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The packing of DNA is described using the formalism of differential geometry.
Winding of the DNA double helix around the histone 2-5 octamer forming a
nucleosome and the condensation of the so-formed bead-on-a-string chromatine
aided by histone 1 is interpreted as two consecutive isometric, i.e. Bonnet,
transformations. The DNA double helix can be approximated to a helicoid which
can be transformed isometrically to a catenoid, an approximation of the nucleo-
some. Owing to the organization of the histone octamer the extended chromatine
takes a helicoidal shape allowing a second Bonnet transformation to consummate

the condensation into a chromatine fibre.

“The screw constitutes the most general one-
parameter group of motion in space”. (Hilbert
and Cohn-Vossen, 1952).

The fact that the uncoiled DNA of an euca-
ryotic organism, e.g. a human, is approximately
2 m long, albeit split up in ~5 cm strands in
each chromosome, yet is contained in a nucleus
of ~5um diameter, represents a formidable
packing problem. Not only must allowance be
made for the total confinement of such a giant
molecule, but also for fast and easy access to
different segments thereof, coupled with the ob-
vious necessity of maintaining structural integri-
ty. In other words the folding—packing mecha-
nism should ideally be adiabatic, thereby ensur-
ing maximum velocity in both directions and
avoiding the establishment of chemical and/or
thermal gradients that could be impairing to the
molecule.

According to common belief, DNA is packed
along hierarchic levels of rising complexity.' The
lowest level is of course the DNA double helix
itself. This is then transformed to the nucleo-
some, i.¢. chromatine, level where the double
helix is wound around a highly specific protein
cluster creating the so-called bead-on-a-string
form of chromatine. At the next level the bead-
on-a-string is condensed to a chromatine fiber,
once again aided by a specific protein, which is
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further compacted to the final metaphase chro-
mosome.

In a number of recent papers, the role of differ-
ential geometry and, as a consequence, minimal
surfaces in chemistry has been firmly established.
It has been convincingly shown that such differ-
ent areas of chemistry as transformations in the
solid state,” equi- or zero-potential surfaces of
solids,>* structure and reactivity of zeolites,*®
structure of starch,” composition of mem-
branes,®® and protein/enzyme structure and reac-
tivity'” can be explained by the presence and in-
tervention of minimal surfaces. In this paper we
will show how the application of differential geo-
metry, especially the so-called Bonnet transform-
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Fig. 1. Normal curvature at a point on a surface.
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ation, can explain the necessary conversions in
DNA packing up to at least the chromatine fibre
level.

To understand the Bonnet transformation'! we
need to explore the concept of curvature a little
more deeply. The curvature of a plane curve is
rather simple to grasp. At any regular point it is
defined as the inverse of the radius of the circle
that most closely approximates the curve in that
point. Thus, for a straight line-segment the clos-
est approximation is a circle with infinite radius
and the curvature is zero.

In the case of curves and surfaces in three-
dimensional space the problem is somewhat more
complex. The notion of normal curvature is
closely related to that of plane line curvature.
The normal curvature at a point on a surface is
the curvature of the plane line of intersection
between a plane through the surface normal and
the surface itself (Fig. 1).

As the plane is rotated around the surface nor-
mal, the value of the normal curvature will
change smoothly. During a full turn it will have to
attain a maximum and a minimum value. These
values are known as the principal curvatures (in
concordance with principal tensions in mechanics
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Fig. 2.
The Bonnet transformation.
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etc.). By combining the principal curvatures in
different ways we can develop other curvature
concepts.

The arithmetic mean of the principal curva-
tures is known as the mean curvature (H). The
hallmark of a minimal surface is that H =0 at all
points. Minimal surfaces are further character-
ized by the property that for any closed curve on
that surface, the surface with the smallest area
spanned by that curve is the enclosed element of
the minimal surface.

The Gaussian curvature (K) is the product of
the principal curvatures and hence is always neg-
ative for a minimal surface. It is a measure of the
local metric of the surface. Two surfaces with K
equal at corresponding points can be deformed
into each other by simple bending, while surfaces
with different K require stretching or shrinking at
some points to coincide. An example of the first
case is the ease with which a plane can be rolled
into a cylinder, an example of the other case is
the difficulty of making a sphere out of a plane.

The unique property of the Bonnet transform-
ation is that it preserves both K and H. It is the
most restrictive of all transformations and thus
isometric, i.e. lengths and angles are preserved.



It operates on minimal surfaces and converts
them continuously into other minimal surfaces,
e.g. helicoid to catenoid (Fig. 2), without stretch-
ing or tearing. In the deformation of a chemical
structure these properties are of great impor-
tance. The preservation of mean curvature, and
thereby also of minimality, means that solvent-
—solvate interactions are minimized and the
number of solvating bonds to be broken during
conversion is negligible. The preservation of
Gaussian curvature, and hence of local metric,
has the result that all bond lengths in the con-
verted molecule remain constant during the con-
version. As a combined result of the invariance of
both K and H, the Gaussian curvature and the
mean curvature of any parallel surface are also
invariant.

A surface y, parallel to a surface x, is de-
fined as

y(u,v) = x(u,v) + aN(u,v)

in some local coordinate system [u,v]. N is the
surface normal and a is the distance between x
and y. Since the gradients of N with respect to u
and v are contained in the plane tangent to x they
can be written as

Nu = QX + 0z X,

N,

X, + X,

where the indices « and v indicate differentiation
with respect to these variables. These are called
the equations of Weingarten. Evidently the dif-
ferential form dN is given by the matrix a; in the
base [x,,x,]. By comparing this expression with
that of the second fundamental form for a surface
we obtain

K = det(a;)
H = —1/2 trace(a).

K can be viewed as the ratio between the area of
the Gauss map of a particular surface element
and the area of that element. Since correspond-
ing elements of x and y have identical Gauss
maps, the ratio between K, and K, will be equiv-
alent to the ratio between the area of the x sur-
face element and that of the y surface element.
These areas are proportional to the outer prod-
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ucts of the gradients of the surfaces with respect
to u and v, and hence

K./K, = yAy,/x,Ax,,

since
Y. = Xx, + aN,
y, = x, + aN,.

This combines with the equations of Weingarten
to give

KJK, = 1 + a(oy;+05) + a*(04,00,—01,0,,)
=1-2aH, + K,

This must be true for the reverse situation as well
(viewing y as the original surface, and x as the
parallel), and hence

(1 — 2aH, + @®K,) = 1/(1 + 2aH, + a’K)).
Solving for K, and H, yields

K, = KI(1-2H+K - a%)

H, = (H-K-a)/(1-2H+K - d%.

The effect of this is that not only the first solva-
tion shell, but also the more loosely associated
solvent layers (all of which are contained within
successive parallel shells) will remain quite un-
perturbed during the transformation. It is neces-
sary to realize that when applied to complete
surfaces, the Bonnet transformation will always
yield self-intersecting surfaces. This is, however,
not true for strip-like sections of surfaces. All
these features should greatly facilitate conforma-
tional change.

Capitalizing on the teachings of differential
geometry, we can easily recognize the DNA dou-
ble helix as helicoid-like. As such, given the nec-
essary driving force, it will enter the Bonnet se-
ries of transformations towards the catenoid-like
state.

The driving-force in this case is the winding
around the protein cluster (vide supra). This pro-
tein, an octamer of histones, has been character-
ized in detail by X-ray diffraction.’? The eight
discrete proteins (i.e. four pairs) of the cluster
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Fig. 3. (a) Model! of the
nucleosomal histone-
octamer. (b) Same as in
(a) but with DNA model
fitted. Reproduced from
Ref. 12 with permission.
Copyright AAAS 1985.

are arranged so as to form a screw-shaped groove  ing to Blum ez al.," focuses positive charges., en-
along the cluster body. The groove constitutes an  abling a potent interaction with the negatlyel.y
arbitrary part of a minimal surface, and, accord- charged DNA. In other words, the DNA helix is
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Fig. 4. (a) Maximally extended chromatine showing
the helicoidal space arrangement. (b)—(d) Con-
densation of chromatine with final. catenoidal space
arrangement shown in (d). (e) View down the central
cavity in (d). Reproduced from Ref. 13 with
permission. Copyright Springer Verlag 1986.

intercepted by the templating protein cluster
whereupon the helix is forced into the screw-
shaped groove, accomplished by attraction by
means of negative Gaussian curvature of the sur-
face of the groove, thereby forming the nucleo-
some (Fig. 3). Formation of nucleosomes, spaced
by “linker” DNA units, continues along the en-
tire helix, forming the bead-on-a-string chroma-
tine.

The chromatine, forced by the organization of
the nucleosome core proteins, assumes a spatial
arrangement in which the nucleosomes are
placed on a strip-like section of a helicoid. A
recent X-ray diffraction investigation fully vali-
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dates this statement'® (Fig. 4a). Thus, once again
we have a situation where a Bonnet transforma-
tion may be induced. Quite anaiogously to the
formation of the nucleosomes, the drive to enter
the Bonnet transformation is provided by a pro-
tein. In this case it is the so-called histone 1, the
topological features of which are surprisingly lit-
tle known. Nevertheless, the “globular” part of
the protein has been fairly well investigated'* and
it exhibits a screw-like topology, i.e. is part of a
helicoid. Thus, interception of linker DNA
strands by the surface of histone 1 in the un-
condensed chromatine, in combination with in-
ternucleosomal attraction due to mass-concentra-
tion in the nucleosomes, initiates the Bonnet
transformation (Figs. 4a—e).

This process, which is extremely fast,
<0.5 ms,” results in the formation of a highly
condensed chromatine fibre, resembling a corn-
cob. The inside of the fibre consists of a stack of
histone 1 proteins with linker DNA strands
aligned in a spiral fashion with the helicoidal
surface of the protein core. The surface of the
fibre is built up of a compact spiral of nucleo-
somes. The structure of condensed chromatine,
the endpoint of the Bonnet transformation, has
been confirmed by X-ray diffraction.’? One may
well assume that the further condensation of
chromatine fibers into the final metaphase chro-
mosome will follow a similar mechanism.

In conclusion we would like to take the oppor-
tunity to quote a receut review on chromatine
structure in which the authors state, concerning
the condensation of chromatine: “Der Struktur-
umformung muss also ein méoglichst einfacher und
rasch ablaufender Mechanismus zugrunde lie-
gen”.'>* To us it seems obvious that the Bonnet
transformation fulfils these requirements.
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*The structure transformation must rest on a mecha-
nism which is simple and which allows for rapid kinet-
ics.
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