Synthesis of 4-Arylamino-1*H*-pyrazolo[3,4-*d*]pyrimidines

Lene Andersen and Erik B. Pedersen

Department of Chemistry, Odense University, DK-5230 Odense M, Denmark

Andersen, L. and Pedersen, E.B., 1988. Synthesis of 4-Arylamino-1*H*-pyrazolo[3,4-*d*]pyrimidines. – Acta Chem. Scand., Ser. B 42: 492–493.

4-Substituted pyrazolo[3,4-d]pyrimidines have long been known to possess antitumor activity. 1.2 As early as 1956 Robins³ and later on Skipper et al.⁴ reported the synthesis and biological activity of 4-alkylaminopyrazolo[3,4-d]pyrimidines. Recently, the corresponding nucleosides have been shown to be anticoccidial agents.⁵ Therefore, it would be of interest to find an easy synthesis of 4-arylamino-1*H*-pyrazolo-[3,4-d]pyrimidine derivatives as candidates for biological screening.

Commercially available 1*H*-pyrazolo[3,4-*d*]-pyrimidine-4-ol (1) was treated with a mixture of triethylamine hydrochloride, phosphorus pentaoxide, and an arylamine, at 150–200 °C for 1.5–24 h to give the corresponding amino compounds (2) in 21–59 % yield (see Table 1).

Correct microanalysis, mass, IR, ¹H NMR and ¹³C NMR spectra were obtained for all new compounds.

The interpretation of the ¹³C NMR spectra was made by comparison with the spectra of other 4-substituted 1*H*-pyrazolo[3,4-*d*]pyrimidines⁶ and with ¹³C NMR spectra of anilines, and by inspection of undecoupled spectra.

Experimental

4-(3-Trifluoromethylanilino)1H-pyrazolo[3,4-d] pyrimidine (2e). Typical experiment. 3-Trifluoromethylaniline (0.16 mol) was added with stirring to a mixture of phosphorus pentaoxide (27.2 g, 0.16 mol) and triethylamine hydrochloride (22.0 g, 0.16 mol) protected with a CaCl, drying tube. The mixture was placed in a preheated oil bath at 200 °C. When the mixture had turned into a homogeneous melt (15-30 min), (1) (5.44 g, 0.04 mol) was added and the mixture was stirred at 200 °C for 24 h. The reaction mixture was allowed to cool to about 100 °C, 2 M sodium hydroxide was added until a pH of 9-10 was reached and the mixture was stirred for 1 h at ambient temperature. The digested product was filtered off, washed with water and recrystallized from 96 % ethanol to give 6.6 g (59 %) of (2e). MS [m/z (% rel. int.)] 279 (79, M), 278 (100), 258 (12), 145 (19). ¹H NMR (60 MHz; [²H₆]Me₂SO): δ 7.42 (d, 1 H, J = 8 Hz), 7.64 (t, 1 H, J =8 Hz), 8.20 (d, 1 H, J = 8 Hz), 8.36 (s, 1 H), 8.57 (s, 1 H), 10.32 (NH), 13.76 (NH). ¹³C NMR

Scheme 1.

Table 1. Preparation of (2a-g).

Compound	Ar	Reaction			
		Time/h	Temp./°C	Yield/%	M.p./°C
(2a)	C ₆ H ₅	1.5	150	21	253ª
(2b)	4-CIC ₆ H₄	2.5	200	26	25 9
(2c)	3-CIC ₆ H ₄	3	200	50	298-299
(2d)	3-CF ₃ , 4-CIC ₆ H ₃	3	200	56	300
(2e)	3-CF ₃ C ₆ H ₄	24	200	59	301
(2f)	3,5-(ČH ₃) ₂ C ₆ H ₃	3	150	48	282-284
(2g)	4-FC ₆ H ₄	3	150	31	264-265

^aLit. m.p. 263-264 °C.³

(15 MHz; $[^2H_6]$ Me₂SO): δ 100.7 (C-3a), 132.1 (C-3), 153.9, 154.7 (C-4, C-7a), 154.9 (C-6), 116.5, 119.0, 124.0, 126.5, 129.6, 140.2 (Ar), 121.0 (CF₃). IR(KBr) 1640 cm⁻¹. Anal. C₁₂H₈F₃N₅: C, H, N.

References

- Vendetti, J. M., Rei, E. F. and Goldin, A. Cancer Res. 13 (1960) 959.
- Henderson, J. F. and Junga, K. G. Cancer Res. 21 (1961) 173.

- 3. Robins, R. K. J. Am. Chem. Soc. 78 (1956) 784.
- Skipper, H. E., Robins, R. K., and Thomson, J. R. Proc. Soc. Exp. Biol. Med. 89 (1966) 594.
- Rideout, J. L., Krenitsky, T. A., Koszalka, G. W., Cheng, N. K., Chao, E. Y., Elion, G. B., Latter, V. S. and Williams, R. B. J. Med. Chem. 25 (1982) 1040.
- Finlander, P. and Pedersen, E. B. Chem. Scr. 23 (1983) 23.

Received May 20, 1988.