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A new way to represent and analyze DNA sequence data is described. This approach
complements methods currently used, in that it allows the systematic part of the
variation between different sequences to be modeled. This can prove as informative
as absence of variation (homology), which is the most widely used criterion for
comparing sequence data. A multivariate sequence-activity model (SAM), for DNA-
promoter sequences is presented, by which the relative promoter strength is modeled
in terms of the primary DNA-sequence. The model is shown to have a good pre-
dictive capability. The coefficients from the model are interpreted, and used to design
new structures predicted to be strong promoters in the system investigated. The
approach described is also applicable to other kinds of sequence data, e.g. RNAs,

proteins or peptides.

Recent advances in the field of genetic engineering have
made it possible to clone and sequence virtually any piece
of DNA of interest. This capability has, in turn, led to an
almost explosive accumulation of DNA sequence data.
This large source of information is often used as reference
data for studies of new sequences for which the function is
unknown. The goal of such studies is primarily to find
sequences similar to that of interest, indicating the function
of the protein encoded by the new sequence. Another use
of this information is to compile large numbers of se-
quences of known function, in order to find regions of
sequence homology i.e. ‘consensus sequences’.!? Such con-
sensus sequences have, in turn, been used in attempts to
forecast functional parameters (e.g. promoter strength)
from structural parameters (i.e. DNA primary sequence)
alone.* So far, however, such model sequences have been
shown to be of limited predictive value.*®

DNA sequences are usually represented using the four-
letter code form (A C G T). However, when the biological
activity of a set of related sequences is modeled, alternative
ways of representing sequence data may be more practical.
In addition, methods are needed that enable the major
features of a set of sequences to be graphically displayed.

The first objective of this paper is to propose a paramet-
rization of the four bases in the genetic code, which allows
the systematic variation between different DNA, RNA or
amino acid sequences to be visualized and analyzed in a
new way. The second objective is to demonstrate that
sequence-activity relationships, with predictive capabili-
ties, can indeed be developed, provided that knowledge
complementary to sequence homology is utilized. We em-
phasize that this information is inherent in sequence data.
The problem is rather one of how to represent data and
how to make this information numerically useful. The third
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objective is to show how the derived mathematical relation-
ship between sequence variation and biological activity can
be used to design new biomolecules where the biological
activity is changed in a desired direction.

To exemplify how these objectives can be accomplished
we have compiled from the literature DNA promoter se-
quences originating from Escherichia coli and coliphages,
plus a number of artifical constructs. All these promoters
have been consistently characterized with regard to their
unregulated in vivo promoter strength by a standardized
experimental system.®

Parametrization of DNA sequence data. In order to analyze
sequence data, we need a numerical representation of the
DNA (or RNA) monomer units, (the nucleosides A, C, G
and T or U). Two different types of metric may be used for
this representation; qualitative or quantitative. Qualitative
parametrization corresponds to the use of descriptor var-
iables of the indicator-type that, in a suitable way, de-
scribes the differences between the four nucleosides in
DNA. Quantitative parametrization, on the other hand,
uses continuous variables derived from measured physico-
chemical data of compounds of interest. We have derived
both kinds of descriptor variables for the nucleosides, but
since the resulting sequence-activity models (SAMs) for
these two different ways of parametrization are very simi-
lar, we here present only the qualitative descriptors since
they are easy to derive, few and conceptually simple.

To quantify four different objects in an unbiased way, it
is sufficient to use three qualitative descriptor variables. By
the term unbiased, we mean that no particular object(s)
should be represented as being more similar or dissimilar
with respect to any of the others. A geometric structure
that meets this requirement is the tetrahedron. The corner
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Fig. 1. Four diametrically opposed corners of a cube (circles)
form a perfect tetrahedron. When placed in a three-dimensional
coordinate system (origin in the center) each of the corners can
be represented by a set of numerical coordinates. Since these
descriptors are pure indicator variables it is of no importance
which nucleoside is assigned to which corner of the tetrahedron.

coordinates for such a structure can thus be utilized as
qualitative sequence descriptors. These coordinates can be
conveniently generated by the use of a fractional factorial
experimental design (FFD),” see Fig. 1. The objects (the
nucleosides) are placed in four selected, diametrically op-
posed corners of a cube and all inter-object distances are
identical. The structural variation in sequence data is thus
described, simply by arranging the descriptor variables in
accordance with the DNA sequences of interest. Each se-
quence will be transformed into a row-vector, and a num-
ber of sequences will form a sequence descriptor matrix.

Promoter sequence data. In prokaryotes, promoters consist
of specific DNA sequences that govern the binding of the
o-unit of the RNA polymerase holoenzyme (RNAP),
thereby punctuating the onset of transcription. There are
large numbers of sequences known to act as promoters in
E. coli; some of these originate from E. coli itself and a
number of others from phages that act on this bacterium.
Only a fraction of these sequences have, however, been
characterized regarding in vivo promoter strength in a con-
sistent manner. Efforts in this direction are presented in a
series of articles by Bujard and co-workers.***1 A system
that allows the in vivo efficiency of promoters to be deter-
mined, has been developed and subsequently used to deter-
mine functional parameters for some 28 promoters.

The 68 unit DNA sequences of these 28 promoters are
presented together with their respective in vivo promoter
strengths in Table 1. The promoter strength is given relative
to the promoter for B-lactamase (Py,,), which is used as an
internal standard. Monitoring of radioactively labeled
mRNA expressed from the promoter under study, in rela-
tion to the standard, permits a relatively accurate determi-
nation of the promoter efficiency, unbiased by translational
effects or gene dosage. This is just a brief presentation of a
complex experimental system; a more thorough presenta-
tion can be found in Refs. 4 and 6.

The promoters in Table 1 are centered around the +1
base (start of transcription). Alternatively, it would have
been possible to center the data around other positions
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known to be of relevance (e.g. the —35 or —10 region). The
length of the spacer region, between the ~10 and ~35
region, does not differ with more than one base for this set
of promoters. With greater differences we would expect
that a number of sub-classes would have to be formed, and
the data-analysis performed separately, on a class-by-class
basis. The logarithm of the promoter strength in Py, units is
used in the SAMs; this transformation makes the data more
normally distributed and thereby better suited to this kind
of modeling.

Multivariate data and analysis. When the 28 promoters in
Table 1 — each with 68 bases — are parametrized with the
three descriptor variables defined in Fig. 1, the result is a
28x204 matrix. The data matrix is not presented here, but
can be regenerated from Table 1 and Fig. 1. The informa-
tion that can be retrieved from these data is, to some
extent, multivariate; the fact that the promoters differ in
strength cannot reasonably be explained by the features
they have in common.

As a consequence of this parametrization, the unique se-
quence properties of each promoter can be represented by
a single point in a 204-dimensional hyperspace. The promo-
ters will thus form a cluster of 28 points in this space. Such a
hyperspace has many properties in common with ordinary
two- or three-dimensional spaces with which we are more
familiar. There are angles, distances and planes but there is
one crucial property that hyperspaces lack; they cannot
easily be perceived by the human mind. There are, how-
ever, methods that allow hyperspaces to be studied in a
rational way, thereby allowing us to identify systematic
structures in such spaces, just as we do in ordinary two- and
three-dimensional spaces. In this case it would be interest-
ing to find sub-groups in the hyperspace and, perhaps even
more interesting, to identify structures or trends in this
space, correlated with the promoter efficiency.

Two multivariate data analytical methods that have suc-
cessfully been used earlier to deal with such problems are
principal components analysis (PCA)"! for overview, and
partial least-squares projections to latent structures
(PLS)'2B to establish relationships. Both of these methods
are extensively discussed in the literature and will therefore
be only briefly described here. We here emphasize only
that these methods can be used to analyze data matrices,
such as the present one, that have many more columns
(variables) than rows (objects).

The data matrix X, is decomposed by PCA into means
(x,), scores (t,), loadings (p,;) and residuals (e;). In equa-

A
X = X + E lia Pax t+ €3 €))

a=1

tion form this can be represented as eqn. (1). Here the
elements x; are the sequence descriptor variables with
index i denoting promoters and k their sequence descrip-
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Table 1.
Promoter Origin®  Sequence Strength
(log Py, units)
—49 —-40 -30 -20 -10 +1 +10 +19
| | | | | | |

1 D/E20 T5 ACTGCAAAAATAGTTTGACACCCTAGCCGATAGGCTTTAAGATGTACCCAGT TCGATGAGAGCGATAA 1.748
2 H207 T5 TTAAAAAATTCATTTGCTAAACGCTTCAAATTCTCGTATAATATACTTCATAAATTGATAAACAAAAA 1.740
3 N25 T5 CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGAT TCATAAATTTGAGAGAGGAGT 1.477
4 G25 T5 GAAAAATAAAATTCTTGATAAAATTTTCCAATACTATTATAATATTGTTATTAAAGAGGAGAAATTAA 1.278
5 J5 T5 TATAAAAACCGTTATTGACACAGGTGGAAATTTAGAATATACTGTTAGTAAACCTAATGGATCGACCT 0.954
6 A1l T7 ATCAAAAAGAGTATTGACTTAAAGTCTAACCTATAGGATACT TACAGCCATCGAGAGGGACACGGCGA 1.881
7 A2 T7 GAAAAACAGGTATTGACAACATGAAGTAACATGCAGTAAGATACAAATCGCTAGGTAACACTAGCAGC 1.301
8 A3 T7 TGAAACAAAACGGT TGACAACATGAAGTAAACACGGTACGATGTACCACATGAAACGACAGTGAGTCA 1.342
9L lam TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATCAGCAGGACGCACTGAC 1.568
10 con ac ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGT TATAATGGTACCATAAGGAGGTGGATCCGGC 0.602
11 lac coli AGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTGGTATGTTGTGTGGAATTGTGAGCGGATAACAA 0.756
12 lac/UV5 coli AGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTGGTATAATGTGTGGAAT TGTGAGCGGATAACAA 0.518
13 tacl ac TTCTGAAATGAGCTGTTGACAATTAATCATCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAA 1.230
14 N25/03 ac CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCAATTGTGAGCGGATAACAA 0.903
15 N25/pex ac CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGAT TCATAAAGGGTCGAGAAGAGT 1176
16 N25/anti ac CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGATTCATCCGGAATCCTCTTCCCG 0.432
17 N25/lac ac CATAAAAAATTTATTTGCTTTCAGGAAAATTTTTCTGTATAATAGAT TCAAATTGTGAGCGGATAACA 0.903
18 con/03 ac ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCAATTGTGAGCGGATAACAA 0.903
19 con/N25 ac ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGAT TCATAAAT TTGAGAGAGGAGT 1.398
20 con/pex ac ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGAT TCATAAAGGGTCGAGAGGAGT 1.204
21 con/anti ac ATTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGATTCATCCGGAATCCTCTTCCCG 0.255
22 con/D/E20 ac TTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGTACCCAGT TCGATGAGAGCGATAA 1.114
23 con/trp ac TTCACCGTCGTTGTTGACATTTTTAAGCTTGGCGGTTATAATGGTACGCAAGT TCACGTAAAAAGGGT 0.903
24 L-8A ac TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATAATGAGCACATCAGCAGGACGCACTGAC 1.672
25 L-12T ac TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATACTGAGCACATCAGCAGGACGCACTGAC 1.398
26 L/con ac TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATAATGAGCACATCAGCAGGACGCACTGAC 1.146
27 LN25 ac TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTGATACTGAGCACATAAATTTGAGAGAGGAGT 1.813
28 L/con/N25 ac TATCTCTGGCGGTGTTGACATAAATACCACTGGCGGTTATAATGAGCACATAAATTTGAGAGAGGAGT 1.813

CORE:

]|

—f } DSR

(a) TCCGTAAAGAGAAG T CAAAATTCTCAACAGTCGT  ATGCAGCCATAAATTTGAGAGAGGAGA
(b) tcTTGACA  t t tg TATAAT CAT

(c) aAAAAa TTGCTa TATAAT  TCAT TTGA

) TCCGTAAAGAGAAGt t gaCAAAAT TCTCAACAGTCGT t at aATGCAGCCATAAAT TTGAGAGAGGAGA
(n TCCGTAAAGAGAAGT t gc t AAAATTCTCAACAGTCGT t at aATGCAGCCATAAAT T TGAGAGAGGAGA
() TCCGTAAAGAGAt ¢ t 1 gaCAAAATTCTCAACAt T tGT t at aATGCAGCCATAAATT TGAGAGAGGAGA

2ac = artificial constructs, lam = phage lambda. (a) Promoter structure deduced from SAM coefficients. (b) Consensus sequence
proposed in Ref. 1. Bases that occur in at least 39 % in lower case, bases that are greater than 54 % conserved are in capitals. (c)
Early T5 sequence elements from Ref. 6. (I)—(lll) Promoter structures obtained by combination of fragments a—c, consensus ‘parts’ in

lower-case characters.

tors. The principal components are calculated in the order
in which the first component explains most of the variance
of X, the next explains the second largest variance, and so
on. The value of A, i.e. the number of statistically signif-
icant principal components (PCs) of a particular data ma-
trix, is determined using cross-validation." This signifi-
cance test is applied in order to avoid overfitting i.e. an
apparently good fit of the model to the data, but little
predictive capability. In the present study PCA is used to
make a graphical representation of sequence data. A plot
of the values of ¢, for different A against each other pro-
vides a projection (or ‘window’) into the data space which
displays the systematic patterns.
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The PLS method is used to correlate the information in a
matrix ¥, (or a single variable y), with the variation in
another matrix X. PLS is a generalization of PCA where
separate components are calculated for each matrix, to-
gether with an inner relationship between the components
(scores) of the two matrices. In this way a good approxima-
tion of the matrices X and Y is obtained, and at the same
time a model with the maximum correlation between X and
Y. The statistical significance of such PLS correlations is
also tested by cross-validation. In this paper PLS is used to
relate a promoter efficiency variable (y) to the variation in
promoter sequence matrix (X, the parametrized promoter
sequences).
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Fig. 2. A principal-component score plot, in which the PC scores
(t,) of the two first components are plotted versus each other.
Each sequence is represented by a filled circle. Similar
sequences are found close to each other, dissimilar sequences
are a long way apart. Numbering as in Table 1.

Graphical representation of sequence data. The PC analysis
of the promoter descriptor matrix (X), resulted in a model
with four significant components (according to cross-vali-
dation). These four PCs describe 45 % of the variance in X
(17, 11, 9.5 and 7.5 %, respectively). The PC scores (t,~t,)
provide six different two-dimensional plots in which each
promoter is represented by a point. In this paper we pre-
sent and discuss only the first of these plots (Fig. 2) which
also represents most of the information. This projection
can be said to depict nearly a third (28 %) of the sequence
variance among the compiled promoters.

Three clusters of promoters can be discerned in Fig. 2,
the most prominent being that in the lower lefthand corner.
The five objects in this cluster (Nos. 3 and 14-17), originate
from the phage T7 promoter N, (No. 3). From the corre-
sponding loadings (not shown here for reasons of space), it
can be concluded that these objects are clustered by their
relatively high AT content in the first two-thirds of the
sequence (sometimes referred to as USR and core). Above
this cluster a number of other phage promoters are seen,
namely, E,,, H,y, Gy and Js (Nos. 1, 2, 4 and 5) from
phage TS and A~A, (Nos. 6-8) from phage T7.

In the central upper part of the figure are the two promo-
ters lac and lacUV, (Nos. 11 and 12) originating from the
E. coli lac operon. The tacl promoter (No. 13) which is a
trp/lacUV; hybrid is also situated in this region. At the
other end of PC,, another phage promoter (No. 9) from
phage lambda is found, together with some artificial con-
structs (Nos. 24-28 all originating from No.9). The phage
lambda promoter is referred to in Ref. 10 as an ‘alternative
promoter structure.’ This is corroborated by the PCA anal-
ysis, the main determinant being the relatively high GC
content in the USR and core part of the sequence.

The result of this analysis on a set of numerically para-
metrized sequences is thus that similar (related) sequences
form clusters of points situated closely together in the PC—
score plots. Conversely, dissimilar sequences will be sit-
uated a long way apart. The corresponding PC loadings can
then give information as to where in the sequences these
similarities/dissimilarities are to be found.

MULTIVARIATE SEQUENCE-ACTIVITY MODELING

Since the objective of this study is to show the utility of
the approach, we refrain from making any further interpre-
tations of this PCA model. A more thorough analysis of a
larger set of promoter structures will be published else-
where. The five remaining score plots and the correspond-
ing loadings are available as supplementary material. We
note that this kind of analysis can be performed on a
ordinary microcomputer in a matter of minutes. The results
are then displayed in a limited number of plots where
similarities/dissimilarities in various regions are summa-
rized. This alternative way of analyzing sequence data, may
in certain cases, prove to be more informative than calcu-
lating a single ‘homology score.” These two approaches
should not, however, be considered to be mutually exclu-
sive, but should rather be used simultaneously in order to
gain more comprehensive knowledge concerning sequence
data.

Development of a promoter SAM. The second analysis is
aimed at deriving a sequence-activity model (SAM). The
sequence data (X) are related to the dependent promoter
efficiency variable (y) by a PLS model, resulting in a statis-
tically significant four-components model. The fourth com-
ponent was of marginal significance according to the cross-
validation criterion. Consequently, we henceforth discuss
only the first three of these PLS components. With this
model a total of 23% of the variance in the sequence
descriptor matrix (X) accounts for 94 % (65 % cross-vali-
dated) of the variance in the in vivo promoter efficiency (y)
among these 28 promoters. The observed versus the calcu-
lated promoter efficiency in log Py, units is plotted in Fig.
3. The agreement is seen to be quite good.

To investigate further the predictive capability of the
model we divided the data set arbitrarily into two sub-
groups, one with the sequences having odd numbers in
Table 1 and the other containing the sequences with even
numbers. Two different SAMs were subsequently derived,
one in which the ‘even’ sequences served as a training set
and the promoter strengths of the ‘odd’ sequences were
predicted, and vice-versa.
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Fig. 3. Correlation plot in which the observed promoter strength
(in log Py, units) plotted versus the promoter strength calculated
by means of the first SAM, based on all the 28 sequences.
Notation as in Fig. 2.
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Fig. 4. Correlation plot in which observed promoter strength is
plotted versus the promoter strength predicted by the two SAMs
based on ‘odd’ and ‘even’ sequences from Table 1. Notation
and scale as in Fig. 3.

This is a rather demanding test considering the limited
size of the training sets; i.e. there are 4% (= 9%) different
ways in which 4 nucleosides can vary in 68 positions. Even
if only a very small fraction out of these 4% possible struc-
tures can act as promoters in vivo, this ‘limited’ number can
be anticipated to be rather impressive. Thus, when pre-
dicting the activity of 14 sequences from a training set of
the same size, there is a substantial risk that structural
features present in the test set sequences are not accounted
for by the training set.

The result of this test is displayed in Fig. 4, where the
predicted versus the observed promoter efficiency is plot-
ted. We see that the majority of the predictions are accept-
able, while they are not for some sequences (e.g. Nos. 1, 2
and 6). This may be explained by the limitations of the
training sets, as discussed earlier. From the PLS loadings
(not shown here for reasons of space) it can be concluded
that it is the +1 to +20 region (denoted DSR) that has the
largest influence on the relative in vivo promoter strength
for this data set. This finding is in agreement with the
results obtained by Kammerer et al.,® who have discussed
the importance, with regard to promoter strength, of the
sequences flanking the ‘classical’ —35 to +1 region. Also
the early parts of the sequence (the USR) show significant
PLS loadings. It may, therefore, prove useful to expand the
definition of bacterial promoters also to encompass areas
around the 50-70 base pairs commonly used, so that no
information concerning the action of promoters is set aside.

From these results we conclude that it is indeed possible
to establish multivariate SAMs that have predictive capa-
bilities, provided that two criteria are met: (i) knowledge
concerning systematic differences among ‘similar’ se-
quences must be utilized and (ii) it is crucial to have a
balanced and well distributed training set, because of the
large number of possible combinations. We have demon-
strated that the first of these criteria may be fulfilled by a
suitable data representation and the use of appropriate
data-analytical methods. Unfortunately, it is not within our
control to fulfill the second criterion. This does not imply
that this is difficult, one way of accomplishing this will be
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discussed later. First, however, we wish to exemplify one
possible use of the first model based on all 28 promoters.

Interpretation of the SAM. The result of the first SAM was
that the dependent promoter efficiency variable (y) is ex-
pressed as a function of the independent sequence descrip-
tors (X). In this process the relative importance and influ-
ence of each sequence descriptor on y, is recorded by the
corresponding PLS loadings, one for each model dimen-
sion. The magnitude and sign of these coefficients can be
used to determine which nucleoside is favorable in a certain
position of a promoter sequence. These coefficients, in all
612 (3x204), are, as already mentioned, not shown here,
but the principle of nucleoside selection based on the SAM
coefficients is depicted in Fig. 5. Hence it is possible to
generate (predict) a sequence that is ‘optimal’ in relation to
the derived model parameters. Some of the positions with
low variance (showing high homologies), i.e. the ‘consen-
sus sequences’ in the —35 and —10 regions, will, as a
consequence of the data-analytical method used, give small
or ambiguous PLS loadings. This is not a problem, since
the requirements for these regions have been extensively
delineated by others."'* A few other positions also showed
ambiguous (but not always insignificant) loadings, indicat-
ing that the base selected for that particular position, in
practice is less important for the promoter strength. In the
case of such ambiguities, the base most closely correspond-
ing to the signs of the loadings was chosen.

Thus, by combining the two complementary parts of
knowledge (homology- and variation-based) it is possible
to suggest promoter structures that are likely to have in-
creased efficiency in initiating transcription in E. coli. We
parametrized a number of these proposed structures and

PLS-
loadings

+65
Position1 +130 — T
+45

+8
-8 - C
-21

Position 2

+11
Positon3 -63 — A/C
+39

-22
Positon4 +30 — G
-4

Fig. 5. The principle of selecting an ‘optimal’ sequence from the
loadings of the first PLS component for the positions —49 to
—46 of the promoter sequence. The signs of the loadings are
matched with the corresponding descriptors from Fig. 1. The
choices for the first, second and fourth position are unequivocal.
The sign combination for the third is not found in the descriptor
table. Here two nucleosides A or C are equally favorable.



fitted them to the first SAM based on 28 sequences. These
promoter structures were predicted to be some 30-50 P,
units (28-47 %) more efficient than the strongest promo-
ters in our training set. The sequence indicated by the SAM
is listed at the end of Table 1 together with homology-based
consensus sequences proposed in Refs. 1 and 5. We also
present three suggested sequences likely to be strong pro-
moters (I-III), but there are more that can be derived by
the reader, by combining the fragments a—c.

It should be noted that the predictions of activities for
these proposed sequences (I-III) are made by moderate
extrapolations from the model and should as such be
treated with some caution. Another important aspect is
that the best sequences of the training set in fact promote
transcription so efficiently that the forward rate constants
for the complex formation between the promoter and the
RNAP are thought to be at the limits that can be accounted
for by ordinary diffusion encounters of the reactants.® In
other words, these sequences have probably already been
rather efficiently optimized by nature, and it is therefore
anticipated that the sequences suggested by us may not be
that much more efficient in practice, due to rate-limiting
factors that cannot be mapped by the current data. How-
ever, we find it reasonable to believe that the structures
proposed by us should act as strong functional promoters in
vivo for E. coli.

Discussion

The objective of this last example is not to design a ‘super
promoter’ but rather to demonstrate how this complemen-
tary piece of knowledge can make it possible to design
rather complex biomolecules to have desired properties.
We emphasize that this is a general approach applicable to
most problems where the results are dependent on the joint
influence of a large number of factors. We note that this is
often the case in the areas of molecular and microbiology as
well as in many other areas of research.

Many authors appreciate the multivariate nature of bi-
ological systems, but the approach to estimate these effects
is often far from optimal. A common way of evaluating the
importance of structural features is systematically to
change one sequence element at a time (COST). This pro-
cedure, sometimes referred to as saturation mutagene-
sis,!®!” tends to result in data where the information con-
cerning interactions between different structural elements
is inefficiently explored even though the number of experi-
ments is large. An alternative way that has repeatedly been
shown to be efficient for the evaluation of effects in com-
plex systems is systematically to change many structural
elements simultaneously according to an experimental de-
sign.”'®! In this way both main effects and interactions are
explored in a more efficient way by a limited number of
experiments.

Some of the present promoter sequences have in fact
been generated by Bujard and co-workers according to a
plan that resembles a statistical design, in that relatively
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large fragments originating from both strong and weak
promoters have been fused in order to generated hybrids
having new combined features. This fact may contribute to
the relatively good predictions for the two different test
sets, discussed earlier.

From the results obtained here, it may be concluded that
the only prerequisites for using multivariate methods to
make graphical representations of sequence data are (1) a
number of sequences (preferably > 10) that are structurally
and/or functionally related and (2) a means of finding (or a
priori knowledge of) an important position around which
the sequences can be centered.

To develop multivariate SAMs we also need consistently
measured biological responses. If a number of sequences
are artificial constructs made to elucidate, alter or optimize
some kind of mechanism, they should preferably be made
according to an experimental design. By this procedure the
‘structural space’ will be spanned in a more efficient man-
ner, thereby improving the predictive abilities of the mod-
els to be developed.

Concluding remarks. It is crucial further to develop meth-
ods that allow information to be extracted from sequence
data, especially when considering the very intense research
that is presently being planned and carried out in this area
(e.g. the HUGO project). If too much emphasis is placed
on homologies, large parts of vital information in sequence
data may be neglected. It is probable that the research
concerning DNA-protein, DNA-RNA and/or protein-pro-
tein interactions could benefit from the use of statistically
designed sets of experiments combined with multivariate
data analytical methods. In the view of the findings re-
ported here, we are optimistic about the possibilities of
establishing sound models that will facilitate the interpreta-
tion of data and also enable the design of biomolecules with
desired properties. In our laboratory we are currently try-
ing to refine the quantitative nucleoside descriptors while
at the same time expanding them to encompass modified
bases from DNA and RNA. We hope to be able to report
on this in the near future.
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