzamides 1 were varied in the 3-, 5- and 6-posi-
tions (see Fig. 1 for the numbering convention), since only
three 4-substituted derivatives were available. The 3- and
S-substituents (H, Cl, Br, OMe, Et, Pr) were characterized
by nine physicochemical variables (see Table 1 for a de-
scription) and subjected to a PCA (see Table 2 for the
design levels). A PP-based two-level fractional factorial
design consisting of eight compounds (arbitrary choice of a
small number; N = 5, r = 2) was then constructed (see
Table 3 for the design matrix). Position 3 was associated
with columns 1 (a) and 2 (b) of the design protocol, posi-
tion 5 with columns 3 (c) and 4 (abc) while the 6-sub-
stituents (H, OH) were treated with an indicator variable
(H= —, OH = +) in column 5 (ab).

OSAR analysis. The relationship between the affinity for
the dopamine D, receptor in vitro, measured as inhibition
of [*H]spiperone binding," and chemical structure was ana-
lyzed using PLS.® Cross-validation was used to determine
the number of significant components."” The descriptor
matrix consisted of nine physicochemical variables (Table

Table 1. A description of the physicochemical variables used in
the PCA and PLS analysis.

Variable Description
Hammett constant?' Om
Hammett constant O
Swain-Lupton® F
Swain~Lupton R
Aromatic fragment constant?! n
Molecutar refractivity?' MR
Verloop’s sterimol parameter® L
Verloop’s sterimol parameter B1
Verloop’s sterimol parameter B5

Table 2. Principal components of the available substituents.

Subst. PC12 pPC22 FDL®
Br 1.07 2.26 + +
Ci 1.59 1.61

H 2.27 -2.71 + -
Pr -2.90 0.05 -+
OMe -0.37 -0.55 - -
Et —1.65 —-0.66

@First (PC1) and second (PC2) principal component from PCA.
bFactorial design levels; high (+) and low () level.

364

Table 3. The fractional factorial design matrix and final
substituents.

No. Pos. 3 Pos. 5 Pos. 6  Subst.?

a b c abc ab 3 5 6
1 + + + + + Cl Cl OH
2 - 4+ + - - (OMe) H H
3 + - + - - H H H
4 - = + 4+ + Et Cl OH
5 +  + - - + Cl Et OH
6 -+ -+ - (Br) (Br) H
7 + - - 4+ - H Pr H
8 - - - - + Et Et OH

2Substituents in parentheses indicate a deviation from the
protocol.

1) for positions 3 and 5, respectively, the sum of positions 3
and 5 as well as the squared values and an indicator var-
iable for position 6 (H/OH). The total number of used
descriptors was 55. The resulting PLS loadings were there-
after transformed back into regression coefficients for com-
parison purposes.”

The experimental and calculated affinities of 1-20 are
listed in Table 4.

Table 4. Substituents and experimental and calculated affinities
for [*H]spiperone displacement from rat striatal tissue of
compounds 1-20.

Position Affinities®
No. 3 5 6 Exp.? Calc.® Calc.? Calc.®
1 Cl Cl OH -0.73 -071t -0.75 -091
2 OMe H H -079 -097 -0.82 -0.78
3 H H H -292 -263 -291 -252
4 Et Cl OH -1.00 -094 -1.05 -1.09
5 Cl Et OH -097 -121 -1.04 -1.32
6 Br Br H -130 -1.08 -1.24 -1.50
7 H Pr H —-2.84 -3.07 -285 -3.00
8 Et Et OH -141 -134 -134 -—-144
9 OMe Br OH 044 -0.12 0.48 0.1
10 H Br H —235 -296 -332 -2.68
1 H Et H —-270 -286 -277 -276
12 OMe Br H -069 -069 -021 -057
13 H H OH -191 -206 -220 -1.83
14 H Cl OH -189 -186 -180 -1.73
15 H Br OH -161 -189 -175 -1.76
16 H Et OH -2.12 -228 -2.07 -2.08
17 Et H OH -130 -113 -146 —-1.18
18 Br Br OH -0.88 -0.51 -0.54 -0.81
19 Br Et OH -154 -100 -089 -1.20
20 Et Br OH -168 -096 -1.00 -1.12

aThe affinities are shown in pICs, [NM] values. *See Ref. 5 for
the experimental values. °The values refer to the model with
compounds 1-8 included. “The values refer to the model with
compounds 1-9 included. ¢The values refer to the model with
compounds 1-20 included.



Table 5. The 20 most important variables from the PLS analysis
of compounds 1-20.

Variable Position Coefficient

6 0.280
3 -0.108
3 0.108
3 0.106
3+5 0.104
345 -0.101
3 0.073
3+5 —0.067
0.054

—0.050

0.049

0.048

0.046

—0.046

0.044

0.043

+5 —0.043
+5 0.043
-0.042

0.040
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2Indicator variable (H = 0, OH = 1).

Results and discussion

Experimental design. The first two components, both sig-
nificant, were calculated. They described 79.8 % of the
variation in the multiproperty data set with individual con-
tributions of 44.7 and 35.1 %, respectively (see Table 2 for
the scores). The PCA resulted in the selection of com-
pounds 1-8 for the training set (see Table 3 for the final
substituents). However, the following considerations were
made. (i) Compounds 1, 3-5, 7 and 8 were initially chosen
since they corresponded to correct choices according to the
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Fig. 2. Plot of calculated vs. experimental affinity of inhibition of
[*H]spiperone binding (M, compounds 1-8 as training set; (],
predicted compounds).
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Fig. 3. Plot of calculated vs. experimental affinity of inhibition of
[H]spiperone binding (B, compounds 1-9 as training set; O,
predicted compounds).

design protocol in Table 3. (ii) None of the 20 available
compounds (Table 4) matched exactly the substituent
choices of #2 and #6. We therefore, arbitrarily, included
two compounds which introduced new substituents into the
training set in positions 3 and 5. This is a decision one is
often forced to make when a limited number of compounds
are available and no further synthesis is planned, or when
the design targets are not synthetically accessible.

QSAR analysis. The PLS analysis of the 55 descriptor var-
iables of the training set gave two significant components
with a ‘predictive r value of 0.95. The created model was
then used to predict the affinities of the remaining 12
compounds, which resulted in a ‘predictive * value of
0.77. A plot of calculated vs. experimental affinities is
depicted in Fig. 2.

The next choice of compound to be examined (synthe-
sized, tested etc.), if high affinity were desired, would be
compound 9. Including 9 in the model gave an r* value of
0.93 and 0.59 for the new training set and the remaining 11
compounds, respectively (Fig. 3).

Incorporating all 20 available compounds in the model
gave an r* value of 0.92 (Fig. 4).

Analysis of the regression coefficients of the last model
revealed the dominating influence of the 3-substituent. The
single most important variable was the indicator variable
for position 6, which pointed out the favourable influence
of a hydroxy-group in that position for obtaining high affin-
ity with the [*H]spiperone binding site.

The following 12 most important variables were all asso-
ciated with position 3 or the corresponding variable of the
sum of positions 3 and 5 (see Table 5). These results were
also noted in a multiple regression QSAR analysis.’ The
study supports the distinctly different requirements on the
aromatic substituents in the two benzamides series 1 and 2.
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Fig. 4. Plot of calculated vs. experimental affinity of inhibition of
[*H]spiperone binding (M, compounds 1-20 as training set).

In the latter, the lipophilicity and steric bulk of the sub-
stituent para to the methoxy group (3-position in 2) mainly
determines the dopamine D, affinity'*'* while the position
ortho to the methoxy group is dominant in the former
series.

Conclusions

The combined technique of a widely spanned selection of
the training set compounds (initial compounds) using a
PCA-based fractional factorial design followed by a PLS-
supported QSAR analysis demonstrates the applicability
and predictability of this approach in rational drug design.
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