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A new theory of electrokinetic effects has been derived. The theory represents an
extension of the electric work method described earlier [cf. Hertz, H. G. and Ratkje,
S. K. Acta Chem. Scand. 44 (1990) 542 and 554; J. Electrochem. Soc. 136 (1989) 1692
and 1698]. The extension is obtained by including the conservation equation for
momentum into the analysis. The theory includes all basic formulas for electrokinetic
effects as derived in the literature so far. The theory does not, however, use Onsager
reciprocal relations or other assumptions to derive relations between these formulas.
In addition, a new equation is obtained: a description of the phenomenon “friction
electricity”. Thus we claim that our theory is more general than others. Friction
electricity appears as a result of excess momentum transference due to the relative
movement of different materials of the system. Momentum transference factors are
introduced to describe the phenomenon. These parameters replace the zeta poten-
tial, T, or the water transference number in the description of the EMF. Such an
alternative is needed for leaky membranes.

The purpose of the present paper is to derive equations for
energy conversion in a system where viscous flows are
connected with electric current. We thus extend the range
of a new electrochemical method which has recently been
published'* and which did not yet include the momentum
conservation law. The method has been named the electric
work method.*

The electric work method deals with systems on a strictly
phenomenological basis. All fundamental formulas for
electric potentials (EMFS) are derived from this basis.
Conventional EMFS are derived from electrostatic consid-
erations (see e.g. Bockris and Reddy).’ Electrokinetic ef-
fects are also extensively treated in the field of thermo-
dynamics of irreversible processes.™® We shall use the con-
servation laws for mass, energy and momentum, together
with specific phenomenological equations to describe the
macroscopic motion of mass in electrochemical systems.
The conservation law for momentum, the equation of mo-
tion, will be used to replace partly the pressure gradient as
a driving force into the theory. A discussion of the mo-
mentum conservation law in the absence and presence of
electric current provides a basis for the analysis.

From this basis we shall show that (1) Onsager recepro-
cal relations are not needed to connect, e.g. the electro-
osmotic flux and the streaming potential, and (2) the zeta
potential has an alternative interpretation as the underlying
cause for the EMF. More important, however, is the deriv-
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ation of a new equation which describes a phenomenon
which we call “friction electricity”. The equation relates the
electric work (EMF) to defined momentum transference
factors at the electrodes and at the walls. Momentum trans-
ference factors are derived from the momentum conserva-
tion law. From the equation for friction electricity all other
basic formulas can be derived.

The need for a new electrochemistry has been discussed
in general terms in our introductory paper.' The conven-
tional treatment of electrokinetic phenomena® possesses
the same general difficulties as discussed there, as well as
some specific ones. For instance, experimental results for
streaming potentials are commonly interpreted as an elec-
trostatic potential perpendicular to the direction of the
electric current, the zeta potential. The zeta potential va-
ries across the pore to produce an EMF in the transport
direction. This potential is in principle an unmeasurable
quantity, so its existence cannot be verified. No operational
distinction between the zeta potential and other surface
potentials exists. Assumptions regarding the zeta potential
are not then amenable to experimental control.

Instead of relating the EMF of electrochemical systems
to electrostatic potentials in the cell, we have started to
interpret the EMF, or the electric work performed in the
external circuit, by the mass and accompanying energy
changes in the system.'™ A similar approach was taken by
Fgrland et al.,° however, within the context of irreversible
thermodynarpics and by assuming that Onsager reciprocal
relations are valid. Both approaches imply that each part of
the system is described by measurable quantities only.
Here we pursue the electric work method!™ by studying
also the effect of momentum changes.
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Fig. 1. Schematic illustration of the system.
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Momentum conservation in the absence of electric
current

To bring out the essential features of the problem we
choose a model system which is as simple as possible.
Consider a planar slit separating two salt solutions, one on
the left-hand side, the other on the right-hand side of the
slit (Fig. 1). The only pathway for the liquid from one
solution to the other is between planes in the x-direction.
Consider a flowing liquid within this slit. We shall consider
the xy-planes as having a large extension, a, in the
y-direction. The extension in the x-direction is 1. The
distance between the planes is 2z, with 2z,<<a.

The distance between the planes is such that it allows for
bulk transport of liquid. A pressure difference may exist
between the solutions. Two electrodes, reversible to Cl, are
used to pass electric current through the system. The elec-
trodes have finite dimensions in all directions, as indicated
in the figure. The concentration of the salt, NaCl, is the
same in the two solutions. We shall assume that the effect
of gravity is insignificant.

The components of a surface element vector within this
system, dA, can be written dA = {dA,, d4,, d4,}. An
illustration is given in Fig. 2. The balance equation for
momentum transport is the same as the equation of motion
from hydrodynamic theory, see e.g. Kreuzer.! For an in-
compressible liquid moving with a velocity v relative to the
wall we have eqn. (1), where g is the mass density and ¢ is
o(dv/dt) = —Div n (1)
the time. The left-hand side of the equation is the change in
momentum per unit volume and unit time in the volume
element dV. A volume element is shown in Fig. 1. The Div
term contains the stress tensor N. The properties of N are
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explained in basic hydrodynamic theory, see e.g. Ref. 10;
here we only give some facts needed below. The compo-
nent representation of N may be written as in eqn. (2). The

Ny Ny Ny
n=|n, n, n, )
n 2x n zy n 2z

tensor matrix is symmetric in a liquid without rotation, as
here. The tensor connects the transported quantity “mo
mentum” per unit time, i.e. the force F, to dA, so that dF =
NdA or as in eqn. (3), where dF, is the x-component of the

Fig. 2. Surface area vector dA with components, and the
current density vector, j. From j a tensor is constructed which
assigns the force vector dF to dA. The three coordinate triples
at the origin refer to the forces through dA,, dA, and dA,,
respectively.



dF, = n,dA, + n, dA, + n,dA, (3a)
dF, = n,dA, + n, dA, + n,dA, (3b)
dF, = n,dA4, + n,dA, + n,dA, (3¢c)

total momentum per unit time going through the area dA.
If dA = {1,0,0}, then F = {n,,, N, N,.}. The shear stress
components, N;, express the transfer of momentum due to
statistical molecular movement between layers in the lig-
uid. The off-diagonal elements represent transfer of mo-
mentum from direction i through a surface element of
direction j. The diagonal components of the tensor are the
normal stresses (the hydrostatic pressure, p, and the vis-
cous resistance to compression). The viscous resistance to
compression is zero for incompressible liquids. Thus we
have eqn. (4), where {1} is the unit tensor and eqn. (5)

n=p{1} +n’ 4)
p = (nXX + nyy + nZZ)/3 (Sa)
n,\'x = nyy = ﬂzz =p (Sb)

holds. We limit outselves to Newtonian liquids with viscos-
ity 1. The yx- and zx-components of the shear stress are
then given by eqn. (6)."° We write these equations to show

n

1l

—2n(3v/ay + v,/ax)/2 (6a)

yx

n

= —2n(3v 3z + 3v,/ox)/2 (6b)
the similarity with tensor components which will appear
below.

The local balance of momentum for viscous flow in the
absence of electric current in the x-direction is given by
eqn. (7), derived from eqns. (1)-(5) with 3%, /ox3z =
d%v,29x = 0.

o(dv/df) = — (Div n), = —dp/dx + n(3*/3z?) @)

The divergence has been formed according to eqn. (8), and

N Ny Ny
Div n = {3/0x,8/3y,3/3z} |n,, N, n, 8)
n n n

zx zy

the x-component of the vector Div N is given by eqn. (9).
(Div n), = (3/2x)n,, + (3/3y)Nn,, + (3/32)N, )
Similar equations can be written for the y- and z-directions,

but they are not of interest here. Eqn. (7) will now be
modified to include changes caused by the electric current.

ELECTRIC WORK METHOD Il

Momentum conservation in the presence of electric
current

We now postulate that the presence of electric current will
cause additions to the shear stresses, N; there will be an
excess stress tensor. This statement is similar to the postu-
late of a mass flux in excess of diffusion when electric
current is passing electrolyte solutions.!*!! The electric
current density is the vector j = {j,, j,, j.}, and the excess
contributions in each direction are expected to be propor-
tional to the components of j. The excess contribution
defines the transference factor t,;,; for transfer of mo-
mentum from the i direction to the j direction due to
electric current. We write the matrix of the excess compo-
nents as eqn. (10), with t,, = 1,, = 1,,; cf. eqn. (5). We

T.rxjx txy(jx +]y)/2 txz(ix+jz)/2
T = T_vx(jy+jx)/2 Iyyjy- ‘[yz(jy+jz)/2 (10)
T2 G2 ),

assume that the excess stress tensor is symmetric. The
tensor T assigns a force dF to the vector dA in the same
way as given in eqns. (3a-3c) (Fig. 2). The tensor T is
constructed from the vector j according to eqn. (10). The
three columns formed as on the right-hand side of eqns. (3)
are the momentum fluxes through the areas dA,, dA, and
dA, (see below). We may also write the excess stress tensor
in a form similar to eqn. (4), eqn. (11), where the diagonal

T =0{1} + T’ (11)
elements make up the quantity o', given by eqn. (12), and
o' =0, +Jj, +J) =t + ), +))3 (12)
the matrix T contains the elements shown in eqn. (13).

txy(ix +jy)/2 ""XZ(jX +jZ)/2
.0, +/)/2 (13)
TZX(jZ +jX)/2 sz(jz +jy)/2 IZZjZ - 0,

: !
Ty — O

T = |G, +i)2 1,),—0

¢’ and o refer to the mean value of the three components of
J. The different components of the excess stress tensor, T,
can be understood as follows. The sum of the diagonal
elements, ¢’, in eqn. (12) may be regarded to cause a
macroscopic motion of the liquid, and thus a change in
velocity of dV, due to electric current. They can add
an extra contribution over and above the effect of the
hydrostatic pressure. The off-diagonal elements can add
extra contributions to the shear stresses, which, however,
are not diffusive. This also may cause motion of the liquid.

The electric current is chosen to have an x-component
only,j= {j., 0,0} = {j, 0,0}. Thus from eqn. (12) we have
eqn. (14). We also have eqn. (15). The trace of the matrix
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o =1,j/3 =0 (14)
2t Ji3 v, 2 T,..j2

T = 1,2 -1,/ 0 (15)
. J2 0 T J/3

is zero, as it should be by definition. In order to find the
equation of motion we need the tensor divergence of .

Divergence values of the excess stress tensor

Note first that I = /jdA is constant, where A is the electric
current and A is the cross-section of the system. Thus we
have divj = 0. From eqn. (15) the divergence components
of T are given by eqn. (16). By combining eqn. (16) with

(Div ), = (8/8x)(21,j/3) + (3/3y)(1,j/2) +

(3/32)(1.,j/2) (16a)
(Div ), = (3/3x)(1,,j/2) — (3/3y)(1,j/3) (16b)
(Div TT). = (3/0x)(1,j12) — (3/32)(1,4/3) (16¢)

o'{1} according to eqn. (12), we obtain eqn. (17). As

(Div ), = 3(3/3x)(0j) + (313y) (v, )2 +

(8/3z)(t. )2 (17a)
(Div ), = (3/3x)(t,,/)2 (17b)
(Div ). = (3/3x)(t,.)/2 (17c¢)

already indicated above, the total excess momentum per
unit time and area is the excess force per unit area. Thus
the force can be written in analogy with eqn. (3), by using
eqns. (11), (14) and (15), as eqn. (18). The excess force in

dF, = (vg)dA, + (1,j2)dA, + (1j2)dA, (18a)
dF, = (1,j2)dA, (18b)
dF. = (1.jR2)dA, (18¢)

the x-direction is the vector given by eqn. (19a), which is
equivalent to the excess momentum passing per unit time
and area in the x-direction. Similarly, for the y- and
z-directions we have eqns. (19b) and (19c). These vectors

F(x) = j {t,, 1,/2, 1../2} (19a)
F(y) = j {1,/2, 0, 0} (19b)
F(z) = j {x./2.0, 0} (19¢)
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Fig. 3. Excess momentum flux components for the x-, y- and
z-directions in the presence of electric current density

J={j, 0, 0}: (a) momentum passing per unit time through an
area dA,; (b) momentum passing per unit time through an area
dA,; (c) momentum passing per unit time through an area dA,.
Note that we have t,, =1, and 1, = 1,,.

X

are illustrated in Figs. 3a-3c. The components of Div T
are the divergences of the vectors F(x), F(y) and F(z)
according to eqn. (19).

Momentum, ov, can only be supplied or received at
interfaces, not in a homogeneous bulk phase. The deriv-
atives dt,; /ox; are non-zero at places where the material
changes. In the chosen geometry, momentum can be taken
up at the electrodes, which primarily are zy-planes, and at
the walls of the xy-planes. The electrodes are not infinitely
thin, thus momentum can be transferred between their
surface and the liquid and partly via the electrode edges,
which are facing the y- and z-direction. The situation is
illustrated in Fig. 4.

We shall first discuss more closely the situation at the
electrodes. If positive momentum is taken away from one
electrode and delivered to the liquid, there must be a
deficit in the term odv/dr belonging to this electrode. This is
illustrated by the broken arrow in Fig. 4 for the left-hand
electrode. A deficit means a loss, i.e. movement has a
negative direction. The momentum loss is quenched by the
electrode; it is converted into mechanical tension, oscilla-
tions are damped out, and it remains potential energy. At
the right-hand electrode, momentum may be given from
the liquid to the electrode, as indicated by the broken
arrow pointing to the right, but some part of the mo-
mentum gained by the liquid at the left-hand electrode may




z
= mechanical
_/ strain or
< g(dv, /dt) => movement of
electrode
movement and thus
momentum change of liquid i x

Fig. 4. Momentum transfer at the electrodes. A xz-cross-section
is given: Contributions to odv,/dt are indicated. Contributions to
odv,/dt and edv,/dt at the electrode edges are also possible
(see text).

also be kept by the solution. This means that the solution
will move. Altogether this is a consequence of the fact that
the x-components of the force (3/3x)(t,,j)/3 = d(0j)dx are
non-zero at the two electrode surfaces parallel to the
zy-plane. Unbalanced y- and z-components of the force,
(3/3x)(t,,j) and (3/3x)(t.,f) [egns. (17b) and (17¢)], act at
the electrode edges only, because y- and z-directions are
not defined at the surface zy-plane.

The values of the normal force 3(oj)/ox, as well as the
components (3/3y)(,j)/2 and (3/3z)(t,,j)/2, are, however,
zero in the homogeneous bulk; the uniform bulk cannot
receive or supply momentum. At the planes the term
(3/3z)(t,j)2 exists; consequently momentum may be
transferred from the walls into the liquid in the x-direction.

If the momentum given off at the right-hand side is larger
than that taken up by the left-hand side, then the direction
of motion is from right to left. In a vessel which is bound at
both ends, x=0, x=1, the momentum of the solution is
immediately balanced by the hydrostatic pressure. No suffi-
cient tangential stress can be maintained in the liquid in this
geometry, so the liquid flows back. Without such bounda-
ries the liquid movement would be damped by shear
stresses.

Equation of motion for viscous flow in the presence
of electric current

The effect of electric current can now be included in the
equation of motion [eqn. (7)]. We shall confine ourselves
to the x-component of the divergence of T, since this gives
the main effects. We thus neglect effects at electrode edges.
For the boundaries (electrodes and planes) we have
eqn. (20a) for the local rate of change of

o(dv/df) = — dp/dx + n(3*v,/3z%) — 33(0j)/ox —
(3/3z)(t. )2 (20a)

momentum. With the approximation of j = constant, this
gives eqn. (20b). As the last two terms are zero in the bulk,

o(dv/dr) = —dp/dx + n(3%,/3z%) — 3(30/3x)j —

(31, /32)j2 (20b)

ELECTRIC WORK METHOD il

eqn. (7) can be used unaltered for the bulk. In order to
integrate eqn. (20), we need the transference factors, o and
T.,, as functions of the z-coordinate. Lacking other knowl-
edge we shall assume the functional dependence for t,,
given by eqn. (21), where 0z represents a small layer at the

1,(2) = 1, — 1,(z — zy + 82)/dz (21)

boundary. The function is illustrated in Fig. 5. It follows
that eqn. (22) holds. Likewise at the electrodes, we have
eqn. (23) (Fig. 5). The subscripts a and c indicate anode
and cathode materials, respectively. The superscripts
indicate solution values around the anode or cathode.

dt,/dz = —1,/0z (22)
(do/dx), = (0® — 0,)/0x = —Aoc,/Ox (23a)
(do/dx), = (o, — 0)/0x = Ac/dx (23b)

The electric work in the absence of pressure
gradients

The purpose of integrating the equations of motion is to
find the mechanical work done by the system per unit time,
which is equivalent to the electrical work. Consider first the
contributions from the transference factors in eqn. (20b)

Tax (a)
Tzx
|
| |
| | wall
l |
| 0z
Zy 4
o bulk ®)
g
|
| |
| |
Jg |
anode |
6X |
Xa X
1] bulig (c)
2]
I
l |
I
| o .
| cathode
| ox
Xc X

Fig. 5. Momentum transference factors as functions of
coordinates: (a) the transference factors 1t,,; (b) and (c) the
transference factor 3o at the anode and at the cathode.
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when dp/dx = 0. Within the small range z,— dz<z<z,, at
the upper plane we have (do/dx) =0. Assume that the
breadth of the plane in the y-direction is a. We multiply
eqn. (20b) with a and integrate to get eqn. (24). A similar

20 20

[ ao(dvidrydz = [ an(3*vJ/az7)dz + at.ji2 (24)

-0z -0z

equation holds for the lower plane at z = —z,. The effects
of the regions close to the two planes are included in
eqn. (25). By extending the integration from —z, to z, we

i) 20

a [ o(dv/drydz = a [ w(@v/o2)dz + at,y (25)

—Z0 =20

have obtained an equation of motion for a plane of liquid
perpendicular to the transport direction, with height 2z,
breadth a and thickness dx. In the limit of small velocities,
the second-order term containing the viscosity is negligible.
Eqgn. (25) then reduces to eqn. (26), where &, is the

2az,o(da /dr) = at.j (26)

average of v, over the cross-section. The left-hand side of
eqn. (26) is a force per unit length. The mechanical work to
be given to the system per unit time by moving the column
of liquid can be obtained by multiplying eqn. (26) by i,/ as
in eqn. (27a), where / is the length of the system where
dW, . ./dt = a.2azdo(du /dt) = a,lat,j (27a)
electric current is flowing. In addition to the work done at
the walls, we have work done at the electrodes. By in-
tegrating eqn. (20b) first with respect to z and then with
respect to x using eqn. (23), we get eqn. (27a) in the form
of eqn. (27b), which is the total work per unit time supplied

dW,./dt = u,2azJo(da/dr) =
a.a[—6z(Ac, — Ac,)j + It,j] (27b)

to the system. In the present system, work is supplied as
electrical work, EI. This gives eqn. (28), where [ is the

AW, /dt = dW,/dt = —E2azyj = ~EI (28)

electric current. In the absence of dissipative effects (I =0),
E is the EMF of the system. By comparing eqns. (27b) and
(28), we get eqn. (29).

E = [-t,R2z, + 3(Ac. — Ao,)]a, 29)
The volume flux of the liquid is equal to J, = 2zau, =
Aii,, where A is now the cross-section of the moving phase.

By introducing J, we get our result in a form which can be
related to experiments: eqn. (30). This equation has not
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E = (JJA)[ -2z, + 3(Ao. — Ao,)] (30)

yet been derived. Essentially, it describes friction electric-
ity. In addition to pressure gradients (and chemical poten-
tial gradients), viscous frictional and gravitational work are
not relevant for the derivation of eqn. (30), which de-
scribes the EMF of a system where different kinds of mat-
ter have a velocity relative to one another. Usually a non-
stationary state is assumed. Assume that we start with the
system at rest. An electric current is then applied. During
the initial phase there is a variation in liquid movement, #,,
caused by the divergence of the components of the excess
stress tensor. Electrical work has been applied to the sys-
tem and is transformed into mechanical work (kinetic en-
ergy). Alternatively, the variation in i, back to rest is able
to generate an EMF according to eqn. (30). The relative
size of the effects, viscous and reversible excess friction,
will determine the possibility of converting mechanical en-
ergy into electric or thermal energy.

Friction electricity, a further discussion

Consider again the system in Fig. 1. Neglect for the mo-
ment effects caused by the stress tensor. The liquid flows
with velocity i,. There are no pressure gradients. The
changes in linear momentum are expressed by eqn. (27b)
for these conditions [eqn. (31)], where L is the total length

(2az,L)o(du/dt) = —6az(Ao.—Ao,)j + alt,j 31

of the column of liquid, including parts beyond electrodes,
and da/dt refers to a mean value along the z-axis.
Eqn. (31) tells us that the change in linear momentum is
determined by the geometry and types of materials and by
the electric current density.

Momentum conservation states that momentum is taken
up by the rigid surroundings when the liquid looses speed at
the electrodes or at the walls. The momentum lost by the
liquid is supplied to the excess momentum flux tensor, 1.
This produces the electric current density j. Here in partic-
ular it is the z-component of the vector which represents
the flux of the scalar quantity the x-component of the
momentum. This excess flux itself may have any value; its
absolute value is not physically defined, only the decrease
(or increase) at the boundaries, t,j, is well defined
(Fig. 5). At the electrodes there are also divergences of the
excess momentum flux. The flowing liquid with its loss of
linear momentum produces a contribution to the electric
current density. If (Ao, — Ac,) = 0, the consumption and
delivery of momentum at the electrodes are exactly bal-
anced. When the type and state of the two electrodes and
the processes in the adjacent solutions are the same, this
condition will be fulfilled.

The occurrence of j on the right-hand side of eqn. (31)
means that momentum consumption does not happen at
random; it is strictly correlated with other processes.



Therefore j is the coherence parameter,' here for momen-
tum changes. Since momentum conservation requires that
d(mv)/dt = —d(m’v’)/dt when two masses m and m’ inter-
act, a large value for m' means that v’ is small. When m’
stands for the equipment (electrodes and walls), then v’ will
be almost zero. There is only a slight vibration about the
new equilibrium position of the equipment.

Electric work from friction electricity

The rate of energy loss which corresponds to the loss of
linear momentum is derived from eqn. (29) and given by
eqn. (32). Consider next the electric work which can be

El = I[-t. 112z, + 3(Ao, — Ac,)]i, (32)

delivered by the system per unit time, — E/. The electrodes
can be connected in principally two different ways, in an
open or closed torus.' To start we say that the electric work
is delivered to a “black box™. As the first possibility, let the
black box be a conductor with resistance R. Then all the
energy per unit time delivered by the flowing liquid occurs
as Joule heat in the conductor. If the “black box” is a
capacitor, the electric work per unit is given by eqn. (33),

—EI = RI* + (IIC) [ Idt (33)

where C is the capacitance of the capacitor. If the capacitor
is fully charged, /=0. No energy can then be obtained
from the moving liquid. The liquid flows without retarda-
tion. For comparison, consider the expression for the gal-
vanic cell given by eqn. (27) in Ref. 1 [eqn. (34)].

—EI = I(uag — s — wp)/F = RI* + (I/C) [ Idt (34)

This expression is of the same structure as eqn. (33) with
eqn. (32). The difference is the origin of E. In eqn. (34) the
electric current is given by dn,y/dt, i.e. by the mass produc-
tion of AB. The composition of the system changes and
gives rise to a change in EI. The value of E is not strictly
constant: it depends on the amount of matter which has
reacted. In the electrokinetic experiment 7 is initially given
by d(mv,)/dt, thus if I is non-zero, the momentum of the
liquid becomes smaller, i.e. i, becomes smaller; finally
u,=0, and consequently the EMF has ceased to exist.
There is no longer electrical energy: all mechanical and
electrical energy has been converted into thermal energy.
This is the same as for a galvanic cell: the cell yields energy,
i.e. E#0, but the composition of the system approaches
that of chemical equilibrium, and eventually E =0. So, in
eqns. (32) and (33) we must not choose too large a value of
C. The momentum of the liquid must not be used up before
the capacitor has attained a voltage which makes /=0.
With I =0 the electric energy, which can be extracted from
the system, is stored in the capacitor. The liquid, however,
continues to move with a velocity given by eqn. (35).

ELECTRIC WORK METHOD il
a, = Ef[-t,2z, + 3(Ac, — Adg,)] (35)

We have so far discussed a torus construction with elec-
trodes acting, among other things, as boundaries for the
flowing liquid. The length of the liquid between the elec-
trodes connected to the black box is /, but the total length
of the flowing liquid is L. The end pieces of the container
can be regarded as effective electrodes connected to a
capacitor, but the capacitance of this is almost zero. The
torus is closed through the vector dD/dt, the displacement
current. No electric current is flowing immediately after the
onset of the movement. However, electric energy persists
as long as the liquid moves. This is the production of
friction electricity in the more conventional sense. The
liquid may of course be replaced by an insulator or a solid
bar.

The streaming potential

The presence of a pressure gradient may lead to stationary-
state conditions. Assume that such conditions are obtained,
so that the left-hand side of eqn. (20b) becomes zero. We
are left to perform the integration over the spatial region of
the liquid. First we integrate over the boundary regions.
The result is given by eqn. (36) [cf. eqns. (21)—-(25)]. In the
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0 = —a/[dp/dx]dx+2la | (&% /5z)dz —
dx

zg—0z

6(Ao. — Ac,)azyj + alt,j (36)

bulk we have eqn. (37). We assume that the pressure gra-

20

!
0 = —2az,/[dp/dx]dx + al | n(3%,/52%)dz (37)
0

—2y

dient dp/dx is constant. The value of the first integral is Ap
= |p(x =1) — p(x = 0)|. The constant value of the first term
can be used to define the hydrodynamic resistance R, and
the mean velocity through eqn. (38).

J, = Aa, = Ap/R, (38)

The first two terms of eqn. (36) are zero because the
ranges of integration are vanishingly small. The terms con-
taining j in eqn. (36) vanish as well, because j = 0 in a
stationary open circuit. Yet the factor of 2az,j in eqn. (36)
is the quantity —E/u, [eqn. (29)]. We shall derive the well
known formula for the EMF in systems with pressure gra-
dients, the streaming potential. The streaming potential is
defined by (E/Ap),-y, and is obtained by introducing eqn.
(38) into eqn. (29). This gives eqn. (39). The streaming

(EIAp) 1y = [—T. 0122, + 3(Ao, — Ad,)|/AR, (39)
potential represents the electric work to be gained from the
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system by the effect of a given pressure gradient in a
stationary state.

Onsager reciprocal relations are not necessary for
the derivation of certain relations

It has long been known that certain relations exist among
observables in the systems with which we are dealing. The
Saxén relations equate the streaming potential and the
electro-osmotic flux, and the streaming current and electro-
osmotic pressure. These relations are usually derived by
applications of Onsager reciprocal relations in irreversible
thermodynamics.” We shall see that the relations follow
from the basic eqn. (30).

The expression for the streaming potential has already
been derived [eqn. (39)]. The electro-osmotic flux will be
derived below. We start from the equation of motion,
eqn. (20b). Again the assumption of a stationary state is
introduced. This makes the left-hand side of the equation
equal to zero. In this type of experiment there is no pres-
sure gradient. We integrate first with respect to x and next
we perform the integration between z, and —z,. The result
is eqn. (40). For stationary state conditions in the bulk,

0= —62,(Ac, — Ac,)j + |l 9 J322 + I, (40)

—2z9

eqn. (7) can be integrated to give eqn. (41). This relation

2azgAp = 21 al n3*v,/32%) (41)

-2y

holds true in the absence of any electric effect, but we also
use it for the definition of R, in the absence of pressure
gradients. According to eqns. (37) and (38) we then have
eqn. (42). The volume flux J, from eqn. (41) can be

22,RJ, = | I ndv,/o7) 42)

—2
introduced into eqn. (40) to give eqn. (43). By replacing j
2z2RJ, = 620(Aoc - Aoa)j - tlej (43)

in eqn. (43) by I/A, an expression for the electro-osmotic
flux is obtained, identical to the expression for the stream-
ing potential, eqn. (39), which proves the Saxen relations.

The streaming current is defined for short-circuit condi-
tions when E = RI (no reversible electric work is per-
formed by the system). The short-circuit current produces
Joule heat, RI?, where R is the electric resistance of the
system. The Joule heat was neglected in the derivation of
eqns. (29) and (30). When the electric work is zero, the
term RI is left on the left-hand side of eqn. (30). It cor-
responds to a situation in which the term containing the
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integral fIdt is zero [C— « in eqn. (34)]. By introducing
this into eqn. (29), we obtain eqn. (44), which gives eqn. (45).

I = (JU/RA)[3(Ao, — Ao,) — 1,.022] (44)
(1) -y = [3(A0, + Ac,) — 1,022))/RA (45)

The electro-osmotic pressure is measured for an electric
current which produces a stationary-state pressure that
makes J, = 0. By integrating eqn. (7), together with
eqn. (20b), for these conditions we obtain eqn. (46). Since

0= —22,Ap + [62(A0, — Ac,) — T, JIIA (46)

J, = 0, the viscosity term vanishes. By introducing the
relation E = RI into eqn. (46), we obtain as a result for
(Ap/E), -, the right-hand side of eqn. (45), which also
proves the Saxen relations.

We have thus been able to derive the Saxén relations
without invoking the Onsager reciprocal relations. The
conclusion that may be drawn from this result is that the
validity of the Onsager reciprocal relations is consistent
with the electric work method. Their proof is given in-
directly through this, since they must be fulfilled in order to
make the theory of irreversible thermodynamics obey the
conservation laws.

The electric work method compared to conventional
theories of electrokinetic effects

The book by Koryta and Dvorak may be taken as a typical
text dealing with electrokinetic phenomena.'? The electric
field, dg/dx, in the direction of the axis of the pores is
expressed by the internal friction of the liquid in these texts
as eqn. (47). This equation describes a fundamentally dif-

dg/dx = n(8%,/3z%) (47)

ferent interpretation of electrokinetic phenomena than the
one given here. The right-hand side of eqn. (47) expresses
an irreversible phenomenon, uncoordinated with the elec-
tric work performed. We, on the other hand, assign the
electric work to a reversible property of the system and the
coherence of several phenomena.

This difference in interpretation has its analogy in the
interpretation of liquid junction potentials. Conventionally
this potential is explained as “a diffusion potential” caused
by diffusing ions. The electric work method relates the
liquid junction potential to reversible mass and energy
changes of neutral compounds.

The diffusing ions cause a charge separation, giving rise
to an electrostatic potential in the conventional theory. In
electrokinetic systems the electrostatic potential is caused
by the zeta potential. This potential drop has its direction
perpendicular to the direction of the electric current. It is
the variation of the zeta potential in the direction of the



electric current which gives rise to a charge separation and
thus an observable electric potential difference. This
model, even if self-consistent, relies on the construction of
the zeta potential, an unmeasurable quantity. Thus the
conventional theory cannot be checked by experiments.
We consider this a major drawback of this theory.
According to the theory of irreversible thermodynamics,
the streaming potential is due to the transference numbers
of water and salt in the membrane,’ #,; ; and fy,q. In our
particular system we have eqn. (48), where AV, represents

(EIAP) 1o = = (naaViaar T tiy0Viy0) — AV (48)

volume changes at the electrodes per Faraday. This equa-
tion expresses the EMF as the result of mass movement due
to electric current. Usually the transfer of water is related
to the ion transport. Monovalent ions have been taken to
carry a smaller amount of water through ion-exchange
membranes than divalent ions, which possess a larger field
strength. Values for ty,o larger than 50 are, however, ob-
served in very leaky biological membranes.'* This makes
the explanation of water transfer by ion transfer alone
unlikely. We see that the present analysis offers a direct
way of explaining data in such cases, through the mo-
mentum transference factors. Both eqn. (48) and the ex-
pression for the streaming potential given by eqn. (39)
express the EMF by essentially two effects, the electrode
surface effects and the effects of the planar walls. Our
analysis emphasizes that the effects of salt and water on the
momentum transference factor of the wall are experimen-
tally inseparable.

Conclusions

We have seen above that all the major formulas of electro-
kinetics may been derived from a new basis, that given by
the equation of conservation of momentum in a hydro-
dynamic system which conducts electric current. In addi-

ELECTRIC WORK METHOD llI

tion, the phenomenon of friction electricity has been stud-
ied in a new light. The experimental parameters used to
describe friction electricity are the momentum transference
factors 1,; ;. The determination of these parameters will be
a future goal of our studies.
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