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A strategy for the systematic analysis and priority ranking of environmental chem-
icals has been applied to a class of 58 halogenated aliphatic hydrocarbons. A training
set of ten compounds representing this class, was selected by statistical design. The
training set compounds were then subjected to biological testing in the Salmonella
typhimurium reverse mutation assay (Ames test). The measured biological data,
recorded as dose-response curves, were analyzed to determine the mutagenic
potency (slope of the initial portion) and the mutagen dose (MDsy) required to
increase the number of revertants above the background by 50 %. For each com-
pound, four mutagenic potency estimates and four MDs, values were determined, all
originating from the tester strains TA 100 and TA 1535 with and without metabolic
activation. The obtained responses were analyzed with multivariate techniques to
give QSAR models relating the mutagenic potency data to the physico-chemical
properties of the compounds. Finally, the derived QSARs were used to predict the
mutagenic potencies and the MDys for the non-tested compounds in the class.

With the aim of developing a rational ranking for the
toxicity testing of environmental pollutants, we have out-
lined a strategy based on statistical experimental design and
multivariate modelling of the relation between chemical
descriptor data and biological responses.’™ The strategy
consists of six consecutive steps, of which the first is the
division of chemicals into classes of structurally similar
compounds. Once the first step has been conducted, the
remaining steps are carried out on a class-by-class basis.
Briefly, steps 2-6 are: (2) characterization of the chemical
and structural variation within a class, (3) selection of a
series of compounds — the training set — on which to base
a quantitative structure-activity relationship (QSAR),
(4) biological testing of the training set, (5) calculation of
QSAR model, and, finally, (6) experimental validation of a
developed QSAR on a set of validation compounds.

The proposed strategy was first applied to a class of 58
halogenated aliphatic hydrocarbons (see Table 1), resulting
in the selection of a training set with 10 compounds.* Sev-
eral biological endpoints were measured on these training
set compounds, and the data were modelled by appropriate
QSARs. So far, for this set of compounds, QSARs have
been developed for the acute toxicity (LDs) to rat,*” the
highest non-lethal dose to mouse,*’ and the genotoxic ef-
fect on DNA in Chinese hamster V79 cells.® To date, a
fourth biological endpoint has been measured, namely the
mutagenicity of the training set compounds as evidenced by
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the Salmonella typhimurium reverse mutation assay (Ames
test).” The present article reports the QSAR-analyses of
these mutagenicity data. Moreover, the question of how to
evaluate test data from the Ames test in a meaningful,
quantitative fashion, is discussed.

In the Ames assay, histidine auxotrophs (requiring
histidine for growth) are exposed to a test substance on a
Petri dish. The measurement made is the number of colo-
nies on each plate, which reflects the number of bacteria
having reverted to histidine prototrophy (independence).
To produce a reliable dose-response curve for a chemical,
it has been recommended that the test be performed over a
concentration range of three orders of magnitude.” For
most mutagens, the dose-response curve increases linearly
at low doses, and then, as the dose increases, the curve may
flatten and eventually turn downwards owing to effects of
cytotoxicity.”® Mutagenicity test results are evaluated as
the number of revertants per microgram of test compound,
taken from the linear portion of the dose-response curve.’

While much effort is continually made to improve and
refine the experimental protocol of the Ames test, com-
paratively little attention has been focused on standardizing
methods for representation and quantitative analysis of
measured data.? In an early paper of Weinstein and Lewin-
son,’ a statistical procedure was outlined, assuming the
revertant colony formation at any dose to follow a Poisson
process. Stead et al.® also adopted this concept and

935



ERIKSSON ET AL.

Table 1. The 58 compounds belonging to the AX-class.

No.? Compound No.? Compound

1 CH,CI 30 CH,CH,Br

2 CH,Cl, 31 CHBr,

3 CHCI, 32 CH;~CH,F

4 CHCI,F 33 CH;—CHBr,

5 CHCIF, 34 CBr,CIF

6 CCl, 35 CH,Br,

7 CCi,F 36 CH;,l

8 CCI,F, 37 CH,BrCl

9 CH,Br 38 CBrF,

10 CH,—~CH,.CI 39 CBrF

1 CH,CI-CH,CI 40 CH,Br-CH,F

12 CH,Br—CH,CI 41 CH,—CHF,

13 CH,CI-CHClI, 42 CH;—CH,l

14 CH;—CCl, 43 CH,Br—CH,—CH,Br
15 CHCI,—~CHCl, 44 CH,Br—CH,—CH,F

16 CHCI,-CCl, 45 CH,—CH,—CH,Br

17 CCl,—CCl, 46 CH;—CHBr-CH;,

18 CCI,F—CCIF, 47 CH;—CH,—CH,CI

19 CH,Br-CH,Br 48 CH;—CHCI-CH,

20 CH,—-CHCl, 49 CH;—CH,—CH,l

21 CCIF,—CCIF, 50 CH;—CHI-CH,

22 CH;—CHCI-CH,CI 51 CH,Br—CH,~CH,—CH,Br
23 CH,CI-CHCI-CH,CI 52 CH3;~CH,~CH,—CH,Br
24 CH;—CH,—CH,F 53 (CH,);—CBr

25 CH,F-CH,~CH,F 54 CH;-CH,—CH,—CH,.CI
26 CH,—CF,—CH;, 55 (CH3);—CClI

27 CH,CI-CHCI-CHCI, 56 CH3~CH,—CH,—CH,l
28 CH,F—CF,~CH,CI 57 (CH3);—Cl
29 CH;—CF,—CH.CI 58 CH;—CH,—CHI-CH,

2The numbers of the compounds are the same as in the
previous parts.*® The training set compounds are Nos. 2, 3, 7,
11, 15, 30, 33, 39, 48 and 52.

fitted non-linear dose-response functions with up to four
parameters. Using rather elaborate statistics, Margolin and
coworkers!! also fitted several parameters to adjust for
non-linearity. A rather different and empirical approach
was taken by Bernstein and coworkers.® Assuming a linear
relationship between dose and response in the initial part of
a dose-response curve, they based their statistical analysis
solely on this region reasoning that it contains most of the
interpretable information about mutagenicity. Moreover,
they argued that the curvature of a dose-response curve
beyond the linear region, depends on many underlying
mechanisms that are not well understood and are likely to
vary from chemical to chemical. Thus, Bernstein et al.
suggested that the slope of the initial linear part should be
used as a quantitative measure of the mutagenic potency of
a compound. Rather recently this was also adhered to by
McCann et al."

According to the recommendations of Ames et al. and
Bernstein et al., we have focused our analysis of the muta-
genicity data of the halogenated aliphatics to the initial
region of the measured dose-response curves. However,
knowing the slope of a dose-response curve is not the
whole story. Some additional quantity is needed to locate it
along the dose axis (cf. Fig. 1). To achieve this, linear
regression was used to estimate the slope of the initial part
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Fig. 1. Scatter plot for TA 1535 with metabolic activation,
showing the distribution of dose-response curves of the nine
compounds tested. The lower graph is an enlargement for
2-chloropropane (No. 48), illustrating the evaluation procedure
of a typical dose-response curve. The unit for the x-axis is log
(umol compound per gram agar).

of a dose-response curve, and the resulting model sub-
sequently utilized to estimate a mutagen dose (MDy,)
causing 50 % increase in the number of revertants with
reference to the background level. Thus, the slope is
expected to give one estimate of the mutagenic potency and
the MDs, another. However, it should be noted that the
MDj, also provides, indirectly, information about the rela-
tive cytotoxicity among the compounds, as this is linked to
the position of the dose-response curve along the dose axis.

Materials and methods

Biological data. The biological testing of the training set
compounds (step 4 of the strategy) was carried out accord-
ing to the revised procedure described by Ames et al.’
However, owing to the volatility of the compounds, the
testing had to be carried out in a special chamber allowing
uniform conditions during the experimental period.
Mutagenicity test results were obtained for nine out of the
ten training set compounds. For one compound, fluorotri-
chloromethane (No. 7) reliable test results could not be
obtained owing to experimental difficulties (extreme vola-
tility).”® The compounds were tested with four standard
tester strains, TA 98, TA 100, TA 1535 and TA 1537, at
seven doses plus control, with five replicates at each dose.
The actual range of doses used for each compound were
determined in advance in screening tests checking for cyto-



toxicity. Also, the experiments were conducted with and
without the standard S9-mix to investigate the degree of
metabolic activation. We refrain from giving more experi-
mental details, since they have been published separately.'

The evaluation of the mutagenicity data only concerns
the strains TA 100 and TA 1535, since the compounds of
interest only caused base-pair substitution (TA 100 and TA

Table 2. Slope and MDg, estimates? for the training set compounds.

QSARs FOR HALOGENATED ALIPHATICS

1535) and no frameshift mutagenesis (TA 98 and TA
1537).” In theory this implicates four dose-response curves
for each compound; two tester strains (TA 100 and TA
1535) times two treatments (with and without the S9-mix).
Each dose-response curve was examined to find the initial
linear portion and in most cases the identification of such a
region was obvious. The results from the regression analy-

Comp. Dose-range® TA 100 TA 100 TA 1535 TA 1535
No. with S9 without S9 with S9 without S9
2 —-1.0t0 -0.3 slope = 103.6 slope = 120.6 slope = 21.4 slope = 0
MDg, = —0.70 MDs, = —0.69 MD;, = —0.49 MDg, = 0°
P =0.95 P =097 r =097 # =0.04
n= n=5 n=>5 n=7
3 —15t0 -0.6 slope = 0 slope = 0 slope = 0 slope = 0

MDs, = 0° MDg, = 0° MDg, = 0° MDg, = 0°
rP=0 =0 £=0 rP=0
n=7 n=17 n=7 n=7

1 —-1.6t0 -0.3 slope = 27.4 slope = 27.4 slope = 33.7 slope = 28.3
MD;, = —0.47 MDg, = —0.74 MDg, = —~1.19 MDg, = —1.13
P =067 P =0.76 P =091 P =091
n=7 n=7 n=17 n=7

15 —-24t0-1.0 slope = 10.6 slope = 17.2 slope = 1.9¢ slope = 1.8¢
MDg, = —1.03 MDy, = —1.47 MDg, = 0°¢ MDg, = 0°
P =0.83 P = 0.60 rP=0.14 P =0.48
n=25 n=4 =7 n=7

30 —1.4to -0.5 slope = 113.2 slope = 101.8 slope = 97.3 slope = 95.6
MD5, = —1.26 MDg, = —1.23 MDg, = —1.39 MD;, = —1.31
=090 £ =097 P =085 P = 0.94
n=7 n=7 n=7 n=7

33 —241t0 -0.6 slope = 44.0 slope = 26.4 slope = 2.6¢ slope = 5.3¢
MDg, = —0.93 MD;, = —0.66 MDg, = 0° MDg, = 0°
P =0.87 P =055 P =027 P =0.61
n=25 n=5 n=7 n=7

39 —-33t0 -22 slope = 25.5 slope = 29.0 slope = 52.9 slope = 38.6
MD;, = —-2.94 MDg, = —2.73 MDg, = —3.43 MD;, = —3.64
P =0.76 £ =092 ” =093 2 =0.90
n=25 n=4 n=5 n=5

48 —26to-14 slope = 56.1 slope = 55.9 slope = 66.8 slope = 55.3
MDg, = —2.00 MDg, = —2.29 MDg, = —2.60 MD;, = —2.71
P =0.93 # =0.93 P =0.94 P = 0.96
n=7 n=7 n=7 n=7

52 —-30to—-14 slope = 87.0 slope = 43.5 slope = 60.8 slope = 32.1
MDg, = —1.50 MDg, = —1.14 MD;, = —2.31 MDs, = —1.80
P =07 P =074 P =0.83 P = 0.66
n=4 n=4 n=5 n=5

2In the QSAR calculations, the slope and MDs, estimates are given the following variable numbers: (29) slope TA 100 with metabolic
activation (MA), (30) slope TA 100 without MA, (31) slope TA 1535 with MA, (32) slope TA 1535 without MA, (33) MD;, TA 100 with
MA, (34) MD;, TA 100 without MA, (35) MDs, TA 1535 with MA, and (36) MD5, TA 1535 without MA. For comparative purposes also
the following information is included. The spontaneous revertant rates were 41 + 12 (TA 100) and 11 + 5 (TA 1535) revertants per
plate. On average the positive control 2-aminoanthracene caused 229 + 77 (TA 100 with MA), 100 = 27 (TA 100 without MA), 46 + 24
(TA 1535 with MA) and 11 =7 (TA 1535 without MA) revertants per plate. A second positive control, sodium azide, only tested without
MA, caused 141 + 60 (TA 100) respective 101 + 36 (TA 1535) revertants per plate. °The lowest and highest dose for each compound,
given as log (umol compound per gram agar). “Approximated value, see the text for explanation. “Regression with near zero slope,
which was not used to calculate any MDs, values. Instead, the MDy, was approximated as zero, see footnote c.

937



ERIKSSON ET AL.

ses of the linear parts are listed together in Table 2, with
corresponding correlation coefficients and numbers of
doses used in the calculations. The resulting regression line
was then used to estimate an MDy, value (cf. Fig. 1). It is
common practice to calculate the dose giving rise to the
double background of revertants (100 % increase), but we
used 50 % to stay within the domain of the experimental
results. In some cases the calculation of an MDy, estimate
was not straightforward because the dose-response curve
was flat, with zero, or close to zero, slope. However, it was
possible to establish reasonable approximations to replace
missing observations. Although such approximations may,
at first sight, appear rough, they are far more in-
formative than missing values in the QSAR analysis. For
1,1,2,2-tetrachloroethane (No. 15) and 1,1-dibromoethane
(No. 33) the dose-response curves were flat in TA 1535 and
therefore no direct MDy, estimates were obtainable within
the current testing ranges. A similar phenomenon was ob-
served for dichloromethane (No. 2) in TA 1535 without
metabolic activation. Parallel testing in TA 100, however,
indicated these compounds to be active. Hence it seemed
reasonable to anticipate that MD,, values might also be
determinable in TA 1535, but at slightly higher doses than
the ones already used. We utilized the TA 100 MDy, values
to get an idea of the appropriate magnitude, which turned
out to be a dose in the order of —0.5 (in log [umol com-
pound per gram of agar]). To avoid over-estimation of the
missing values, the approximate TA 1535 MD,, values were
set to dose 0 (same units as above), which is just outside the
overall dose-range being spanned by the training set com-
pounds (cf. Fig. 1). Lastly, we turned to the compound
trichloromethane (No. 3) for which all four dose-response
curves were flat. This compound was tested in the
dose-interval —1.2 to —0.4, rather close to the dose —0.5
previously identified. Hence, based on the same arguments
as above, it was decided to assign the value of 0 to the
missing MDj, values of trichloromethane.

In summary, the biological responses comprised eight
variables (endpoints), namely four estimated slopes (Nos.
29-32) and four MDy, values (Nos. 33-36), see Table 2. As
described above, the variables 33-36 in turn and order
contained eight, eight, six and five calculated MDj, values,
respectively. Consequently, they also contained one, one,
three and four approximated values, respectively. To dis-
tinguish the slope variables from the MDj, variables, the
former henceforth are called ‘mutagenic potency’ variables
and the latter ‘cytotoxicity’ variables.

Chemical descriptor data. In this work, 14 chemical
variables were used to describe the chemical and structural
variation among the compounds in the AX-class training
set. Their details have already been presented.’ These 14
variables are: molecular weight (M, 1), boiling point
(b.p., 2), melting point (m.p., 3), density (D, 4), refractive
index (np, 5), van der Waals volume (V,4, 6), hydro-
phobicity (log P, 7), ionization potential (E;, 8), log (reten-
tion times) from two gas chromatographic (GC1 and GC2,
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9 and 10) and two liquid chromatographic (LC1 and LC2,
11 and 12) systems, the log (rate constant) for the Finkel-
stein iodide substitution reaction (k;, 13) and the relative
response to a flame ionization detector (R, 14). Var-
iables 9-14 were measured in our laboratory. To account
for possible non-linearities in the response data from the
Ames test, the quadratic terms of all variables were in-
cluded in the QSAR analysis. Thus, the battery of chemical
descriptors consisted of 28 (14 + 14) variables.

Principal components analysis (PCA). PCA™ is a projec-
tion method that combines variables to a few, independent
(orthogonal) underlying dimensions, with the purpose of
obtaining an overview of the dominant patterns or major
trends in the data table. Here, PCA is used to analyze the
(9 X 8) biological response matrix. In PCA, a data matrix
(say X) is decomposed into means (%), scores (t,),
loadings (p,,) and residuals (e;) according to eqn. (1).

A
Xig = % + E liPak T € ey

a=1

Here, the elements x;, are the biological response data with
index i denoting compounds and k the endpoints. The score
1, describes the location of compound i for the ath principal
component (PC), and the loading p,, indicates how much
and in what way (positive or negative correlation) a
variable k contributes to this PC. The first PC describes the
structure associated with the major variance in the data,
the second PC the second largest variance, and so on. To
determine the number of significant PCs [A in eqn. (1)], the
cross-validation technique' is used. This achieves optimal
predictive ability without overfitting of the model.

Partial least-squares projections to latent structures (PLS).
The PLS method' is used to relate the biological response
matrix (Y) to the systematic variation in the chemical de-
scriptor data (matrix X), i.e. to establish QSARs for the
AX-class. PLS is similar to PCA but calculates separate
PLS-components for each matrix X and Y. Thus, the
chemical descriptor variables are projected down on a low-
dimensional subspace simultaneously with the projection of
the biological activity variables onto the same subspace. In
this way a model is obtained providing a good approxima-
tion of the X- and Y-matrices and high correlation between
the two. As in PCA, the number of significant components
is determined by cross-validation. "

Results

PCA of the biological response matrix. Before performing
QSAR analysis of a multitude of biological response data,
it is informative to check the underlying dimensionality of
such variables by means of PCA.” The PCA of the 9
(compounds) by 8 (endpoints) response data matrix
resulted in a two-component model (according to cross-
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Fig. 2. Score plot from the PCA of the 9 x 8 biological response
matrix with PC2 plotted versus PC1. For the numbering of the
compounds, see Table 1.

validation) accounting for 79 % (49 + 30) of the total var-
iance. The resulting score plot (Fig. 2) summarizes the
biological data of the nine compounds. The comparatively
weakly cytotoxic (high MDs, values) and non- or low-muta-
genic (zero slope) compounds trichloromethane (No. 3),
1,2-dichloroethane (No. 11) and 1,1,2,2-tetrachloroethane
(No. 15) are all situated in the lower right-hand corner.
Hence, this region is fairly ‘safe’ from an overall cytotoxic
and mutagenic perspective. Upwards and especially to the
left of the plot, one finds compounds that are highly
cytotoxic or mutagenic. The most cytotoxic compound,
fluorotribromomethane (No. 39), is located in the lower
left-hand corner, whereas the most mutagenic, bromo-
ethane (No. 30) is positioned in the upper left-hand corner.
This leads to the conclusion that the PCs jointly describe
the mutagenicity and relative cytotoxicity of the com-
pounds. Thus, the mutagenic potency is changed as one
moves diagonally from the lower right-hand corner (com-
pounds 3,15 etc.) to the upper right corner (compound 30),
whereas an increase in the relative cytotoxicity is connected
to the other diagonal going from the upper right (com-
pounds 2 and 3) to the lower left-hand (compound 39) part.

Judging from the appearance of the score plot, the two
phenomena - relative cytotoxicity and mutagenicity — are
little correlated to each other. This is also corroborated by
the corresponding loading plot (Fig. 3), displaying the be-
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Fig. 3. Loading plot from the analysis of the biological response
matrix. The variables are numbered as in Table 2.
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haviour of the eight response variables in the PC analysis.
Three prominent groups of variables are clearly seen, two
containing the mutagenic potency variables (Nos. 29-32)
and one the four cytotoxicity (MDs,) variables (Nos.
33-36). The cytotoxicity variables dominates the first di-
mension, but the contribution from the TA 1535 slope
variables (Nos. 31 and 32) is not negligible. The mutagenic
potency variables 29 and 30 (TA 100) are the most influen-
tial for the second PC. It is interesting to note the tight
grouping of the four MDy, variables. This is a strong in-
dication that they have a similar information content which
justifies the approximations made to replace some missing
MDy, values. Taken together the four endpoints stabilize
each other and thereby facilitate the extraction of their
intrinsic systematic variation. The overall separation of all
the variables indicate that they carry different information
about the biological effects of the compounds. Hence,
based on Fig. 3, it was decided to split the original biolog-
ical response matrix into three parts and perform separate
QSAR-analyses on each part (see below).

QSAR analyses of the mutagenic potency variables (Nos.
29-32). The PLS analysis of the TA 100 mutagenic potency
variables (Nos. 29 and 30) resulted in a two-dimensional
model describing 79 % (61 + 18) of the variance in biolog-
ical activity. As seen in Figs. 4(a)—(b), there is a fairly good
agreement between observed and calculated mutagenic
potencies for both endpoints; see also Table 3. Hence, the
chemical descriptor variables are sufficient to model the
variation in mutagenicity. It is evident from the corre-
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Fig. 4. Correlation plots with observed mutagenic potencies
plotted against calculated values for TA 100 (a) with and (b)
without metabolic activation. Notation as in Fig. 2.

939



ERIKSSON ET AL.

Table 3. Calculated biological activities for the training set compounds.

Comp. Variable No.
No.
29 30 31 33 34 35 36
2 103.2 95.2 15.2 38 —0.48 -0.50 —-0.68 -0.42
3 25.8 27.3 8.7 0.2 -0.28 -0.22 -0.15 0.09
72 52 48 47 -1.6 -1.8 -1.9 -1.9
1" 16.0 17.9 21.8 13.6 -0.58 -0.61 -0.51 -0.32
15 12.6 8.0 -3.1 -4.8 -1.00 —-1.45 0.11 -0.06
30 1115 101.1 97.0 81.9 -1.12 -1.24 -1.49 -1.35
33 21.7 185 18.0 121 -0.82 -0.72 —-0.46 -0.36
39 37.6 27.8 49.4 440 —-2.94 —2.67 -3.41 -3.53
48 52.8 50.1 67.7 55.4 -2.12 -2.39 —-2.73 —-2.76
52 86.0 75.9 62.8 50.8 -1.49 -1.16 -2.09 -1.89
2Predicted values.
4 4
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Fig. 5. Loading plot for the TA 100 mutagenicity QSAR. The
chemical descriptors are: (1) M,, (2) Bp, (3) Mp, (4) D, (5) np,
(6) Vv, (7) log P, (8) E;, (9) GCH, (10) GC2, (11) LCH1,

(12) LC2, (13) k;, (14) Rep, (15) M2, (16) Bp?, (17) Mp?,

(18) D? (19) np?, (20) Vie’, (21) [log PP, (22) E?, (23) GC1?,
(24) GC22, (25) LC12, (26) LC2?, (27) k?, (28) Rep>.
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without metabolic activation. Notation as in Fig. 2.
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Fig. 7. Loading plot for the TA 1535 mutagenicity QSAR.
Notation as in Fig. 5.

sponding loading plot (Fig. S), that the first model dimen-
sion is dominated by hydrophobicity and bulk-describing
variables, such as molecular weight (No. 1), boiling point
(No. 2), melting point (No. 3), van der Waals volume
(No. 6), log P (No. 7), and the two GC-variables (Nos. 9
and 10). Other important variables are the log k; rate
constant (No. 13), its quadratic term (No. 27), and the
quadratic terms of the two LC-variables (Nos. 25 and 26).
The ionization potential (No. 8), the boiling point, the
density (No. 4) and the log k; rate constant are among the
most influential variables for the second dimension, to-
gether with the quadratic terms of log P (No. 21) and the
two GC-variables (Nos. 23 and 24).

In the second PLS analysis, of the TA 1535 mutagenic
potency variables (Nos. 31 and 32), a two-dimensional
model was obtained which explained 89 % (68 + 21) of the
variance in biological activity. This is slightly higher than in
the previous model, suggesting the TA 1535 mutagenic
potency variables to be better modelled by the chemical
data than their TA 100 counterparts. Indeed this is the case,
which may be seen in Figs. 6(a)—-(b), where the observed
mutagenicities are plotted versus the calculated ones (see
also Table 3). The loading plot for this QSAR (Fig. 7) is
quite different from that of the previous model. Many of
the hydrophobicity and size-describing variables now
appear in the second model dimension, and only partly
contribute to the first. This applies to variables such as



molecular weight (No. 1), boiling point (No. 2), density
(No. 5), van de Waals volume (No. 6), log P (No. 7), and
some of their quadratic terms. The first PLS component is
strongly influenced by the melting point (No. 3), the
ionization potential (No. 8), and the linear and quadratic
terms of the log k; rate constant (Nos. 13 and 27).
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Fig. 8. Four correlation plots concerning variables (a) 29, (b) 30,
(c) 31 and (d) 32, showing the observed biological activities
versus the corresponding calculated values. Notation as in

Fig. 2.
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Fig. 9. Loading plot corresponding to Fig. 8. Notation as in
Fig. 5.

OSAR analysis of the cytotoxicity variables (Nos. 33-36).
The PLS analysis of the four MDy, variables gave a three-
dimensional QSAR model, in contrast with the previous
two-dimensional ones. This model explained 93 % of the
variance in biological activity, and the contribution from
each dimension was 64, 19 and 10 %, respectively. Figs.
8(a)—(d), shows the observed MDy, values plotted versus
the corresponding values calculated by the QSAR model
(see also Table 3). All four response variables are well
explained by the QSAR model. The cytotoxicity QSAR is
dominated by other variables than the two mutagenic
potency QSARs (see Fig. 9). This is consistent with the
finding that the different types of endpoint do not cor-
related well (Fig. 3). The first dimension is strongly
dominated by log P (No. 7) and the quadratic terms M,?
(No. 15), D? (No. 18), np*> (No. 19) and Ryp? (No. 28),
indicating a non-linear relationship between the chemical
and biological variables. In contrast, the second dimension
is almost entirely influenced by the linear size and polariz-
ability describing variables, i.e. molecular weight, boiling
point, density, refractive index and the two GC-variables.
Lastly, the third and minor dimension (not shown) which
contains both linear and quadratic terms, is rather difficult
to interpret.

Predictions for the remaining AX-compounds. The three
derived QSARs for mutagenic potency and relative cyto-
toxicity were used to predict the biological activities of the
49 untested compounds belonging to the AX-class. This
was accomplished by inserting their chemical descriptor
data into the three models. All predicted values are listed
in Table 4. Note that predictions have not been given for
eleven compounds that deviate too strongly in chemical
properties from the training set as indicated by their high
residual standard deviation. The predictive abilities of the
QSARs should be considered with some caution until they
have been checked experimentally on a validation set of
compounds. The predictions for the majority of the non-
tested compounds are based on only 16 (8 + 8) chemical
descriptor variables, because they have not yet been in-
vestigated in six chemical model systems used by us’
(variables Nos. 9-14). The lack of descriptors is, however,
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Table 4. Predicted biological activities for the AX-compounds not belonging to the training set.

Comp. Variable No.?
No.?
29 30 31 32 33 34 35 36
1 173 154 62 49 -3.1 -3.8 -3.8 -4
4 92 85 55 43 -1.4 -1.9 -1.4 -14
) 171 151 24 14 -0.3 -141 0.7 0.6
6 24 23 19 12 -0.6 -04 -0.4 -0.2
8 55 51 43 33 -29 —-4.3 -23 -2.9
9 143 129 4 29 -1.0 -1.0 -1.4 -1.2
10 89 82 83 69 -2.6 -33 -3.2 -34
12 18 17 20 13 -0.5 -07 0.0 0.1
13 0 0 0 0 -0.4 -0.6 0.4 0.4
14 0 0 0 0 -0.6 -08 -0.2 -0.1
16 - - - - - - - -
17 - - - - - - - -
18 82 70 44 36 -1.6 -1.5 -1.7 -1.7
19 0 0 39 36 -1.5 -2.0 -0.6 -0.8
20 54 52 42 30 -11 -1.1 -15 -1.3
21 - - - - - - - -
22 51 47 41 31 -0.8 -0.8 -0.9 -0.8
23 0 0 0 0 -1.1 -1.7 0.2 0.0
24 - - - - - - - -
25 - - - - - - - -
26 - - - - - - - -
27 - - - - - - - -
28 68 64 87 72 -1.7 -1.7 -25 —-2.4
29 30 29 57 46 -1.8 -241 —-2.2 —-2.2
31 - - - - - - - -
32 - - - - - - - -
34 30 25 70 61 -1.5 -1.1 -1.8 -17
35 20 16 34 28 -1.8 -1.7 -1.8 -1.8
36 107 93 74 63 -0.7 -0.2 -0.8 -0.5
37 73 67 15 5 -0.3 -0.1 -0.5 -0.1
38 - - —_ - —_ _ - -
40 91 84 47 35 -0.9 -0.7 -1.4 -1.1
41 - - - - - - - -
42 109 95 102 89 0.0 0.6 -041 0.3
43 0 0 0 0 -1.5 -241 0.0 -0.4
44 55 51 39 29 -0.6 -0.5 -0.7 -0.5
45 68 63 68 55 -0.8 -0.7 -14 -0.8
46 65 60 60 48 -0.8 -0.6 -11 -0.8
47 59 56 78 64 -1.8 -2.0 —-2.4 —-2.4
49 120 103 101 89 0.1 0.8 0.1 0.6
50 127 110 103 90 04 1.2 0.4 09
51 67 50 0 0 -1.4 —-2.4 1.0 0.5
53 41 37 33 25 -0.4 -0.5 0.1 0.2
54 68 62 77 64 -1.9 -2.0 —-24 -2.4
55 15 16 36 27 -1.6 -1.9 -1.6 -1.7
56 207 176 98 87 0.0 0.8 0.1 0.5
57 173 146 79 69 0.7 15 1.1 1.6
58 198 169 97 85 -0.2 0.6 -0.3 0.2

aNumbers as in Table 1. °Numbers and units as in Table 2. Predicted values are not given for eleven compounds, see the text for

explanation.

not a computational problem since PLS can handle missing
data, but may make the predictions less reliable. The 28
chemical descriptor variables were used for the training set
compounds to improve the stability of the three QSARs,
which in turn also stabilizes the predictions for the non-
tested compounds.

To facilitate the interpretation of all the predicted values,
they were inserted into the existing PC-model for the
response data (see Fig. 10). It is seen that there are com-
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pounds predicted to be highly cytotoxic (lower left-hand
corner) and highly mutagenic (upper right-hand corner),
but none to be a combination of both (which would be
equal to a position in the upper left-hand corner). In
general, chemicals predicted to be highly mutagenic are
those which are mono-iodinated, like for instance iodo-
methane (No. 36), iodoethane (No. 42), 1-iodopropane
(No. 49), 2-iodopropane (No. 50) and the iodobutanes
(Nos. 56-58). Moreover, several mono-chlorinated com-
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Fig. 10. Scatter plot visualizing the projection of the predictions
in Table 4 onto the two-dimensional PC model of the biological
response matrix. For the numbering of the compounds, see
Table 1.

pounds, such as chloromethane (No. 1), chloroethane
(No. 10), 1-chloropropane (No. 47) and 1-chlorobutane
(No. 54), are classified as cytotoxic, together with some
fluorinated compounds, such as fluorotrichioromethane
(No. 7, training set member), dichlorodifluoromethane
(No. 8) and 1-chloro-2,2-difluoropropane (No. 29). The
monobrominated compounds, like bromomethane (No. 9),
1-bromopropane (No. 45) and 2-bromopropane (No. 46),
are predicted to be of intermediate cytotoxicity and
mutagenicity. There are also many chemicals that are
located in the ‘safe’ lower right-hand corner and hence
classified as comparatively harmless. Some examples are
the polychlorinated and polybrominated compounds 1,1 ,2-
trichloroethane (No. 13), 1,1,1-trichloroethane (No. 14),
1-bromo-2-chloroethane (No. 12), 1,2,3-trichloropropane
(No. 23), 1,3-dibromopropane (No. 43) and 1,4-dibromo-
butane (No. 51). Apparently, the models predict multiple
halogenation with chlorine and/or bromine to give rela-
tively non-cytotoxic and non-mutagenic compounds in the
Ames test.

Discussion

QSARs are useful tools for predicting toxic effects of chem-
icals and for the identification of potentially hazardous
ones. However, there are some aspects that deserve special
attention to avoid ending up with QSARs of low predictive
capability. First, according to their theoretical founda-
tion,'® QSAR models are only locally valid. Thus a given
QSAR works only for chemically and biologically similar
compounds. A suitable division of chemicals into classes of
structurally similar compounds may solve this problem.
Second, the selection of the training set of compounds by
means of statistical design,' ensures that the structural
domain of a class is spanned in a balanced manner. A
major limitation of many QSAR models is the lack of
consistently measured biological data for a well-defined
series (training set) of compounds. Finally, the compiled
data, both chemical and biological, should be analyzed by
means of a multivariate data analytical method, such as

QSARs FOR HALOGENATED ALIPHATICS

PLS, which provides information about the structure of the
data and the range of the class. All of the above given
criteria have been taken into account or directly in-
corporated in the recently proposed strategy for QSAR
development concerning environmental chemicals.

Application of the strategy to the class of saturated
halogenated aliphatics (the AX-class) lead to the identifica-
tion of ten training-set compounds distributed in a balanced
manner.* Subsequently, the compounds in the training set
were subjected to biological testing. In the present work,
experimental data from the Ames test are presented and
evaluated. A number of approaches have been proposed
for examining such dose-response data. Some methods are
based on regression analysis of an initial (usually linear)
part, but others on more elaborate statistical treatment of a
whole dose-response curve. As a quantitative measure of
the mutagenic potency of a compound, we used the slope of
the initial linear part. Further, to describe the position of a
dose-response curve on the dose axis, we calculated the
mutagen dose (MDs) inducing 50 % increase in the
number of revertants.

The eight obtained biological responses (four mutagenic
and four cytotoxic) were initially analyzed by means of
principal component analysis in order to explore the latent,
underlying dimensionality of the response matrix. It was
found that the response variables formed three prominent
groups (cf. Fig. 3), two with the mutagenic potency
variables and one with the cytotoxicity variables. Hence,
the variables were split up and treated in three groups in
the QSAR modelling. In the next few paragraphs, it was
demonstrated that the three groups of endpoints could be
modelled by means of the construction of three multi-
response QSARs. The results were rather satisfying agree-
ments between observed biological activities and values
calculated by the QSARs (Figs. 4, 6 and 8). Furthermore, it
was evident that a non-linear relationship existed between
chemical descriptor data and biological responses. The
derived QSARs were two or three-dimensional and signif-
icant contributions occurred both from the linear and
non-linear (quuadratic) variables. Primarily, however, the
linear size and hydrophobicity-describing variables were
the most important.

In the next step, the QSARs were utilized to predict the
mutagenicity and cytotoxicity of 38 non-tested compounds.
All predicted values are listed in Table 4. These values were
then projected onto the already existing two-dimensional
PC-model for the response matrix. With this plot (see
Fig. 10) it is fairly easy to get an overview of all the pre-
dictions. Simply by looking at the location of a compound
in the score plot, one can tell whether it is likely to be
mutagenic, cytotoxic or both. The score plot summarizes
the properties of a substantial number of dose-response
curves, both those actually observed for the training set
compounds and those predicted for the non-tested com-
pounds. The features it summarizes are the shape (slope,
mutagenicity) and the location (cytotoxicity).

The derived QSAR models have not yet been validated
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experimentally. However, it is possible to compare our
measurements and predictions with data found in the litera-
ture. Of the training-set compounds, trichloromethane
(No. 3) has been found to be non-mutagenic in a number of
cases,”?? which agrees with our results. In contrast, results
regarding dichloromethane are more varied, and it is
claimed to be both mutagenic” and non-mutagenic.** We
found dichloromethane (No. 2) to be mutagenic in TA 100,
but practically non-mutagenic in TA 1535. Furthermore, in
an extensive compilation work by Ashby and Tennant®
listing the mutagenicity in the Ames assay of some 220
chemicals, we were able to find data for four of the
compounds considered. The training-set compound
1,1,2,2-tetrachloroethane (No. 15) is classified as non-
mutagenic which compares well with our experimental
findings; inactivity in TA 1535 and very weak mutagenicity
in TA 100. The compound 1,2-dibromoethane (No. 19), is
claimed to be mutagenic, which the mutagenic potency
QSARs also predict. 1,1,2-trichloroethane (No. 13), cate-
gorized as non-mutagenic, is also correctly predicted. The
fourth compound, 1-chlorobutane (No. 54), is not muta-
genic but is predicted to be active. However, we note that
Ashby and Tennant also failed to predict this compound.
Our experimental set-up identified monohalogenated com-
pounds to be mutagenic, like, for instance, 1-bromobutane
(No. 52). The mutagenic potency QSARs were trained in
that way and consequently predict monohalogenation to
induce mutagenicity. In yet another work, by Travis et al.,?
we were also able to find observed data for four com-
pounds. These literature data are weighted results from a
battery of mutagenicity tests, including the Ames assay. As
the nature of these data and our data differ slightly, some
discrepancy may be expected. According to Travis and
coworkers, two compounds, namely tetrachloromethane
(No. 6) and 1,2-dibromoethane (No. 19), have low muta-
genic activity, which implies that our predictions are in
accordance with the measurements. Trichloromethane
(No. 3) was measured by us to be non-mutagenic, but is
listed as to have low mutagenicity. Also 1,1,2-trichloro-
ethane (No. 13) is categorized as being slightly mutagenic,
but we predict it to be non-mutagenic.

The comparison with literature data indicate that our
QSARs have satisfactory predictive capabilities. However,
the final judgement awaits experimental validation. The
testing of a validation set of six compounds is being planned
and will be started as soon as possible. Also note that the
results given only provide information about one type of
mutagenicity and cytotoxicity test, the Ames test. How-
ever, when combined with other test data related to other
aspects, the predictions may be helpful in setting priorities
for further biological testing.
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