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1-Phenylbenzo-1,2,3-triazole is reduced polarographically in aqueous acidic so-
lution in a diffusion- controlled four-electron reaction to o-hydrazinodiphenyl-
amine; in aprotic medium the reduction requires approximately 1 F mol~, and a
mixture of carbazole and diphenylamine is obtained. 1-Substituted benzotriazoles
are generally reduced in N,N-dimethylformamide (DMF) in the presence of
phenol to substituted anilines, whereas 2-substituted benzotriazoles are reduced
in DMF to a relatively stable anion radical. In the presence of phenol the dihydro
derivative is obtained; under work-up it is oxidized to the benzotriazole. In the
presence of acetic anhydride, benzotriazole is reduced to 1,2,3-triacetyldihydro-

benzotriazole.

Benzotriazole (1a) and related compounds have
previously been investigated by polarography
and by preparative reduction.? It was found that
1a was reduced in hydrochloric acid in a four-
electron reaction to o-aminophenylhydrazine
(4a).? This was later confirmed, and 4a was em-
ployed for the synthesis of benzo-1,2,4-triazines.*

It has been argued® that the reduction of 1a at
the dropping mercury electrode was not the re-
sult of a direct electron transfer to 1a, but pro-
ceeded by an indirect reduction by electrogener-
ated hydrogen. Catalytic reduction of an organic
substrate at a mercury electrode seems rather
unlikely, but to clarify the matter 1-phenylben-
zotriazole (1c¢) was investigated polarographi-
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cally. 1¢ was chosen as it is reduced at less nega-
tive potentials than 1a.

Benzotriazoles have not been studied electro-
chemically in aprotic media, so the compounds
shown below were investigated by cyclic vol-
tammetry (CV), derivative cyclic voltammetry
(DCV) and preparative reduction with and with-
out addition of proton donors or electrophiles.

Results

CV of benzotriazole (1a) in DMF showed a re-
duction peak at —1.83 V vs. Ag/Agl; the reverse
trace showed a “reduction” peak, the nature of
which was not investigated further. 1a in DMF is
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a stronger acid than phenol [pK, (1a) = 12.6,°
pK, (phenol) = 18.03;® (DMSO)] so protonation
of 1a~ by 1a is probably occurring. On prep-
arative reduction, a substantial yield of 1a was
found at work-up; the anion of 1a was not reduc-
ible at the applied potential. In the presence of an
excess of phenol the peak height in CV increased
corresponding to n = 2, and on preparative re-
duction under such conditions aniline (yield >
70 %) was the main product.

Reduction of 1a in the presence of an excess of
acetic anhydride yielded 1,2,3-triacetyldihydro-
benzotriazole (3a). This, together with 1,3-dihy-
dro-1,3-dihydroxy-2-phenylbenzotriazole,” seem
to be the only stable derivatives of dihydroben-
zotriazole isolated so far.

1c was reduced polarographically in aqueous
acidic solution giving a wave which had a tenden-
cy to exhibit a maximum; the height of the wave
increased linearly with the height of the mercury
reservoir, indicating a diffusion-controlled proc-
ess. Preparative reduction in 6 N hydrochloric
acid consumed 4.2 F mol™!; the product, presum-
ably 2-(phenylamino)phenylhydrazine, formed
coloured substances during reduction and on
work-up, probably due to the lower basicity of
the compound compared to 2-aminophenylhy-
drazine. This might result in a loss of hydrogen
chloride on evaporation of the solvent in vacuum,
giving the more easily oxidizable diphenylamine
derivative.

1b exhibited under aprotic conditions a revers-
ible voltammogram with a standard potential of
—2.16 V vs. Ag/Agl. 1c exhibited totally irrevers-
ible CV behaviour under similar conditions at a
scan-rate of 0.4 V s™. The v, for [1c] = 1.0 mM
was found to be 25 Vs~! in DCV (kgc = 76 s71).8
This v,,, increased to 300 V s™! when 5 mM phe-
nol was added (kgc = 912 s7!). In the presence of
a two-fold excess of phenol, 1b was reduced irre-
versibly. Electrolysis of 1b with a two-fold excess
of 2 in phenol produced N-methylaniline. The
current consumption was 2.4 F mol ™.

The isolated products from the electrolysis of
1c under aprotic conditions were approximately
equal amounts of carbazole (5) and diphen-
ylamine (6). The consumed current correspond
to 1.2 F mol~'. The same reduction under protic
conditions with excess of phenol showed n = 2.4,
and only diphenylamine was isolated. The reduc-
tion of 1c by sodium in liquid ammonia resulted
in formation of only diphenylamine.
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The reduction of 1lc¢ to 6 requires n=2,
whereas the formation of 5§ is not a reduction
(n=0); carbazoles may be synthesized by the
Graebe-Ullmann pyrolysis of suitable 1-arylben-
zotriazoles.” The formation of carbazole is akin
to the reductive cyclization of e.g. 5—(2-chloro-
phenyl)-1-phenylpyrazole to pyrazolo[1,5-f]-phe-
nanthridine.'

1-Acetylbenzotriazole (1d) was reduced in a
one-electron irreversible reaction. The peak po-
tential was —1.28 V vs. Ag/Agl at a scan-rate of
0.4 V s71. Addition of an excess of acetic an-
hydride caused the peak current to increase to a
value corresponding to n = 2. The peak potential
shifted 50 mV to a more negative value. A prep-
arative electrolysis under aprotic conditions re-
sulted in the formation of N-acetylaniline.

Electrolysis of 1d with excess of acetic anhy-
dride consumed 1.8 F mol™! and the main prod-
uct was N-acetylaniline; some 1,2 3-triacetyl-di-
hydrobenzotriazole was also found.

2-Methylbenzotriazole (2a) and 2-phenylben-
zotriazole(2b) exhibited reversible voltammo-
grams in CV in DME. E, 4 of 2a was —1.88 V vs.
Ag/Agl, whereas 2b showed two reversible peaks
atE,, ,(1)=-165Vand E, 4 (2) = —2.27 V.
On addition of an excess of phenol, irreversible
voltammograms were obtained and the peak
height of the first peak corresponded to n=2.
Preparative reduction in the presence of phenol
as proton donor (n between 1 and 2) gave a
product which on work-up yielded the starting
material. Presumably the 2-substituted dihydro-
benzotriazoles (3a and 3b) were formed on re-
duction of both 2a and 2b, but 3a and 3b are
easily reoxidized during work-up. In aqueous so-
lution 2a has been reduced to 3a, which could be
re-oxidized to 2a;? addition of hydrochloric acid
to a solution of 3a resulted in formation of 1-(2-
aminophenyl)-2-methyldiimide.>

Discussion

The polarographic and preparative results for the
reduction of 1c give no indication that this should
be reduced by electrogenerated hydrogen® rather
than by electron transfer to the protonated lIc,
and it seems very unlikely that 1a under similar
conditions should be reduced by a route com-
pletely different from that for 1c.

The anion radicals of 2-substituted benzotria-
zoles are quite stable in aprotic solutions. If



strong proton donors are present, the 2-substi-
tuted dihydrobenzotriazoles can be formed; how-
ever, these are readily oxidized to the starting
material during work-up.

Ic is reduced to equal amounts of carbazole
(n=0) and diphenylamine (n = 2) in a one-elec-
tron reduction under aprotic conditions. It seems
likely that this particular product distribution is
not a consequence of two competing reaction
paths, but rather the outcome of a multi-step
reaction sequence. The product-determining step
could be a disproportionation, a hydrogen ab-
straction or a proton transfer reaction. A prelimi-
nary mechanism is shown in Scheme 1.

When a proton donor is present in excess, only
diphenylamine is formed; the product-determin-
ing step may therefore be a proton transfer reac-
tion. The addition of phenol (1:5) increased the
kgc by a factor of 12, and for 1b the reduction
changed from a reversible one-electron reduction
to an irreversible two-electron reduction when
phenol was added. It seems likely that the rate-
determining step is the opening of the triazole
ring. The later loss of N,, which is similar to the
cleavage reaction in the reduction of arenediazo-
nium salts, is probably very fast.

The anion radical 7~ may cyclize to 8~ or add
a hydrogen atom to give 6. As the product ratio
(5:6) consistently is 1:1, it seems not unlikely that
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Scheme 1.
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the disproportionation is a hydrogen atom trans-
fer from 8~ to 7, thus forming 5~ and 6~. This
proposal is in accordance with the known facts,
but should be regarded as a working hypothesis.
A proton donor can protonate the anion rad-
ical of the benzotriazole, and the resulting ben-
zotriazole radical is likely to ring-open faster than
the anion radical because the latter compound
ring-opens to the high-energy aniline anion. This
model explains why there are such large differ-
ences in rate under aprotic and protic conditions.
The difference in rate for the different 1-sub-
stituted benzotriazole under aprotic conditions
can also be understood from this model. When
the anion radical of the benzotriazole undergoes
the ring-opening, a substituted aniline anion is
formed. A measure of the stability of the aniline
anion in DMF is the pK, value for the corre-
sponding substituted aniline. Diphenylamine
[PK, = 25, (DMSO)"] is a much stronger acid
than N-methylaniline and aniline [pK, = 30.7,
(DMSO)*] and a similar difference must be ex-
pected in DMF; consequently the ring-opening
and aniline-anion formation for diphenylamine
occurs more readily than for N-methylaniline.
Aniline and N-methylaniline have similar pK,
values, but benzotriazole can act as proton donor
in a self-protonation reaction, the reaction of 1a
thus being more complicated than that of 1b.

7" 8-
2H*
— 5 +6°

321



PEDERSEN AND LUND

Experimental

Reagents. All the substituted benzotriazoles ex-
cept 1-phenylbenzotriazole were synthesized ac-
cording to the procedures given in Ref. 2 and
references therein. 1-Phenylbenzotriazole was
synthesized by the method of Reynolds."> N,N,N-
Triacetyldihydrobenzotriazole was obtained by
reduction of 2 g (0.22 M) of 1a and 15 ml of acetic
anhydride (2.12 M) in 80 ml of DMF/TBAI (0.1
M) at a mercury pool cathode at —1.3 V vs.
Ag/Agl (n = 2.06). The DMF was evaporated
and the product extracted with diethyl ether; the
ether phase was washed with water, dried and
evaporated. The product was recrystallized from
CH,Cl,. N,N'’,N''-Triacetyldihydrobenzotriazole
(m.p. 117.2-117.5°C) was identified by NMR,
MS and IR. '"H NMR (300 MHz, CDCL,):  2.320
(3H, s), 2.392 (6H, s), 7.2-7.7 (4H, m). MS, IP
70 eV; mle (% rel. int.): 204 (16), 162 (44), 120
(100), 92 (18), 66 (20), 44 (45). IR (KBr) cm™":
3400 (m), 1750 (s), 1600 (m), 1480 (s), 1360 (s),
1240 (s), 1020 (s), 960 (m), 840 (w), 750 (s).
Dr. R.G. Hazell has determined the X-ray
structure of 3¢;* the structure is shown in Fig. 1.

Cells and electrodes. The preparative reductions
were performed in an H-cell with a cathodic com-
partment of either 150 ml or 75 ml. The cathode
was a mercury pool, the anode a carbon stick,
and the reference electrode a silver wire (Ag/
Agl). Cyclic voltammetry was performed using a
50 ml beaker with 25 ml of DMF solution. The
cathode was a hanging mercury drop electrode,

Fig. 1. ORTEP drawing of compound 3c.
322

the anode a platinum wire and the reference elec-
trode a silver wire in DMF/TBAI, 0.1 M I~

Instrumentation. The potentiostat used in the
preparative electrolysis was from Juul-Elec-
tronic, Copenhagen. The potentiostat/ramp-gen-
erator used for cyclic voltammetry was of our
own construction. The cyclic voltammograms
were recorded on a HP 7045A X-Y recorder.
DCV were performed in Dr. O. Hammerich’s
laboratory with the equipment described in Ref.
15.

NMR. Spectra were either recorded on a 300
MHz Varian XL-300 spectrometer or for routine
analysis on a Varian CFT 20 NMR spectrometer.

Gas chromatography. The gas chromatograph
was an HP 5496 and the column either an SP 2340
with the following temperature program: 140°C
(2 min) — 220°C with 5° min~!, or a PEG 20 M
cap. col. with the following temperature pro-
gram: 120°C (2 min) — 220°C with 7° min™".

Mass spectroscopy. The mass spectra were ob-
tained on a VG 7070F spectrometer equipped
with an acquisition system of our own construc-
tion including an Olivetti M24 PC.

IR. Spectra were recorded on a Nicolet 5-MX-S
instrument.
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