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Cyclo[d.e.e.d.e.e.d.e.ejnonakisbenzene, CyH;g (C,), is a polycyclic aromatic
hydrocarbon belonging to the cycloarenes. It corresponds to the graph-theoret-
ically defined systems of hexagons called primitive coronoids and has trigonal
symmetry.

A simple Hiickel molecular orbital analysis was performed for C,.

The molecular vibrations of C; were analyzed. A previously developed force
field for condensed aromatics was used to calculate the vibrational frequencies.
Mean amplitudes of vibration for selected interatomic distances are reported.

Primitive coronoids of trigonal symmetries (D3, and Cy,) were enumerated by
computer aid up to & = 30 for C;, and up to h = 66 for D;,. Here, h is used to
denote the number of hexagons. The actual forms are depicted up to h = 21 for
Cy, and up to h = 24 for Dy,

The numbers of Kekulé structures (K) for primitive coronoids with trigonal
symmetry were treated. A general combinatorial K formula for these systems was

derived by means of the symmetry-adapted method of fragmentation.

Dedicated to Professor Otto Bastiansen on his 70th birthday

The cycloarenes constitute a new class of poly-
cyclic aromatic hydrocarbons. The chemistry of
these systems is comprehensibly surveyed in a
series of five papers.! Coronoids® (which are
synonymous with true circulenes’) are defined
mathematically (or graph-theoretically) in the
theory of molecular topology, and have obvious
counterparts in cycloarenes. The definition of
coronoids is closely connected with that of ben-
zoids.%?

A benzenoid is a planar system of simply con-
nected identical regular hexagons. The system
may be taken out of a hexagonal lattice by defin-
ing a cycle of edges, which is called the peri-
meter. The perimeter corresponds to the carbon
skeleton of an annulene.

A coronoid (or corona-condensed'’ benzenoid)

*To whom correspondence should be addressed.
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is (like a benzenoid) a planar system of identical
regular hexagons, but has a hole (here referred to
as the corona hole) defined by an inner perimeter
completely embraced by the outer perimeter.
The corona hole should have a size of at least two
hexagons.

A primitive coronoid is characterized by a sin-
gle chain of hexagons in a circular arrangement.
These hexagons may be linearly (L) or angularly
(A) annelated, giving rise to the LA-sequence."!
This sequence is reflected in the currently applied
nomenclature! for the cycloarenes in organic
chemistry, as also used in the present title. The
title compound, for instance, corresponds to a
primitive coronoid with the LA-sequence LAA-
LAALAA. It should be noted that the concept of
cycloarenes is somewhat more general than that
of primitive coronoids. Thus, for instance, cyclo-
[d.e.d.e.d.e.d.e.d.e]decakisbenzene, which has
been attempted synthesized,® cannot be con-



Fig. 1. Three primitive coronoids or cycloarenes:
CaeHig (C1), CaoHao (Cy) and CyugHoy (Cy).

structed as a planar system of regular hexagons
and has therefore no counterpart among coro-
noids.

Fig. 1 shows three cycloarenes, which all corre-
spond to primitive coronoids (C,, C, and G,).
They consist of 9, 10 and 12 hexagons, and have
the symmetries D,,, D,, and Dy,, respectively.
The corresponding hydrocarbons are: cyclo-
[d.e.e.d.e.e.d.e.e]nonakisbenzene (the title com-
pound, C,), cyclo[d.e.d.e.e.d.e.d.c.e]decakis-
benzene (C,), and cyclo[d.e.d.e.d.e.d.e.d.e.d.e]-
dodecakisbenzene or kekulene (C;).

The route to the synthesis of a cycloarene has
been long and troublesome'>!® (see also the re-
view'). Actually, the first report on attempts to
synthesize C, (Fig. 1) was given in 1965 by H. A.
Staab at the Annual Meeting of Gesellschaft
Deutscher Chemiker in Bonn (Kekulé centen-
nial). At this meeting the C, molecule was named
kekulene. Not until 13 years later'* was the first
successful synthesis of kekulene reported. A fur-
ther 8 years later® the second cycloarene, viz. C,,
was synthesized. The prospects of synthesizing
also the cycloarene C, of Fig. 1 are now very
good,* as was also communicated privately by
H.A. Staab to one of the present authors
(8.J.C)).

The first part of the present paper deals with a
normal coordinate analysis of the molecular vi-
brations of C, (Fig. 1). Calculated vibrational fre-
quencies for a cycloarene are given for the first
time. Mean amplitudes of vibration are also
reported.

The next part of this paper concerns molecular
topology. Primitive coronoids with trigonal
symmetry are enumerated by computer aid, and
the numbers of Kekulé structures (K)' of such
systems are treated. A general solution is pre-
sented.

Some results of computer-aided enumerations
and classifications for coronoids have been re-
ported,®"? but still much work in this area re-
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mains to be done. Also, a few papers containing
K formulas for special coronoids are avail-
able, 228 but far fewer than those with K formu-
las for benzenoids.

Cyclo[d.e.e.d.e.e.d.e.elnonakisbenzene (C,)

Molecular model. A planar trigonal (symmetry
Dj;)) molecular model of C; was assumed. We are
well aware of the fact that this is only a first
approximation and that some deformation would
be more realistic, in accordance with the theoret-
ical work by Vogler.?? It seems at least quite
certain that the three hydrogens inside the corona
hole are twisted out of the plane. Furthermore,
we assume all the benzenoid rings to be regular
and identical, and all valence angles (CCH as
well as CCC) to be 120°. This idealized model is
determined by two structural parameters, which
were estimated to be 140 pm and 110 pm for the
CC and CH bonds, respectively.

Hiickel molecular orbital analysis. The simple
Hiickel molecular orbital analysis was performed

Table 1. Energy levels as +x according to the simple
Hickel molecular orbital theory for
cyclo[d.e.e.d.e.e.d.e.e]nonakisbenzene.

Species (Dy)  |x|

a,’ 1.618 0.618
a" 2,621 1.659 1512
e 2.451 2,047 1.451

1.161 1.000 0.591

Table 2. Bond orders (P), theoretical bond distances
(R) and force constants (f) for CC bonds in
cyclo[d.e.e.d.e.e.d.e.e]nonakisbenzene.

CC bond P R/pm fINm"
a 0.766 138.0 522
b 0.514 142.5 434
c 0.509 1425 433
d 0.502 142.7 430
e 0.610 140.7 466
f 0.480 143.1 423
g 0.615 140.6 468
h 0.585 1412 458
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Fig. 2. Identification of the CC bonds in C,.

in the symmetrized form according to the sym-
metrical structure for the m-system:

T, =4a,’ + 8a," + 12¢" (1)

The m-energy levels in B units (conventionally
denoted by x, which is dimensionless) are sum-
marized in Table 1. Not only the energy levels
(eigenvalues) were computed, but also the coeffi-
cients of molecular orbitals (eigenvectors). They
were used to calculate Coulson bond orders (P)
for the eight types of CC bond distances (cf.
Table 2 and Fig. 2). By means of the empirical
formula®

rfpm = 153.6 — 19.2P/[100P + 76.5(1-P)] (2)

the (theoretical) bond distances were obtained as
shown in Table 2. The weighted average of these
bond distances is 141.4 pm. The value is close
enough to the approximate estimate (140 pm)
used in the subsequent vibrational analysis, since
the precision of structural parameters is not crit-
ical for this purpose. Some investigations to this
effect have been made specifically for the poly-
cyclic aromatic hydrocarbon coronene.*

Force field. A simple force field established for
polycyclic aromatic hydrocarbons and referred to
as the five-parameter approximation®* was em-
ployed. It actually contains five parameters for
in-plane and five parameters for out-of-plane vi-
brations. Refined force constants for the CC
stretchings (counted as one parameter) were
computed from the bond orders (P) according to
an adaptation of Badger’s rule to polycyclic aro-
matic hydrocarbons® (eqn. 3).
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Fig. 3. Symbolically indicated out-of-plane valence
coordinates used to generate a complete set of
independent e'' symmetry coordinates. The auxiliary
figure (top left) shows the indication of a “boat”
torsion. Circles indicate out-of-plane bendings.

fINm~' = 179.3[(23.5P + 76.5)/(0.916P +
654.8)] 3)

The numerical values are included in Table 2.
The other force-constant parameters are (in
Nm™!): 500 for the CH stretchings, 40 for the
CCC bendings where the central C atom is
bonded to another C, 70 for the CCC bendings
where the central C atom is bonded to an H, 35
for the CCH bendings, 15 for the CCCC out-of-
plane bendings, 20 for the CCCH out-of-plane
bendings, 5 for all “boat” torsions, i.e. the
CCCC, CCCH and HCCH types, 2 for the
CCCC/CCCC torsion/torsion interactions per-
taining to the same CC bond, and, finally, 7 for
the corresponding torsion/torsion interactions of
the types CCCC/CCCH and CCCC/HCCH.

Symmetry coordinates. The vibrational analysis
was symmetrized in the usual way by producing
symmetry-adapted linear combinations of va-
lence coordinates. The symmetrical structure
(distribution of the normal modes of vibration
into the symmetry species of the Dy, group) is:

T, =184, + 17a, +35¢' + 6a," + 11a," +17¢"’
4



Here, we do not give all details of the construc-
tion of the symmetry coordinates. The main
problem was to eliminate redundancies so as to
end up with a complete set of independent co-
ordinates. Here, the out-of-plane coordinates be-
longing to the e'’ species presented the most diffi-
cult part of the problem. For this particular case
we indicate (see Fig. 3) the boat torsions (arrows)
and out-of-plane bendings (circles around the
central atom). Double arrows and double circles
indicate that two different linear combinations of
the same set were used. The bonds indicated by
dotted lines in Fig. 3 are not involved in any of
the valence coordinates (neither in-plane or out-
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of-plane) which were used to construct the sym-
metry coordinates.

Vibrational frequencies. The above-outlined
methods resulted in the calculated vibrational
frequencies given in Table 3. The spectroscopic
activities are also indicated in the table. In con-
clusion, we predict 35 fundamentals active in Ra-
man only, 11 in infrared only, and 35 both Ra-
man and infrared active. Also, the orders of mag-
nitude should be compatible with those of
Table 3.

Mean amplitudes of vibration. The simple force-
field approximation employed here has been

Table 3. Calculated vibrational frequencies (cm™') for cyclo[d.e.e.d.e.e.d.e.e]nonakisbenzene.? The species

designations pertain to the Dy, group.

3038
3035
3034
3032
1613
1576
1481
1446
1355
1245
1121
1059
902
758
662
478
396
257

Species a,’
(Ra,p)

Species e’
(IR + Ra,dp)

Species a,’ 3037
(ia) 3032
1672

1597

1562

1472

1443

1310

1221

1150

1097

1026

846

750

534

482

335

3038 Species a,”’ 957
3037 (ia) 825
3034 696
3034 478
3032 354
3031 132

1677
1643 Species a,’’ 982
1583 (IR) 959
1556 922
1532 979
1517 848
1487 654
1426 531
1423 417
1390 350
1304 162
1243 78

1182
1158 Species e'’ 974
1129 (Ra,dp) 961
1070 940
1031 919
1014 894
970 852
904 822
758 761
693 588
659 550
560 492
544 431
502 318
389 279
249 229
177 154
62

2Abbreviations: d depolarized; ia inactive; IR infrared-active; p polarized; Ra Raman active.
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Table 4. Calculated mean amplitudes of vibration
(pm) for selected interatomic distances in
cyclo[d.e.e.d.e.e.d.e.e]nonakisbenzene.
Parenthesized values (R) are the equilibrium
distances (pm).

Atoms i+ (R) T=0 298 K
cCc 1-2 (140) 4.69 4.80
1-3 (242) 5.61 6.11
1-4 (370) 5.67 6.26
1-5 (485) 5.93 6.91
1-6 (505) 6.30 7.81
1-7 (420) 6.49 7.99
2-3 (140) 4.67 4.74
2-6 (420) 6.17 7.41
-7 (370) 6.55 8.08
2-8 (485) 6.47 8.21
2-1 (280) 6.24 7.36
2-12 (242) 5.52 6.00
3-11 242 6.62 8.01
1-13 (700) 6.53 8.12
2-13 (642) 6.54 8.07
3-13 (505) 6.62 8.00
25-13 (840) 6.66 8.33
26—-13 (918) 6.81 8.45
27-13 (874) 6.86 8.53
CH 1-3' (266) 12.49 12.96
2-3' (217) 9.98 10.04
3-3 (110) 7.74 7.74
6-3’ (244) 13.37 14.39
7-3' (157) 12.22 13.36
8-3' (269) 10.67 11.87
9-3’ (310) 9.72 10.80
1-13’ (810) 9.75 10.89
25-13’ (950) 9.84 11.05
26-13'  (1027) 10.00 11.19
HH 37 (52) 13.93 14.97
3'-18’ (642) 12.53 13.51
3'-19’ (608) 13.99 15.13
3'-21’ (546) 14.56 15.62
3'-23’ (586) 15.69 16.67
3'-24’ (603) 15.16 15.79
3'-26' (593) 14.01 14.37
3'-27' (557) 13.11 13.30
3'-29’ (500) 11.83 11.96

used to calculate mean amplitudes of vibration®®
several times®>¥* (see also other parts of the
series “Condensed Aromatics” as cited in Ref.
35). Some of these papers include systematic
compilations of mean amplitude values for differ-
ent types of interatomic distances.**,

The mean amplitudes of vibration at absolute
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Fig. 4. Numbering of atoms in C,. Hydrogen atoms
are identified by primed numbers: 3’ directly bonded
03,7 to 7, etc.

zero and 298 K were computed for all types of
interatomic distances (bonded and non-bonded)
in the molecule under consideration. The result-
ing material is far too voluminous to be repro-
duced here. Furthermore, the data did not pro-
vide any surprises when compared with the char-
acteristic values for corresponding distance types
from other condensed aromatics. We therefore
give results for only a selection of interatomic
distances, all of them being connected with the
corona hole and therefore containing new types
(see Table 4 and Fig. 4).

The first part of Table 4 lists all the CC distance
types for the atoms on the inner perimeter, two
bonded and eleven non-bonded; for the applied
numbering of the atoms, see Fig. 4. The next six
entries concern additional non-bonded CC dis-
tances, all of them crossing the corona hole, but
the list is not complete. The subsequent group
(CH distances) account for all types within the
corona hole, one bonded and six non-bonded.
For the rest of the CH distances, again only a
selected number of types are included. With re-
gard to the HH distances we have included all the
types which involve one or two H atoms inside
the corona hole.

General remarks. By the development of the
method applied to the C; molecule above, the
analysis of molecular vibrations for a polycyclic



aromatic hydrocarbon has been reduced to a top-
ological problem. Not a single piece of experi-
mental data was invoked (and is not available at
present) for the particular molecule C, in order to
deduce the results. In mathematical terms one
may say that the benzenoid/coronoid graph de-
termines the vibrational problem. The available
results include the force field and consequently
the vibrational frequencies and molecular para-
meters like the mean amplitudes. The analysis of
the simple Hiickel molecular orbitals is another
well-known topological problem,* in which the
parameters (a, ) usually are kept “anonymous”,
i.e. without numerical values assigned to them.
In the present case of the vibrational problem it
must be admitted that a number of empirical
parameters with numerical values are invoked.

Primitive coronoids with trigonal symmetry

Introductory remarks and definitions. A primitive
coronoid® (see also the present introduction) con-
sists of a number of segments which is equal to
the number of A (angularly annelated) hexagons.
A segment is defined as a linear chain of hexa-
gons between, and including, two neighbouring
A hexagons. In other words, an A hexagon be-
longs always to two (neighbouring) segments.

The A hexagons of a primitive coronoid are
also called corners. A corner may be protruding
or intruding. A protruding corner has three edges
on the outer perimeter, while an intruding one
has three edges on the inner perimeter.

In a primitive coronoid the total number of
segments (or corners), S, is invariably an even
number.

A primitive coronoid has at least six segments.
If it has exactly six segments, it is called a hollow
hexagon.® In a hollow hexagon all the (six) cor-
ners are protruding. All three systems in Fig. 1
are hollow hexagons.

Primitive coronoids with £=<20 amount to
10536 systems.”” Among these systems there are
only 16 with trigonal symmetry (Ds, or Cy,). The
enumeration of the numbers of this class of prim-
itive coronoids is one of the subjects of the pre-
sent work. It is clear that this task cannot be
solved efficiently by considering the primitive
coronoids with trigonal symmetry only as a sub-
class of all primitive coronoids. However, fortu-
nately we found a method for generating and
enumerating the systems of interest specifically.

CasHig AND PRIMITIVE CORONOIDS

As for the benzenoids with trigonal symme-
try,” we distinguish between primitive coronoids
with trigonal symmetry of the first kind and of the
second kind:

(i) a primitive coronoid with trigonal symmetry
of the first kind has a hexagon in the center
of its corona hole (or the corresponding ben-
zenoid),

(ii) a primitive coronoid with trigonal symmetry
of the second kind has a vertex in the center
of its corona hole (or the corresponding ben-
zenoid).

According to our approach these two kinds were
generated separately.

Finally, in this section some general remarks
on the number of Kekulé structures (K) are war-
ranted. The K number of a primitive coronoid is
completely determined by the LA-sequence of
the system. Two systems with the same LA-se-
quence (and therefore the same K number) are
said to be isoarithmic.* Two isoarithmic primitive
coronoids have also the same sequence of seg-
ments. This sequence is specified in terms of the
numbers of hexagons of each segment as, for
instance, /3, 2, 3, 2, 3, 2/ for C, of Fig. 1. In an
abbreviated notation: /3, 2. Correspondingly,
for the system C, one may write /3, 3, 2/ or
132,22, and finally for the system C,, /3/°.

It is noted that two primitive coronoids, with
the same or different numbers of hexagons, may
possess the same K number “accidentally” with-
out being isoarithmic.

Generation and enumeration. This is not the place
to describe in detail the computerized procedure
for the successive generation of all non-isomor-
phic primitive coronoids of trigonal symmetry
with given (increasing) values of . The main
computer program for benzenoids has been de-
scribed elsewhere,* as well as its adaptation to
coronoids.® Furthermore, specific generation of
benzenoids with hexagonal symmetry,* as well as
coronoids with hexagonal symmetry' has been
reported. A corresponding analysis has also re-
cently been performed for benzenoids of trigonal
symmetry.* In the present case of coronoids, as
well as for the benzenoids,” the systems with
trigonal symmetry of the first (i) and second (ii)
kind were generated separately.

Table 5 shows the derived numbers of primitive
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Table 5. Numbers of primitive coronoids with trigonal
symmetry (D, and C,,); h=<30.

Table 6. Numbers of primitive coronoids with regular
trigonal symmetry (Dj,); 33 < h<686.

h Kind Dy, Can Total h Kind D, h Kind  Ds,

9 (i) 1 0 1 33 () 10 51 (i) 229

12 0 ) o (i) 25 (ii) 429
(ii) 1 0 } 2 36 (i) 85 54 () 1735

.5 0 ) o (i) 42 (i) 773
(ii) 1 2 } 4 39 () 33 57 (i) 572

.8 0 3 ; (i) 59 (i) 1206
(ii) 2 3 } 9 42 () 232 60 () 4717

o1 0 ] 4 (i) 107 iy 2122
(ii) 4 11 } 20 45 () 77 63 () 1641

24 0 » 10 (i) 169 (i) 3164
(i) 6 24 } 51 48 () 635 66 (i) 2

27 (D 5 20 (i) 294 (i) 5678
(ii) 8 74 } 1z

30 i
é& fg 132 } 302

coronoids of symmetries D, and Cy, for h values
up to 30. The actual forms up to h =21 are dis-
played in Fig. §.

The analysis for the D,, systems specifically
was carried out through 4 = 66. The results are
found in Table 6. Fig. 6 shows the forms of all
these systems for h = 24.

Numbers of Kekulé structures. The standard
method of fragmentation for determination of
the number of Kekulé structures (K) is due to
Randi¢.¥” A useful modification of this method
has been proposed under the name symmetry-
adapted method of fragmentation'® 225424 Ip
the present work we employ a special variant of
the symmetry-adapted method of fragmentation*
for the primitive coronoids of trigonal symmetry.
In preparation, a description of some topological
properties of such systems is warranted. The dif-
ferent statements are given here without proof.

The number of hexagons (h) of a primitive
coronoid of trigonal symmetry is

h=3EE=345,-- )]

Systems of the second kind are found for all the
allowed h values, and those of the first kind for
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all h=12 (cf. Tables 5 and 6). The deductions in
the following apply to the coronoids of both
kinds.

In a primitive coronoid of trigonal symmetry
there are always at least two sets of three pro-
truding corners each, which are symmetrically
equivalent with respect to the rotation of 120°.
Select two symmetrically equivalent corners,
both either protruding or intruding. In between
two such corners there must necessarily occur an
odd number of corners, of which the intruding
corners, if any, are even in number.

Define a single unbranched chain of hexagons,
U, as a unit of a primitive coronoid between two
symmetrically equivalent corners with respect to
the rotation of 120°. Both these corners are in-
cluded in U. According to the topological proper-
ties stated above, the number of segments in U,
say s, must be even. The total number of seg-
ments is

§S=3s (6)

When it is realized that S always is even, one may
in fact perceive directly from (6) that also s must
be even.

We are now in a position to demonstrate the
application of the special variant® of the sym-
metry-adapted method of fragmentation to the
coronoid C, of Fig. 1. Select three free edges (i.e.
edges between two vertices of the second degree)
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5780

Fig. 5. All primitive coronoids of trigonal symmetry for h<21. A symmetry D,,; @ symmetry C,,. The first (i) or
second (ii) kind is recognized by the position of the appropriate symbol in the centre of the corona hole. K

numbers are given. Bracketed systems are isoarithmic.

of symmetrically equivalent corners. Assume the
four possible bonding schemes for these edges as
shown in Fig. 7: (1) all three single, (2) all three
double, (3) two single and one double, and finally
(4) one single and two double. Fig. 7 includes the
multiplicities,, i.e. the numbers of (symmetrically
equivalent) ways in which each bonding scheme
is realized. Continue to assign single and double
bonds as far as they are uniquely determined
within each scheme, and delete the assigned
bonds. The resulting systems (right column of

Fig. 7) have the numbers of Kekulé structures k;,
k,, k5 and k,, respectively, for the four schemes in
question. The total K number, taking the mul-
tiplicities into account, is then determined as

K =k, + k, + 3k; + 3k,, @)

which in our example gives K = 54 for C,.

A general treatment of primitive coronoids
with trigonal symmetry makes it necessary to in-
troduce certain fragments of U, the single chain
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h=24

50544 54760 59204 ! 103684

Fig. 6. All primitive coronoids of symmetry Dy, (A) and h =24. K numbers are given. Bracketed systems are
isoarithmic.

I

as defined above. Let u, be the chain obtained k,
from U by deleting one hexagon from each side.  k,
Let u, and u, be the chains obtained from U by
deleting one hexagon from one of the sides and a  and consequently

whole segment from the other in the two possible

ways. Finally, let u, be the chain obtained from U K = u® + u3® + 3(uy + uy)uu, + 2 )
by deleting one segment from each side. The

number of Kekulé structures for a fragment u; In this equation u,u, may be eliminated by means
shall be identified by the symbol u; (i = 0,1,2,3).  of the theorem®

With this notation we obtain the result
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(10)

Uglty — U, = *1

where the upper and lower sign apply to an even
or odd number of segments, respectively. In our
case, i.e. for U as a unit of a primitive coronoid of
trigonal symmetry, it was stated that the number
of segments is always even. Hence, eqn. (9) be-
comes

K=x-3x+2 (11)
where
X = uy + us. (12)

In the case when U only holds two segments (as
in C,), the fragment u, degenerates to no hexa-
gons; u; should then be set equal to 1.

One combinatorial K formula for a simple class
of coronoids with trigonal symmetry (to which C,
belongs) has been published before, viz.”'
K{la + 1, b + 17} = ab(ab + 3)* + 4. (13)
It pertains to a hollow hexagon with segments of
alternating lengths @ + 1 and b + 1; the total
number of hexagons is A = 3ab. We find that (13)
is a special case of (11). One has to use u, = ab +
1and u ;, = 1. Hence x = ab + 2, which inserted
into (11) gives an equation equivalent to (13).

As another illustrative example, consider the
last system of Fig. 5; it is one of the seven existing
systems characterized by /3, 2°/. Fig. 8 explains
some details, which result in x = 21 + 5 = 26.
Here the appropriate fragments could be chosen
so that they consist of all-kinked single chains,
i.e. zigzag chains or their isoarithmic systems.
For such systems it has long been known that the
numbers of Kekulé structures coincide with the
Fibonacci numbers.!® * That gives readily «, and
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Fig. 8. A primitive coronoid of trigonal
symmetry. Three symmetrically equivalent
corners (A) have been selected, and the
corresponding fragments u, and u, are
shown. Their numbers of Kekulé

3 structures are given.

u; as F, and F,, respectively, where F) = F; = 1,
and

El+2 = Fn+l + Fn (14)
The numerical values of ¥, and u; are given in
Fig. 8. Finally, we compute K = 17500 on in-

serting x = 26 into (11). The result is consistent
with the appropriate number found in Fig. 5.
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