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A new crystalline modification of ethyl benzoate (y-ethyl benzoate, y-EB) has been
prepared by deposition of the ester vapour on a cold CsI window. The IR spectrum of
the compound is significantly different from the IR spectra of a- or B-EB, in
particular the stretching frequency of the C=0 group is higher for y-EB. Two bands
of uncertain origin (782 and 341 cm™') are absent from the spectra of y-EB and

TiCl,~EB complexes.

In 1981 Stokr et al.! published a study on Raman and IR
spectra of liquid, solid amorphous, and three crystalline
modifications of ethyl benzoate (EB); the three crystalline
solids being denoted A, B and C. A was formed by crystal-
lization below ca. —55°C, and B was formed by crystalliza-
tion at higher temperatures. C was probably formed as a
result of contamination with small amounts of moisture. In
the present work A and B are denoted a-EB and B-EB,
while no name is given for C.

We now report spectral evidence of a new modification,
which was obtained by crystallization of the ester vapour
from the gas phase onto a cold CsI window close to the
temperature of liquid nitrogen. This modification we de-
note y-EB.

The results are part of a more comprehensive work on
the vibrational analysis of ethyl benzoate and its titanium
tetrachloride complexes,” which was a part of a research
program on Ziegler—Natta catalysis.? Earlier we reported a
vibrational analysis of ethyl benzoate,* studies of isotopic
congeners of ethyl benzoate®$ and the detection of a new
ethyl benzoate-titanium tetrachloride complex.” In the
near future we will present studies on nine isotopic congen-
ers of ethyl benzoate® and a study on isotopic congeners of
titanium tetrachloride complexes.’

The aim of these papers is to elucidate fully the vibra-
tional spectra and bonding properties of ethyl benzoate and
its complexes. Both the ester and its complexes play a
major, but, as yet, unexplained role in Ziegler-Natta cata-
lysis.

Experimental

Fig. 1 gives the experimental set-up for the preparation of
the samples. The ester vapour was deposited from a
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Fig. 1. Experimental set-up for the preparation of samples of
ethyl benzoate under vacuum at —196°C. (a) Side view; (b) top
view, simplified. 1, Liquid nitrogen container; 2, Cu-tube; 3,
O-ring, to allow for twisting of the upper part of the cell; 4, Csi
windows; 5, radiation shields; 6-7, Not used in this work; 8,
canula; 9, needle valve; 10, glass-metal junction; 11, Schlenk
flask with liquid sample.

Schlenk flask (45 °C) through a thin canula (0.2 mm inner
diameter) with outlet ca. 20 mm from a spectroscopic Csl
window. The window was cooled by liquid nitrogen to a
temperature approaching —196°C (no independent meas-
urement of temperature was made), and was positioned in
a vacuum chamber (p <107 Pa). For the preparation of
the crystalline samples, the needle valve and the canula
were heated to ca. 100°C, and deposition intervals of 30-60
min provided the best results.

The spectra were recorded on a Bruker IFS 113v FTIR
instrument equipped with an MCT detector, Ge/KBr
beam-splitter and a Globar source. A nominal resolution of
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4 cm™! was used, and numerical expansion of the inter-
ferogram ensured a peak-position accuracy of £1 cm™'.

Results and discussion

In Table 1 are given the observed vibrational frequencies
for amorphous and crystalline y-EB, for parent EB and
EB-d;. The IR spectra are given in Fig. 2. Table 2 is a

Table 1. Comparison of vibrational frequencies (cm™") for
amorphous and crystalline y-ethyl benzoate.?

1 2 3 4
EB v-EB 1-2° EB-d; y-EB-d; 4-3° 3—1° 4-2°
(am) (xt) (am) (xl)

1713 1718 +5 1714 1718 +4

1603 1604 1602 1603

1585 1584 1585 1582 -3 -2
1492 1493 1492 1491 -2
1477 1478 1098 1100 +2

1464 1458 -6 1052 ? ¢ ¢
1451 1451 1452 1452

1444 1445 1048 ? i i
1393 1398 +5 1198 1199 € ¢
1367 1369 +2 1060 1060 ¢ ¢
1314 1314 1317 1318 +3 +4
1280 1280 1299 1299 +19 +19
1264 ? 936 937 ¢ °
1176 1180 +4 1177 1178 -2
1159 1162 +3 1158 1159 -3

1125 1131 +6 1124 1127 +3 -4
1110 1114 +4 1098 1100 +2 -12 -14

1100 1099 896 897 i °
1071 1073 +2 1072 1073
1028 1028 1026 1026 -2 -2
1010 1013 +3 839 842 +3 ¢ °
999 1000 1000 1001
981 977 -4 ? ?
940 942 +2 936 940 +4 -4 -2
877 881 +4 983 981 -2 ¢ °
853 853 810 811 -43 -42
815 817 +2 592 593 € €
807 804 -3 809 809 +2 +5
782 777 -5
712 712 712 712
688 687 688 688
675 678 +3 671 673 +2 -4 -5
617 618 617 617
496 497 483 483 -13 -14
443 445 +2 442 443 -2
? ? 397 ?
392 393 371 371 -21 -22
344 331 -13

331 337 +6 314 319 +5 —-17 -18
272 277 +5 260 265 +5 —-12 -12

2EB(am) = amorphous parent ethyl benzoate, y-EB(xI) =
crystalline parent y-ethyl benzoate, EB-ds(am) = amorphous
ethyl benzoate-ds, y-EB-ds(xl) = crystalline y-ethyl benzoate-ds.
b 2—1 and 4—3 = Shifts in frequencies upon crystallization
(2—1 = difference between frequencies in column 2 and 1);
3—1 and 4—2 = Isotopic shifts. “The assignments here are
somewhat arbitrary as there are severe changes in the
description of the vibrations upon deuteriation. Therefore no
isotopic shifts are given for these vibrations.
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Fig. 2. FTIR spectra of amorphous ethyl benzoate [EB(am)],
y-ethyl benzoate [y-EB(xl)], and y-ethyl benzoate-d; [y-EB-ds
(x1)]. Vibrational frequencies of the most intense bands for y-EB
are taken from the spectrum of a thinner sample.

master table in which the frequencies and IR and Raman
intensities are given for all known phases of EB,"*! to-
gether with data for the equimolar (TiCl,~EB), complex?®
and calculated frequencies.>*

The spectrum of the new phase is distinguished from the
spectrum of the other crystalline phases in several ways. (i)
Whereas in o-EB and B-EB the C=0 stretching frequency
is lower than for the amorphous ester (1707/1711 cm™! vs.
1713 cm™), the frequency is higher (1718 cm™") for y-EB.
(ii) Two bands appearing at 782 and 344 cm™! for the
amorphous ester are not observed for y-EB. The band at
782 cm™! has also been observed by Stokr et al.! for B-EB,
but they were not able to separate the bands at 344/331
cm™' in the IR spectrum. (iii) Several of the bands related
to ethyl group vibrations have significantly different in-
tensities when comparing the IR spectra for the individual
phases. Differences between the IR spectra of amorphous
and y-EB esters are seen especially in the region 1400-1500
cm™ and at ca. 1100 cm™! (Fig. 2). (iv) The differences
between the spectra at ca. 3000 cm™ are striking (Fig. 3),
and this region is probably the best part of the spectrum for
the identification of y-EB. Fig. 3 also illustrates the re-
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Fig. 3. FTIR spectra of the C-H stretching region of amorphous
ethyl benzoate [EB(am)] and crystalline y-ethyl benzoate [y-EB
(xI)]. The peak at ca. 3410 cm~' is the 1st overtone of the C=0
stretching vibration.
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Table 2. Overview of observed vibrational frequencies of various phases of ethyl benzoate, with force-field calculations and simplified
assignations.?

Amorph. Force Complex® y-EB o-EB° B-EB® Liquid Liquid Vapour Simplified
-196°C field -196°C -196°C 25°C 25°C 100°C assignment
FTIR Calc. FTIR FTIR Raman IR Raman Raman FTIR FTIR
1996 w Overtone 2x999
1976 w 1980 w 1966 br i Combination 9814999
1971w
1925 w 1917 w 1916 mi Combination 981+940
1833 w 1824 w 1817 w Combination 981+853
1793 w Combination 940+853
1713vsi 1712 1566vs 1718vs 17121707 1707 1707 1717 vsvp 1720vs 1747 vs  C=O stretch A’
1673 w 1674 vw 1678 w 1679 w Combination 999+ 675
1659 vw 1653 vw 1646 vw  Combination (?)
1615w 1617 sh 1615 vww 1615w Combination 999+617
1603 m 1605 1605sh 1604 m 1604 1603 1604 1603vsp 1603w 1605 w Phenyl
1585m 1590 1594vs 1584 m 1586 1586 1586 1585 w p 1585 w 1588 sh  Phenyl A’
1515 vw 1515 vw Combination 809+711(?)
1492 w 1494 1494 w 1493 vww 1497 1495 1495 1493 w 1492 vw Phenyl A’
1477 w 1470 1468 s 1478 m 1480 1476 1474 1479 vw 1477 w Methylene scissoring A’
1464 w 1457 1467 ? 1463 1462 1466 1465 w 1467 sh  Methyl antisym. def. A"’
1458 w 1457 1458 sh Combination 1264+ 190(?)
1451 m 1456 1452 m 1451 m 1453 1454 1454 1453 m p 1451 m 1452 m Phenyl A’
1444 wsh 1452 1445sh 1445sh 1444 1446 1446 1444 sh 1444 sh Methyl antisym. def. A’
1393 m 1399 1417 s 1398 m  1396/1392 1397 1398/
1391 1394 mp 1393w 1392 m  Methylene wag A’
1367 m 1369 1383 s 1369 m 1371 1369 1369 1369 mp 1368m 1368 m  Methyl umbrella A’
1314 s 1332 1310s 1314 s 1318 1319 1318 1316 m p 1314 m 1312 m Phenyl A’
1300 vw Combination 853+443(?)
1280vs 1280 1333 s 1280vs 1272 1288 1286 1276 vsivp 1277vs 1277 vs  a-C-O stretch A’
1301 1279w Phenyl A
1264 sh 1275 1252 vw 1254 w 1253 1271 1272 1264 sh Methylene twist A"’
1246 sh 1245m 1245 1252 1250 1246 sh 1246 sh 1248 sh  Combination 853+392
1212vw 1216 w Combination 809+397(?)
1183 1183 1186 Uncertain assignment
1176 m 1176 1184 m 1180m 1178 1175 1183 1178 svp 1176 m 1174 mi Phenyl A’
1170 www Combination
1159 mi 1163 1164w 1162 w 1158 1162 1167 1161 mip? 1161 sh Phenyl A’
1152 w 1155 w 1155 1157 1159 Combination 7114443
1125 s 1123 1170 w 1131s 1125 1128 1128 1119 sh Skeletal stretch A
1110 s 1111 1117w 1114 s 1112 1112 1112 1109svp 1109s 1114 vsi Skeletal stretch A’
1100sh 1103 1101w 1099 m 1096 sh 1102 sh Methyl wag A"
1090 wsh Combination 688+397(?)
1071 m 1074 1075w 1073 m 1071 1076 1075 1075 vw 1070m 1068 mi Phenyl A’
1028 m 1029 1025m 1028 m 1028 1031 1029 1029 mvp 1029 m 1030 mi Phenyl A
1017 wsh Combination
1010w 1010 1010 m 1013 sh 1010 sh p? 1015 sh Ethyl C—C stretch A
999 w 1000 1000w 1000 w 1003 1003 1003 1004 vs vp 1001 w Phenyl breath A
999 ¢ 998 999 ¢ Phenyl wag A"
990 989 992 m vp 3C Phenyl breath
981 vw 980 981ww 977vww 978 Phenyl wag A"
940 w 939 944 ww 942 w 937 947 949 937 vw Phenyl wag A
877w 880 864 ww 881 m 883 878 877 875 m 874wi 874w  (-C-O stretch A
868 wsh 874 7 868 866 Combination
853 m 844 883wvw 853 m 856 857 856 853vsvp 851w 849w  O=C-O scissoring A’
853 d¢ 854 846 w Phenyl wag A
815w 816 819 vw 817 w 820 820 822 811 vw Ethyl rocking A’
807 sh 800 802 vw 804 ww 807 808 810 808 m 807 vw i C=0 wag A"
782w 784 786 782 mvp  785vw Uncertain assignment
712 vs 711 711s 712 vs 719 723 725 713 vw 711 vs 709 vs  Phenyl in-phase wag A"
688 s 686 680w 687 m 690 691 691 685 sh 688 mi  680mi Phenyl torsion A"’
675 s 680 668w 678 m 676 677 676 676 vs p 674 m Phenyl in-plane def. A’
617 vw 614 615w 618 ww 618 617 618 619 vs p? 618 vw 614 vw  Phenyl in-plane def. A’
496 2 497 497 m 498 498 497 497 vw 497w ! Skeletal def. A’
443 vw 440 445 vw 442 445 444 444 vw 444 vw Phenyl torsion A"
39779 404 400 ? 408 405 Phenyl torsion A"
392w 402 342w 393 m 391 395 396 395 vw 398 w Skeletal def. A
contd
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Table 2. (contd)

Amorph. Force Complex® y-EB o-EB° B-EB° Liquid Liquid Vapour Simplified
-196°C -field —-196°C -196°C 25°C 25°C 100°C assignment
FTIR Calc. FTIR FTIR Raman IR Raman Raman FTIR FTIR
344 w br ! 347 wsh Uncertain assignment
331w 321 286 m 337 w 333 333 331vsvp 332wi Skeletal def. A’
272w 258 231w 277 m 276 277 272 w Skeletal def. A’
213 210/205 204/190 190 vs br 193 w? Skeletal def. A’
! 156 f 158 vw 153 w9 Skeletal torsion A"
129 139 133 120 vwww 118 w¥¢ Skeletal torsion A"’
98 Skeletal torsion A"’
91 85w p? Skeletal def. A’
62 Skeletal torsion A"

2Frequencies in cm™'. Intensities are visual estimates, vs=very strong, s=strong, m=medium, w=weak, vw=very weak, vww=very very
weak. For the polarizations: vp=very polarized, p=polarized and p?=inconclusive observation. i=irregular bandshape, br=broad band,
?=uncertain observation or assignment. Details of the force-field calculation are described elsewhere.?* *Crystalline equimolar (TiCl,~EB),

complex. Taken from Stokr et al.' ?Observed for other isotopic congeners, assumed unperturbed. °Observed through summation bands.

'No observation at this or lower frequencies due to limitations from window materials. 9Taken from Green and Harrison.'®

duced band-width in the crystalline ester compared with
that of amorphous EB.

None of the spectra give evidence of more than one
conformer in each of the phases.

The increased C=0 stretching frequency may indicate a
weaker intermolecular interaction, and the changes in the
intensities of the ethyl group vibrations may indicate a
change in the conformation of the ethoxy group, although
this interpretation is not straightforward.

The disappearance of the bands at 782 and 344 cm™! is
very difficult to explain. The same bands are also absent
from the spectra of the TiCl,~EB complexes,® which in-
dicates that the bands are due to some, at present un-
known, intermolecular interaction. On the other hand, ob-
served isotopic shifts, force-field calculations, and the ap-
parent lack of the two bands in the spectra of y-EB and the
complexes, indicate that they do not belong to any funda-
mental. We can offer no plausible explanation in terms of
conformational splitting.
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