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The so-called DHX model is generalized to arbitrary mixtures of ions of different
charges and different sizes. The idea is to use the Debye-Hiickel screened electric
potential around the ions to calculate the potential of mean force between two ions a
and b (w,,). The potential of mean force determines the radial distribution functions
through the relations g,,(r) = exp(—w,/kT) The model is tested by some Monte
Carlo simulations. The generalized DHX model (GDHX) seems to be almost exact in
dilute systems, where the radial distribution functions calculated by ordinary Debye-
Hiickel theory are grossly in error close to contact. Even at quite high concentrations
(around 1 mol 1! in water at 25°C) and in mixtures of three ions of very different
sizes, the radial distribution functions calculated by GDHX are in qualitative agree-
ment with Monte Carlo simulations. The GDHX model does not fulfil the electro-
neutrality condition exactly. However, it is possible to calculate salt activities in
mixtures from the Kirkwood-Buff formalism using only a subset of the GDHX radial
distribution functions together with electroneutrality. When all the radial distribution
functions are taken as GDHX functions, the Kirkwood-Buff equations may be
inverted and single ionic activities calculated. Taken individually, these activities are
meaningless, but they may be combined to salt activities which are close to the salt
activities calculated by the Kirkwood-Buff equations with electroneutrality. A com-
parison between data for the mean ionic activity coefficients of KF and KCl in water
at 25°C (pure solutions and 1:1 mixtures) and GDHX calculations is made. The
GDHX model is able to explain the fact that the mean activity coefficients of KF and
KCl are almost the same in pure solutions and in mixtures at the same ionic strength,
corresponding to Harned coefficients close to zero.

Paradoxically, a number of other mixed systems exhibit almost equivalent trace
activities of the two salts. The GDHX model is also able to reproduce that behaviour
with other choices of the ionic radii.

In a previous paper' we have reported some experimental
results for the mean ionic activity coefficients of KCI and
KF in KCI—-KF—-H,O mixtures at 25 °C. One curious result
is that the mean molar activity coefficients (y.) for KCl
dissolved in water seem to be statistically indistinguishable
from the activity coefficients for KCl in 1:1 mixed solutions
of KCI and KF having the same ionic strength. The same
result was found for the activity coefficient of KF in pure
and mixed solutions. This mutual insensitivity of a thermo-
dynamic property of one salt on the presence of another is
quite remarkable. The mutual insensitivity seems to hold
even in the extreme case of the activity coefficients of a
trace of one salt in a great excess of another! Bagg and
Rechnitz? and Leyendekkers® have demonstrated that the
activity coefficients of a trace of KF (0.0001 mol dm™) in
NaCl, KCI, KBr and KI solutions with concentrations <4
mol dm™* are the same as the activity coefficients in KF
solutions of the same ionic strength as in the mixed so-
lutions.

Chap. 15 of the monograph by Robinson and Stokes*
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summarizes the thermodynamics of a variety of mixed elec-
trolyte systems. Many mixed electrolyte solutions follow
the so-called Harned’s rule. This rule states that at constant
total ionic strength the logarithm of the mean molal activity
coefficient for one salt depends linearly on the molal con-
centration of the other salt:

Iny. (B) = Iny. (B,0) — ag mc (1)
Iny.(C) = Iny.(C,0) — ac my 2
The two Harned coefficients o, and ac are usually functions
of the total ionic strength(/ ), but the Maxwell condition for
cross-differentiation of the chemical potentials requires
that their sum is independent of the total ionic strength:

oy + ac = constant (independent of I) 3)

This condition was first derived by Glueckauf, McKay and
Mathieson.’ Robinson and Stokes also treat a more general
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form of eqn. (3), where quadratic terms may be included in
eqns. (1) and (2).

It is seen that the peculiar behaviour of the KCl-KF
system is not in conflict with eqns. (1)-(3), but the two
Harned coefficients are zero in this system. In a number of
other cases the Iny, vs. VI curves are different for each
pure electrolyte solution, but the trace activity coefficient
of electrolyte B in great excess of the other (C), and the
trace activity coefficient of electrolyte C in great excess of
B, follows the same or almost the same Invy, vs. VI curve
[see e.g. Fig. 15.1 in Ref. 4 (HCI-NaCl-H,0)]. Obvi-
ously, this cannot be the case for a system with Harned
coefficients equal to zero.

So far, the above observations have not been subjected
to theoretical analysis, and one might wonder about the
nature of a theoretical model being able to explain simul-
taneously the mutual insensitivity exhibited by some elec-
trolyte systems and the near equivalence of trace activities
found in other electrolyte mixtures. Will it be necessary to
involve highly specific interactions between ions (and ions
and water), or can the findings be roughly explained using
only the naive picture associated with the primitive model
of electrolytes (charged, hard spheres in a dielectric con-
tinuum)?

Although one might be tempted to exclude the latter
possibility, we shall show in this paper that a certain ap-
proximation for the radial distribution functions in the
primitive model (the generalized DHX model) is able to
generate results similar to those for both of the above-
mentioned situations. Furthermore, the contact distances
between the ions found by comparison with experimental
KF-KCIl data seem to be quite realistic as a crude measure
of the extensions of the repulsive potentials between the
ions in solution. The DHX estimate for the radial distribu-
tion function has been confirmed — at least in dilute so-
lutions — by Monte Carlo simulation of the restricted prim-
itive model (anions and cations of equal size).5"# We gener-
alize the expressions to unequal sizes of ions, supporting
the generalisation with a Monte Carlo simulation in a dilute
solution with a Bjerrum parameter B, _ = 1.546 and in a
quite concentrated solution with B,_ = 2.272. For mix-
tures, one has further to assume pairwise autonomy of the
radial distribution functions, i.e. we assume that the func-
tional form of the radial distribution function between two
ions is unaffected by the presence of other ions except for
the presence of the common Debye-Hiickel screening con-
stant (%) in the expressions. This assumption is backed up
by a single Monte Carlo simulation with a mixture of ions
of three different sizes.

First, we present the generalized DHX assumption to-
gether with some supporting Monte Carlo simulations.
Next, we present some different routes which can be fol-
lowed from radial distribution functions to activity coeffi-
cients. We then focus on the principle of electroneutrality,
which makes calculation of single-ion activity coefficients
from the Kirkwood-Buff formalism impossible in principle.
We also provide an explanation for the observed mutual
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insensitivity of the activity coefficients found experi-
mentally. Finally, we shall see that many other systems may
well exhibit the near equivalence of trace activity coeffi-
cients found in NaCl—HCI and several other mixtures.

The generalized DHX model for the radial distribution
functions

The historical origin of the so-called DHX model is some-
what obscure. Card and Valleaw’ found in their Monte
Carlo studies of the restricted, primitive model (RPM) that
the DHX expressions for the radial distribution functions
were quite good approximations, especially at low concen-
trations. Recently, high precision Monte Carlo simulations
including up to 1000 ions and greater than one million
configurations have been performed in our laboratory in
the ultradilute region for a Bjerrum parameter value of
1.546 for the RPM.%® In those studies, the radial distribu-
tion functions obtained by statistical analysis were indis-
tinguishable from the DHX profiles in the region between
one and four contact distances (see especially Figs. 6 and 7
in Ref. 8). The idea behind the DHX model is the follow-
ing: The screened, mean electric potential around a selected
ion with valence z, at a distance r is given according to the
Debye-Hiickel theory by:

D(r) = z80 (47 €r)™' (1 + nay)™" exp(=x[r = au]) (4)

In eqn. (4), ¢, is the elementary charge, x is the inverse
Debye-Hiickel screening length and € is the absolute per-
mittivity of the medium. Thus, the dimensionless electro-
static interaction between an ion a and an ion b at a dis-
tance r including the screening effect of the other ions may
be approximated by eqn. (5):

wao(PVKT = z, z,, )2 (4n €kTr)™' (1 + % ay,)”!
X exp (—x[r — au]) )

The potential of mean force between two particles is in
general defined by the equation g,,(r) = exp(—w,/kT),
where g,,(r) is the radial distribution function. If we take
eqn. (5) for this mean potential, we obtain:

gu(r) = exp[—2z,z,B(1 + dypn a)™" (s + dy)™"

X exp (=% a s,)] (6)
B=eX(4n € k Ta) (7
S = (rla) — dy, 8)
d, = a,la )

In eqns. (6)-(9), the length a is some suitable mean value of
the contact distances. In the present paper we shall make
the following choice for a system containing n different
kinds of ions:



a = (l/n)2 ay, (10)
b=1

We shall call the assumption (6) the generalized DHX
model (GDHX). This model has not been investigated
before. For the RPM with equal radii and symmetric
charges (z), we have the DHX model:

gi- (S)]
=exp[*2’B(1+x a)' (s+1)!
8:++(s)=8__(s) X exp (—x a 5)] (6a)

s =(rla) —1 (RPM)

In all cases, the radial distribution functions are of course
zero for distances smaller than the contact distances:

gb(r) =0 r<a, (11)
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Fig. 1. The radial distribution function g, _(s) in a dilute
electrolyte solution (o, = 5- 107 with a cation three times
larger than the anion (a, —/a__ = 3). Bjerrum parameter
B=1.546. The belt is the standard error belt of the smoothened
least-squares values (6th-degree polynomial most significant at
the 95 % level) of Monte Carlo samplings in 60 spherical shells
between one and seven contact distances. 799 ions were used
and 654,000 Metropolis configurations investigated. The dashed
curve calculated from the GDHX assumption is statistically
indistinguishable from the Monte Carlo values.
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Fig. 2. The radial distribution functions g, ,(s) and g__(s) for the
same system as in Fig. 1. The small anions are seen to repel
each other much more strongly than the larger cations. Again,
the GDHX values (dashed curves) are indistinguishable from
the Monte Carlo values as judged from the uncertainty belt of
the smoothened polynomial values (3rd degree at 95 % level).

In Ref. 8 we have shown that for dilute RPM systems with
B =1.546 and z = 1, the radial distribution functions found
by Monte Carlo simulations are statistically identical to the
values calculated by eqn. (6a). Figs. 1 and 2 in the present
paper show that the same is the case with the GDHX
model, in a case where the cation is 3 times larger than the
anion. The dimensionless concentration is g, = 5-107%. In
all cases treated in the present paper, the dimensionless
concentration is defined as the total particle concentration
times the cube of a, where a is given by eqn. (10). One
would expect deviations for higher concentrations, how-
ever. Figs. 3 and 4 show a situation with B =2.272 and
o, = 8.39- 1072, The sizes of the cations and the anions do
not differ very much (ratio 0.858). The situation seems to
be quite similar in a ca. 2 mol dm solution of KF in water
at 25°C, if the primitive model of electrolytes has any
relevance at this concentration (see section 4). It is quite
surprising to see from (Figs. 3 and 4) that the GDHX is not
a bad approximation for the radial distribution functions
even at such high concentrations. Fig. 5 shows that even
in a three-ion mixture with B =2, a,/a,/a; =3/2/1 and
Qo = 0.05, the radial distribution functions calculated by
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Fig. 3. The radial distribution function g, _(s) in a quite
concentrated electrolyte solution (o, = 0.0839). B=2.272 and
a,./a__=0.858. The smoothened values of two Monte Carlo
samplings are shown (solid curve: 512 ions, 235,000
configurations, 6th-degree polynomial; dotted curve: 216 ions,
620,000 configurations, 7th-degree polynomial. Samplings in 60
shells from one to four contact distances). The GDHX values
(dashed curve) do not differ substantially more from the Monte
Carlo values than the Monte Carlo values differ among
themselves.

the GDHX formula are in semi-quantitative agreement
with Monte Carlo calculations using 250 of the large ca-
tions, 125 of the medium-sized anions and 125 of the small
anions (Fig. 5). Thus, it also seems to be a fair assumption
that the radial distribution functions in mixtures, g, (r),
may be calculated from % and the corresponding value of
a,, alone, i.e. we have approximately pairwise autonomy of
the radial distribution functions in electrolyte mixtures.

From radial distribution functions to activity
coefficients

When the form of the radial distribution functions is
known, several methods exist for the calculation of activity
coefficients. One may calculate the mean dimensionless
excess energy per particle (under the assumption of no
temperature variation of the dielectric permittivity). We
state here the formula for E (ex)/k T in the general case of
n types of ions (see for example Ref. 10, section 5.3):
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<E(ex, constant €) >/ kT =

Queuk T) Y, D 0.0y | &ulr) Un(r)? dr. (12)

b @ab

The summations over a and b run over all the n types of
ions, the o’s are particle densities and g, the total density
of particles. The McMillan-Mayer pair potential is given by
eqn. (13):

Un(")VkT = Z,Z,Balr. (13)

With eqn. (13), the integrals in eqn. (12) seem to be di-
vergent, since g,(r) = 1 for r — . The situation is res-
cued by electroneutrality, however. Integrating first from
a,, to the mean diameter a and then from a to a large value
of the radial distance (insertion rule for integration), we
observe that the common integral in the second term may
be factorized out, and the remaining sum vanishes because
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Fig. 4. The radial distribution functions g, ,(s) and g__(s) for the
same system as in Fig. 3. The cations are seen to repel each
other somewhat more than the slightly larger anions, both in the
Monte Carlo simulations (N = 512; 235,000 configurations) and
the GDHX calculations. The correspondence is acceptable in
the case of g__(s), but is at most semi-quantitative in the case
of g, .(s).
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Fig. 5. The six radial distribution functions in a ternary electrolyte
system with a large cation, a medium-sized anion and a small
anion (ratio between ionic radii 3:2:1). The concentration is quite
high (o = 0.05) and the value of the Bjerrum parameter is

B =2 (both dimensionless quantities are based on the mean
diameter of the three ions). The Monte Carlo results (solid
curves) are for 500,000 configurations with 250 cations and
2x125 anions with samplings in 60 shells from one to four
contact distances. The succession of the GDHX curves
(dashed) is the same as the MC curves, but especially the
distribution functions between charges of equal sign are
distorted in the intermediary region (neither close to nor far from
contact).

of electroneutrality. For clarity we may rewrite eqn. (12) as
follows:

<E(ex, constant €)>/kT =

(n/0*) BZ, %, Z,Z, Q)0s

x {2 [ [gw — 1)(rla)d(rla) + 1 — d3}. (14)

day

We have defined the following dimensionless particle den-
sities:

0* =0, QF=0,a; 0 =0, 4. (15)

ACTIVITY COEFFICIENTS BY GENERALIZED DHX
The d,’s are given in eqn. (9) and B in eqn. (7) with the

mean contact distance a given by eqn. (10). For eqn. (14)
we use the shorthand notation:

<E(ex, constant €)>/kT =

(n/e*) B Z,Z, Z,Z, eief {26y + 1 — d3y} (16)

ew = (8o 115+ du)ds,y. a7
0

The s,,’s are given by eqn. (8). The excess osmotic coeffi-
cient may be found by (follows from Ref. 10, section 5.3):

@ — 1 = <E(ex, constant €)>/3kT + VOL (18)
VOL = (2n/3)p*
X [zazb(ga/Qtol)(legtot)(aab/a)sgab(aab)] (19)

Eqns. (18)—(19) yield the osmotic coefficient correctly at a
given temperature, whether or not there is a temperature
dependence of €. Finally, when only two kinds of ions are
present, the value of Iny. may be calculated by the well-
known Gibbs—Duhem integration from concentration zero
to the concentration studied.

When three or more kinds of ions are present, this
method will not be applicable when one wants to calculate
Iny, for two or more electrolytes in a mixed solution. In
such a case the generalized compressibility equations of
Kirkwood and Buff may be used instead (Ref. 10, eqn. 70,
or Ref. 11). The equations are the following (the p’s are the
electrochemical potentials of the single ions and 3§, is
Kronecker’s delta):

KT(30,/31] = 0.8 + 47 0,0, ) [ga(r)—1]7dr. (20)
0

W, constant
(c#b)

(a and b from 1 to n)

The most obvious idea is to invert the system of eqn. (20) in
order to obtain single ion activities as a function of con-
centration. However, we shall see in section 3 that when we
have strict electroneutrality, this inversion is in principle
impossible. Nevertheless, in practice many approximations
for the radial distribution function — which are quite satis-
factory in other respects (for example the DHX approxima-
tion; Ref. 21) — do not fulfil strict electroneutrality,” and
eqn. (20) may then be inverted. The single ion activities are
then spurious quantities without physical meaning, but
when combined to salt activities they — strangely enough —
often make sense (Ref. 10, section 7.5, p. 131). However, it
is also possible to use strict electroneutrality to obtain salt
activities directly without inversion from the eqn. (20),
using only a subset of the approximations for the radial
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distribution functions (section 3) (it should be mentioned
here that it is possible to calculate single ion activities from
first principles. A method is described in Refs. 20 and 22).

The Kirkwood-Buff equations for two ions at constant
temperature, solvent activity and electric potential (since
the electrochemical potentials of all but one species remain
constant in each equation) are given as:

kTag3/3p, = 4n(et)li,,—(13)d3,] + o (21a)

kToot/ou_ = 4n(e3)(e?)li,-—(1/3)] (21b)

kTao* /o, = 4n(e})(@™)li,-—(1/3)] (21c)

kTop*/du_ = 4n(o*)Yi__—(1/3)d® _] + o (21d)

ivs = [ [84:()~1](s+d, ) ds (22a)
0

i =] lg--(®)~1)(s+d__)yds (22b)
0

i, =] [g.-(s)=1)(s+1)%s. (22¢)
0

It is interesting to observe that the Kirkwood-Buff
equations are independent of any assumption of the form of
the pair potential. Incidentally, these generalized compres-
sibility equations do not even require the assumption ot
pairwise additivity of the McMillan-Mayer potential. The
special expressions (21)—(22) written above are valid for all
hard core potentials.

In the case of three ions, the Kirkwood-Buff equations
may be written in matrix form:

dof Ay ApAg d(u,/kT)
de3| = [Ay Ap Ay d(w,/kT) (23)
do3 Ay Ay Ay d(us/kT)
Aah = Aba = 4'"‘ Q: Q: [iab-(1/3 dgb] + 6ab Q: (24)
iy = [ [8(8) = 1](s7+ dp ). (25)
0

The generalisation to mixtures of n types of ions is straight-
forward.

Electroneutrality and the Kirkwood-Buff formalism

The formulae used in the Kirkwood-Buff formalism in-
volve integration to infinity. In the simple form given here
they are valid only for spherically symmetric pair distribu-
tion functions and for infinite systems. For such systems,
strict electroneutrality has to hold. The reason is that
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electric potential satisfies the equation of Poisson. This
equation has as solution an infinite potential in each point
when the system is infinite, and has a constant charge
density differing from zero. Therefore, not only the
electrostatic energy but also the electrostatic energy density
in each point tends to infinity in the thermodynamic limit of
an infinite system.

Of course, real systems (electrolytes, electrodes, etc.)
are not infinite. Rather, they are finite systems separated
by interfacial boundary layers wherein the charge density is
not zero. The incorporation of such boundary layers would
require integration of generalized, anisotropic radial dis-
tribution functions through the boundary layers. The
simple Kirkwood-Buff formalism does not work anymore.
Thus, we shall restrict ourselves to cases with strict electro-
neutrality. Another reason is that we have assumed in the
derivation of eqns. (21) and (23) that the electric potential
in the solution is kept constant when the concentrations are
varied. Thus, the concentration variations have to be con-
strained by the electroneutrality condition.

The electroneutrality condition around a central ion of
the b’th kind is given as (we relax in this section the strict
hard core condition):

2, = —4n Y, Z, of [ (gu(r)—1)rdr. (26)
a=1 0
(b=12..n)

We define the following quantities (of dimension volume):

G = Gy, = 40 [ (gu—1) P dr. @7)
0

Therefore we have the constraints:

> Z,0,Gp =2, (b=12..n). (28)
a=1

The Kirkwood-Buff equations may now be written in a
somewhat more general form than eqns. (21) or (23), since
we do not need to assume a hard-sphere core here. For
three types of ions we have, for example:

do My M, M5 d(uw/kT)
do, My My My, d(u,/kT) (29)
do, M;, My, My, d(uy/kT)

My, = My, = 0, 0 Gy + 85 O (30)

From eqns. (28) and (30) we obtain:

N Z,My=0. (b=1.2.n) (31)

a=1

Thus, we have linear dependency between the rows in the
matrix M. Therefore, the determinant detM = 0 and the



Kirkwood-Buff system of equations cannot be inverted to
find the single ionic chemical potentials from the ionic den-
sities (or from the salt densities). This is a consequence of
strict electroneutrality. However, one should be able to
find the variation in the chemical potentials of complete salts
in any mixture by solving the Kirkwood-Buff equations.
The condition for finding such solutions is also exactly the
electroneutrality constraint. We shall show this in the case
of two kinds of ions and three kinds of ions, respectively.

The general conditions for compatible solutions to linear
equations with zero determinant is that the augmented ma-
trix aug(M) has the same rank as M (Ref. 12). In the case of
two kind of ions we have:

M, M,, dg,

aug(M) = [Mm My d@z] (32)

The matrix M has a rank = 1. Therefore, all 2X2 sub-
determinants of aug(M) have to be zero. Apart from
det(M) = 0 we have:

M, do, — M, do, =0 (33a)
M,,do, — M,,dp, = 0. (33b)
From eqns. (30) and (31) we have:

My + z,My =0 (34a)
My, + My, =0 (34b)
M, =M,,. (34¢)
Alternatively:

M, = —(z,/z))M,;; M, = —(z,/z,)M,,. (35)

Inserting the eqn. (35) into eqns. (33a-b), we see that both
of the two compatibility eqns. (33a-b) lead to the same
condition:

z,do, + z,do, = 0. (36)

That is, all the concentration variations should be con-
strained by the electroneutrality condition. Therefore, we
may write:

dg, = v, dg;; dp, = v, do.. (37)
The density of “salt molecules” is denoted g, and v,, v, are
stoichiometric coefficients of the ions in the salt. Using the
two Kirkwood-Buff equations together with eqns. (35) and

(37) and the condition for stoichiometric electroneutrality
(zyv; + z,v, = 0) we obtain from both equations:

dp, = vy dwy + v, dw, = (kT v, v,/M,;) do.. (38)

ACTIVITY COEFFICIENTS BY GENERALIZED DHX

The chemical potential of the whole salt is denoted p,. In
the case of three ions we have:

My My, My, do,
My, My, My, de, (39
M;; My M, do,

aug(M) =

The rank of the augmented matrix should be 2, since this is
the rank of M. Thus, all 3X3 subdeterminants of aug(M)
have to be zero. The conditions for det(M) = 0 are given by
eqn. (31), which may be written:

My = —(z; My, + z3 My)lzy (40a)
My = —(2; My, + z; My)lz, (40b)
My = —(zy My; +-2, My)/z,. (40c)
Another subdeterminant condition is the following:

M, My, dg,

M, M, do,| = 0. (41)

M,y My, do,

Evaluating this determinant and inserting eqns. (40a—c) we
obtain, after tedious calculations:

a - (z;do, + z,d@; + z3de;) = 0 (42)
a =z MM + 2,M My + 23M13M23- 43)

Exactly the same condition is obtained from the two other
subdeterminant conditions analogous to eqn. (41). It is
seen once more that the Kirkwood-Buff equations are
compatible (soluble) if the concentration variations are
constrained to electroneutrality:

z, do, + z, dg, + z;do; = 0 (a # 0). (44)

It can be safely assumed that a # 0, since matrix elements
in M are functions of the ionic densities [eqn. (30)].
Therefore, a can at most be zero for certain specific con-
centrations, and not in general.

We now try to solve the three Kirkwood-Buff equations
(29) for the two independent chemical potentials of the
electroneutral salts (13 and 23, ion No. 3 is the common
ion). We denote the stoichiometric coefficients in salt 13 by
v, and v; (v = v, + v;). The stoichiometric coefficients in
salt 23 are called n, and n; (n = n, + 7;). We have the
stoichiometric conditions:

Vizp+v3z3=0; n 5+ M32,=0. 45)
We now write:
do, = v,do;3; do, = mydey; doy = videy; + Mydoys.  (46)
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Eqn. (46) are inserted in the three Kirkwood—Buff
equation (29). The matrix elements M;;, M,, and M,;, are
eliminated by eqns. (40a—c). The equations are combined
so that only changes in the chemical potentials of the two
salts appear, using the relations (45). As a result, the two
independent linear eqn. (47) are derived:

[(Mn - [713/712]M12/V3|(M12/712)] [duIS/kT]
(Myy/v,)|(My; — [vs/viIM ), dpys/kT

Vldglii]
= 47
[nzdgzs “7)

We note the perfect symmetry in the two salts. From eqn.
(47), the variations in salt activities caused by the variations
in salt concentrations are easily found:

dw,./kT
dpu/kT
_ [V1V3(M23 - [Vs/VJMlz)/M_V3713M12/A] [d91a] (48)
= -vinsM /Al (M, - MsmaIM )/ A doy
with
A = MMy — [viivi]MsMy;, — [ny/mp] M, Mo, 49)

Clearly, the eqn. (48) exhibit Maxwell symmetry as they
should, since the off-diagonal elements in the coefficient
matrix are equal.

Comparison with experimental results for KCI + KF
solutions

In preparation for the comparison with experimental re-
sults, we reformulate eqn. (48) in terms of mean ionic
activities for the two salts and in terms of the salt fraction
(X)) of salt 23 in the mixed solution. It should be remem-
bered that the elements of the matrix M are functions of the
ionic concentrations. The salt fractions are defined as:

Xy =1-= X3 = 0p/(0i + 02)- (50)

For a mixture of two 1:1 electrolytes (v, = v;=m, =1, = 1)
we obtain after rearrangements:

diny,(13) 1 L 51a)

dQr B ()Gl + BiaXs} O (Gla
diny.(23) 1 1

= -— 51b

dglol (tht)2G23{1 + [323X13} Qto ( )

Bis = [G/(Gy — G {1 — [Gn/Gii]} (52a)

By = [Glz/(Gu - GIZ)] {1- [G13/st]}- (52b)
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It is evident that for X,;, = 0 we obtain from eqn. (51a):

dlna,(13) 1 1

= -—. 53
thot (Q!o!)sz Qtot ( )

This equation is identical to eqn. (38) for a solution of pure
salt (replacing ion No. 2 by ion No. 3). Similarly for eqn.
(51b) with X3 = 0. In some cases we may have the follow-
ing conditions fulfilled:

Bu<1l By<1. (54)

From eqns. (52a) and (52b) it is apparent that this is the
case when the two salts are quite similar (G,; = G,;) and
when the “interaction term” between the two ions of simi-
lar charge is small (|G| < |G,;| and | G,,|). In that case, the
activity of the salts in a mixture will be equal to the activ-
ities in a pure solution of a concentration equal to the total
concentration in the mixed solution, if we have pairwise
autonomy of the radial distribution functions (G,; and G, in
eqns. (5la-b) should be equal in mixed and pure so-
lutions). Not even the trace activities will be different from
the pure salt activities. This seems to be the case with
KF/KCI mixtures.
In the case of hard-core potentials we have:

G, = 4na'li,, — (1/3)d,.%]. (55)

Finally, when the GDHX model is assumed to be a valid
approximation, the integrals i,, given by eqn. (25) may be
calculated explicitly by numerical integration using the ra-
dial distribution functions given by eqn. (6). It has proven
sufficient to use 6-point Gauss quadrature (Ref. 13) in 40
intervals, each of a length equal to one half the Debye-
Hiickel length. The i, integrals in particular necessitate
integration extending far out, because of the weighing with
the square of the distance in eqn. (25).

In the following, we present mean ionic activity coef-
ficients calculated in three different manners from the
GDHX assumption:

(1) By means of osmotic coefficients and Gibbs—Duhem
integration.

(2) By direct solution of (inversion of) the Kirkwood-Buff
equations. This latter approach is possible since the
GDHX does not satisfy electroneutrality. The changes
in the “single ionic activities” have no meaning by
themselves, but they may be combined to give mean
ionic activities.

(3) By using the electroneutrality condition together with
the Kirkwood-Buff equations and a subset of the
GDHX radial distribution functions. In all cases, the
second integration (over concentrations) is performed
using 6-point Gauss quadrature in intervals of the




square root of the ionic strength corresponding to 0.1
V(mol dm™). No difference was found when smaller
concentration intervals were used. The starting point
was solutions containing 108 mol dm™ salt. In such
solutions, Iny, may safely be set equal to E (ex, const.
€)/kT according to the Debye—Hiickel limiting laws.

For uni-univalent salts in water at 25°C we may write:

0¥ = (Cy/mol dm™) - (a,,/A)*/830.22 (56)
B = 7.1356/(a,/A). (57)
Therefore, the calculated curves of Iny, vs. VI for a single

salt in solution are determined by only one variable para-
meter, the contact distance a = a,,, if the radii of the two

ny: [ DHX and osmotic coefficient -
DHX and inverted Kirkwood-Buff-——-~—--— 4
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Fig. 6. The natural logarithm of the mean ionic activity coefficient
as a function of the square-root of the ionic strength in water at
25°C, as caiculated from the DHX model (GDHX with equal
ionic diameters). The ionic diameter in A is used as the single
adjustable parameter. The values calculated from osmotic
coefficients and the Gibbs—Duhem equation (solid curves) are in
reasonable agreement with the values calculated by inversion of
the Kirkwood—-Buff equations (dashed curves). The best-fitting
polynomials for the experimental data obtained in Ref. 1 for KCI
and KF are also shown (pooled values for pure solutions and
1:1 mixtures). DHLL stands for “Debye—Hdckel Limiting Law”.
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Fig. 7. The natural logarithm of the mean ionic activity coefficient
as a function of the square-root of the ionic strength in water at
25°C, as calculated from the GDHX model for g, _(s) from the
Kirkwood-Buff equations plus electroneutrality. The contact
distance between cation and anion is the single adjustable
parameter, since the ratio of the cationic to the anionic radius
may be chosen arbitrarily in this case. The polynomials of the
experimental values for KCI cross the curves of equal contact
distance.

ions are set equal to each other. Fig. 6 shows a family
of such curves calculated from osmotic coefficients and
from inversion of the Kirkwood-Buff equations. The two
methods yield quite consistent results in spite of the dif-
ferent types of integrals involved (e-integrals and i-inte-
grals, respectively). The polynomals that best fit the experi-
mental data for pure and mixed solutions of KCl and KF
obtained previously are (Ref. 1):

Iny,(KCl) = 0.117x* — 0.547x* + 1.101x2 — 1.175x  (58)
Iny,(KF) = 0.098x* — 0.446x> + 1.011x* — 1.118x  (59)
x= VI (60)
These experimental curves are also drawn in Fig. 6. The
form of the curves fits well with the GDHX values, and it

seems possible to fit the KCI data with a contact distance

429



SORENSEN AND JENSEN

Iny. — et —
Water 25°C ! -
-0.1
GDHX
a,72.86A (B=2.495)
a
a"—=1
~0.2f 22 e
-03} . j
. Kirkwood - Buff
L (9aa)
-04
- 1
s
%
inverse
-05
! osmotic
! Kirkwood-— °-, o
-06}k Buff (g, ) 4
.1 PN | . L.
0.5 10 1.5 e

Viimol"2 dm=%2

Fig. 8. The Iny. vs. VI curves in water at 25°C for a contact
distance between cations and anions equal to 2.86 A calculated
in various ways from the GDHX model: (a) From osmotic
coefficients with a,,/a__ =1 (solid curve). (b) From the inverse
Kirkwood-Buff equations with a, ,/a__ = 1 (dashed curve).

(c) From Kirkwood—-Buff plus electroneutrality plus g,_(GDHX),
arbitrary ratio a, ,/a__ (lower dotted curve). (d) From Kirkwood—
Buff plus electroneutrality plus g,,(GDHX) with a,,/a__ =1
(upper dotted curve). The models (a) and (b) fit the experimental
polynomial for KCI within experimental error.

slightly lower than 2.9 A, and the KF data with a contact
distance slightly above 3.1 A. Fig. 7 shows that everything
is not as perfect as it looks, however. The family of GDHX
curves drawn in this figure is calculated from the
Kirkwood-Buff equations using electroneutrality and the
GDHX expression for g,_. In this calculation, the ratio
between the cationic and the anionic diameters does not
matter, only the contact distance a, _ being of importance.
However, it does not seem to be possible to fix the value of
this contact distance for any of the two salts. The best than
can be said is that the contact distance is between 3.2 and
3.5A for KF and between 2.9 and 3.5A for KCl. We
postpone the discussion of these findings to the last section.

The inconsistency of the GDHX also shows up in Figs. 8
and 9. In Fig. 8, the KCI data are shown together with
theoretically calculated values for a contact distance of
2.86 A and a ratio of ionic diameters of 1. The fit to the
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inverse Kirkwood-Buff values and the values obtained
from the osmotic coefficients is virtually perfect. The val-
ues calculated using electroneutrality and GDHX for g, _
are somewhat too low, and the values obtained similarly
from g,, =g__ are very much too high. The values ob-
tained from osmotic coefficients and from the inverse Kirk-
wood-Buff values seem to strike a sensible balance be-
tween the two extremes obtained from Kirkwood-Buff to-
gether with electroneutrality. The same seems true in Fig.
9, where the data for KF are fitted to a contact distance of
3.16 A (equal radii) when the osmotic values or the inverse
Kirkwood-Buff values are used.

In the case with three ions we choose a radius for K* and
CI” of 2.86/2 = 1.43A. For the F~ ion we then have a
radius of 3.16 — 1.43 = 1.73 A. For KF, we should then
have chosen a, /a__ = 0.826. However, the influence of
the slightly unequal radii on the activity coefficients is quite
small in the case of a pure solution of KF. The precise
values of the radii of the three ions will only be important
for the conclusions in the case of a three-ion system.

Fig. 10 shows the quantities f,; and §,; as functions of the
square-root of the ionic strength. It is seen that they
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Fig. 9. The samt plots as in Fig. 8, but with a,_ = 3.16 A. The
values from osmotic coefficients and the values from inverse
Kirkwood-Buff fit the experiments for KF within experimental
error.
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Fig. 10. The interaction coefficients B,3 and B, in a ternary
mixture of two salts (13 and 23) with the salt fraction X3 =0.5,
i.e. a 1:1 mixture, caiculated from Kirkwood—Buff plus
electroneutrality plus g,,(GDHX), g;3(GDHX) and g,3(GDHX)
[eqns. (52a-b)]. Since the absolute values of the interaction
coefficients are mostly <1, it is difficult to distinguish between
Iny.. in solutions of pure salts and in mixed solutions with the
same total ionic strength. The contact distances correspond
roughly to a mixture of KCI and KF in water at 25°C.

are both much smaller than unity for most of the con-
centrations considered. Thus, it is not strange that it was
not possible to distinguish experimentally between KF and
KCl in pure and in mixed solutions.

Comparison between Monte Carlo results and GDHX
calculations

As we have seen, the activity coefficients are highly sensi-
tive to small variations in the manner in which the GDHX
assumption is applied. Thus, the case is somewhat weak
concerning the validity of the GDHX model at higher
concentrations. One piece of supporting evidence is that
the values obtained from osmotic coefficients are almost
equal to the values obtained from Kirkwood-Buff inver-
sion. However, the support is somewhat destroyed when
one considers that it is in principle wrong to invert the
Kirkwood-Buff equations! More direct evidence for the
usefulness of the GDHX approximation would be desir-
able, and such evidence will be given here in the form of
direct comparison with Monte Carlo (MC) simulations.
The conditions corresponding to the MC simulations
shown in Figs. 3and 4 (B = 2.272,a,,/a__ = 0.858 and gy,
= 8.39 1072) seem to be quite close to the conditions
prevailing in an aqueous KF solution of ca. 2 mol dm™ at
25°C (see the previous section; Fig. 9). The excess energy
has been calculated directly by the Metropolis method for
N = 216 and 512 ions. The values of the radial distribution
functions at contact and the volume term (VOL) in the
osmotic coefficients can be found by polynomial extrapola-
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tion. In Table 1, a comparison is given between excess
osmotic coefficients calculated from Monte Carlo simula-
tions and from the GDHX model. The deviation is 4 %, so
at least in this case the GDHX osmotic coefficient is a fair
approximation. In Table 1 we also give values of the excess
energy and the osmotic coefficient calculated alternatively
from direct integration of the best polynomial approxima-
tion of the Monte Carlo results for the radial distribution
functions. For N = 512 and 235,000 configurations these
are given by:

g, (s) = 2.71637 — 4.7014s + 5.81284s?— 4.06930s>
+ 1.65400s* — 0.361165° + 0.0325409s° (61)

g.+(s) = 0.303885 + 0.879493s — 0.37201s>
+ 0.052000s (62)

g__(s) = 0.445579 + 0.824623s — 0.47199s>
+ 0.123428s° — 0.012539s". (63)

Eqns. (61)—(63) are all valid only in the range from s =0
(contact) to s = 3. However, all Monte Carlo radial distri-
bution functions seem to deviate less than 1 % from unity at
s =3, so the e-integrals may well be truncated at this value.
It is very important to retain all the decimals in the poly-
nomial coefficients in the analytical formulae for the
integrals, since the net results appear as a small difference
between almost cancelling positive and negative values. We
obtain:

e,, = —0.6162675
e__ = —0.4900236
e, = +0.7389816. (64)
From these values, the excess energy in the second row of

Table 1 has been found. It deviates only 1.5% from the
Metropolis value.

Table 1. Dimensionless excess energy, corrected excluded
volume (VOL) and excess osmotic coefficient (¢ — 1) calculated
by three methods for B =2.272, o}, =8.39 1072

Method E. /NxT VoL o-—1
Monte Carlo

(Metropolis)

216 ions —0.7851

512 ions —0.7840 0.276 +0.0147
From Monte Carlo

Gan(r) for 512 ions up

to 4 contact

distances -0.776 0.276 +0.0173
From GDHX g.,(1) -0.7129 0.2517 +0.01410
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Cases of mixtures with almost equal trace activities

The KCI-KF case is quite peculiar. In the introductory
section we mentioned that we more often experience cases
of electrolyte mixtures in which the two trace activity coef-
ficients are almost equal at the same ionic strength, e.g. the
HCI-NaCl system. This peculiarity is clearly exhibited also
by the GDHX model in a variety of other situations (Figs.
11, 12 and 13). For simplicity, all calculations are made
with the uninverted Kirkwood-Buff equations plus electro-
neutrality, i.e. eqn. (48) have been used. Thus, the GDHX
model has room for a qualitative explanation of seemingly
paradoxical experimental findings.

Conclusions

From the considerations described above we may draw the
following conclusions:

Iny.
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Fig. 11. The Iny. vs. VI curves in water at 25°C for mixtures of
two salts 13 and 23 with contact distances a,; = 5A and

8, =4 A, and with ionic radii: r, =3A and r,=r;=2A. In
mixtures, the mean ionic activity coefficients for the two salts
approach each other. The activity coefficient of a trace of 13 in
a great excess of 23 is almost equal to the activity coefficient of
a trace of 23 in a great excess of 13. Such cases are often
found experimentally (Ref. 4, Chap. 15, p. 434). The calculations
are based on GDHX plus Kirkwood-Buff plus electroneutrality.

432

+0,10 T T Y 57 T T T
Iny:(13) Water 25C
=-=---Iny.(23) 1:1electrolytes
- Kirkwood -Buff+DHX r,=2.5A rsr:1.5A 7
. . R _ _Ca
Without invrsion X”- T+
o
,Trace
-o010}f ‘;' Iny, (23]}
1 X24=0.01
1
L p 4
13) /
Iny (13 /
-0.20} Y , ]
=0.01 1
\ x23 ] Trace
- ‘\ ’ Iny, (13) -
\ J X»3=0.99
- | \ / -
0.30 A a,=aA /
\ 7
-~ \ ,, -
\ \\ ,
\\ \ y
N\
-040- N b
N
\ ~===
\ -
™ \
\
\
-050| AN .
AN
DHLL N e
b~ s SO ‘,’ + -
ay=3A < _ .- Iny:(23)
$0.99
-0.60 1 1 1 1 1x23 L
0.4 0.8 1.2 16

Viimol"2 dm~32

Fig. 12. Curves as in Fig. 11, but with r, =2.5 A and
r,=ry=1.5A. The positions of the curves are lower than in
Fig. 11, but the trace activity coefficients are almost equal for
the two salts, as in Fig. 11.

(1) The GDHX expressions for the radial distribution
functions are quite exact at low concentrations. At
higher concentrations, the expressions constitute a fair
approximation, although the agreement is at most
semi-quantitative in mixed electrolytic solutions.

(2) At Bjerrum parameter values around 2, values of Iny,
calculated from GDHX osmotic coefficients and from
the inverted Kirkwood-Buff equations are quite con-
sistent.

(3) Inversion of the GDHX Kirkwood-Buff equations is
only possible because electroneutrality is not strictly
satisfied by the GDHX radial distribution functions.

(4) Values of Iny, calculated from Kirkwood-Buff
equations without inversion using electroneutrality
differ widely according to which radial distribution
functions we calculate from the GDHX expressions.
The values obtained from GDHX osmotic coefficients
or from inversion seem to strike a compromise between
the two extremes.
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Fig. 13. Curves as in Fig. 11, but with r, =2.0A and
n=rn=15 A. The positions of the curves are lower than in
Fig. 12, and we are quite close to the KF/KCI situation.
Nevertheless, the trace activity coefficients are still almost
equal. Figs. 11—13 suggest that the KF/KCI situation (where the
trace activity coefficients are equal to the activity coefficients of
the pure salts) is very atypical.

(5) The osmotic coefficients calculated from GDHX seem
reasonable compared to Monte Carlo results.

(6) The contact distance in KF solutions at 25°C seems to
be around 3.15+0.10 A when experimental Iny. values
for aqueous solutions of KF are compared to values
obtained from the GDHX model and osmotic coef-
ficients or from inverted Kirkwood-Buff equations.
Similarly, a contact distance of 2.85 * 0.10A is ob-
tained for KCl solutions. From such comparisons, it is
not possible to tell what the ratio of the ionic radii
should be in the two salts.

(7) From the Kirkwood-Buff equations and electroneu-
trality (using the GDHX assumption for g, _) it is not
possible to fit a definite contact distance for KCl or for
KF. One obtains contact distances which decrease with
increasing concentration from 3.5 to 3.2 A for KF and
from 3.5 to 2.9 A for KCI.
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(8) Assuming radii of 1.43 A for K* and ClI~, and 1.73 A
for F~, we find from the GDHX model that there is
almost no difference between the activity coefficients
of each of the two salts in pure solutions and in mixed
solutions at the same ionic strength. Even the trace
activity of one salt in a great excess of the other is
almost equal to the activity of the solution of the same
pure salt at comparable ionic strengths.

(9) More typically, GDHX calculations on ternary mix-
tures using the Kirkwood-Buff equations and electro-
neutrality lead to the result that the Iny. of each salt
vary with the salt fraction. The two Iny, curves meet in
almost identical values of the trace activity coefficients
of the two salts in a great excess of the other.

The range of contact distances found (conclusions 6 and 7)
is not at all surprising. Adams' has given a survey over ion
hard-sphere dimensions estimated in various ways in solid-
state structural chemistry. The best values are probably
those determined from electron density maps for ionic crys-
tals obtained by X-ray diffraction. The best estimate for the
radius of the K* ion is 1.49 A, and for the ClI™ ion 1.64 A
(Ref. 14, Chap. 2 and Table 6). When the two ions are not
hydrated, the resulting contact is 3.13 A. However, it is
reasonable to assume that the ionic separations would be
slightly larger in a crystal than for an ion-pair in solution,
since the electrostatic attraction between ions of opposite
charge is less oriented in the crystal. The F~ ion has a radius
of only 1.16 A as judged from electron density maps (Ref.
14, Chap. 2 and Table 6). The unhydrated contact distance
is then only 2.65 A for KF. On the contrary, we find a larger
contact distance for KF than for KCl. One obvious expla-
nation would be that the small (and hydrogen-bonding)
F~ion is hydrated so as to have a radius larger than the
radius of CI™.

The hydration of ions in aqueous solution is a contro-
versial issue, since widely different values for the hydration
numbers are found by different methods (see, for example,
the review by Hinton and Amis'®). However, it is most
often assumed that large ions such as K* or Cl™ are not
hydrated to any great extent, whereas small ions such as
Li* or F~ are strongly hydrated. It is also worth mentioning
that Onsager and Fuoss have determined the contact
distance of KCI in water at 25°C to be 3.07 A by com-
parison of conductance data with their theoretical formula
(Ref. 16, p. 451). This is very close to the value found here
from activity coefficients. This is somewhat in conflict with
the theory of Moller, from which one obtains rather a
contact distance equal to about 2 A for KCl in water at 0°C
by comparison with the measured osmotic coefficients
(Ref. 16, p. 417 and Fig. 115).

Should we therefore conclude that the Iny. values calcu-
lated from GDHX osmotic coefficients or by inversion of
the Kirkwood-Buff equations are better than the values
calculated from the Kirkwood-Buff equations plus electro-
neutrality and g, _(GDHX), because the latter values can-
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not fit the experimental data with one fixed value of the
contact distance? No. This is not at all a safe conclusion!
First of all, it is very risky under any circumstances to
interpret the thermodynamic properties of more concen-
trated solutions by means of such a crude tool as the prim-
itive model, so we cannot expect an exact fit using a fixed
contact distance. Having said this we try anyway, since we
are left with no choice in the case of the KF-KCl system. In
the latter system we have to go to quite high concentrations
to see any differences at all between the two mean ionic
activity coefficients. However, even within the framework
of the primitive model, many reasons could be given for an
observed decrease of the contact distance with increasing
ionic strength:

(a) First of all it should be noted that the activity coeffi-
cients calculated refer to MacMillan-Mayer conditions
(pressure equal to osmotic pressure) rather than to the
usual Lewis and Randal conditions (atmospheric pressure).
In a 1 mol dm~3 solution one has to subtract ca. 0.02 from
the calculated Iny, values (Ref. 16, p. 414 and Table 77).
This would deflect the GDHX curves in Fig. 7 in the right
direction, whereas the calculated curves in Fig. 6 would
deviate from the experimental curves.

(b) Secondly, the hydration of the ions should naturally
decrease with decreasing concentration of water. However,
for KCl this explanation cannot be used, since none of the
ions seem to by hydrated to any measurable extent.

(c) Thirdly, an apparent decrease in the contact distance is
really an increase in the Bjerrum parameter. The Bjerrum
parameter is inversely proportional to the dielectric
constant of the medium [eqn. (7)]. However, it has long
been known that the macroscopic dielectric constant of
aqueous solutions decreases considerably with increasing
salt concentration for many salts. For example, for salts
such as LiCl, NaCl and KCl, Hasted et al. found a decrease
from 78 to around 60 for the dielectric constant when the
concentration increased from zero to 1.5 mol dm™
(25°C)."7!8 The explanation proposed by Hasted' was that
because of the reorientation of the dipole moment of water
molecules in the neighbourhood of the ions, the local die-
lectric constant may drop to a value of from 4 to 6 within a
distance of about 2 A from the ion.

A decrease in the dielectric constant with increasing con-
centration would lead to a considerable downward deflec-
tion of the calculated curves for the activity coefficients.
However, it should be remembered that the effect on the
activity coefficient is cumulative over the lower concentra-
tions, so the effect is not as large as it may first seem.
Furthermore, when the concentration is around 1-2 mol
dm ™ the value of xa is around unity. This means that most
of the dielectric phenomena are taking place in the immedi-
ate neighbourhood of the ion according to the GDHX
model. Since the local dielectric constant is very low here,
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the “local Bjerrum parameter” is very high, and many
complications may appear which are not accounted for by
the primitive model.

Nevertheless, the reasonable values of the contact dis-
tances found, as well as the semi-quantitative agreement
with measurements in electrolyte mixtures, lend some cred-
ibility to the straightforward use of the primitive model and
to the GDHX assumption, even in the quite concentrated
solutions considered here. The present work is meant as a
first step towards more exact theories in which we may
adjust the GDHX radial distribution functions in order to
achieve complete thermodynamic consistence. This pro-
gramme seems to be promising in view of the extreme
sensitivity, demonstrated above, of the Iny, vs. VI curves
to the method of calculation.
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