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The restricted, primitive model (RPM) of electrolyte solutions (equally sized,
oppositely charged hard spheres in a dielectric continuum) has been investigated
by Monte Carlo simulation at five different concentrations corresponding to
highly dilute electrolyte solutions. The Bjerrum parameter (the Bjerrum length
divided by the contact distance @) was 1.546 in all simulations. In order to make
extrapolations to an infinite, thermodynamic system, simulations have been per-
formed using from N = 32 to 1000 ions (for each of the five concentrations) in a
cubic box with periodic boundary conditions. The Metropolis method has been
used with a minimum image approximation for the energy of the configurations.
It is necessary to use between one and two million Metropolis configurations in
each simulation in order to obtain the precision required in the present study. The
excess energies, the excess heat capacities, the values of the radial distribution
functions and the osmotic coefficients are calculated. The Helmholtz excess
electrostatic free energies are also calculated in the same sampling by the Sals-
burg-Chesnut method. The method seems to work, although the convergence is
very slow when N is large. The mean excess energy E(ex)/NkT converges towards
the Debye-Hiickel limiting law (DHLL) more rapidly than given by the usual
Debye-Hiickel (DH) law. The approach to DHLL for the excess electrostatic free
energy and especially for the excess heat capacity seem to be quite complex. The
peculiar behaviour of the latter two thermodynamic functions is seen as shadows
of the negative deviations from the DHLL known to occur for higher values of the
Bjerrum parameter (corresponding to 2:2 electrolytes). The radial distribution
functions have also been determined. They are well in accordance with the
so-called DHX model. The DHX values for the excess energy were also found to
be close to the Monte Carlo values. The calculated Monte Carlo values for the
osmotic coefficients were close to those given by the Debye-Hiickel expression
without inclusion of the excluded volume term.

The Debye-Hiickel law for electrolyte solutions’
was derived in a somewhat strange manner, in-
volving .a mixture of macroscopic and micro-
scopic points of view. Therefore, the law has
been the subject of much debate in the literature

*Presented in part at the International Symposium on
Structure of Liquids and Solutions, Veszprem, Hun-
gary, August 24-27, 1987.

Acta Chemica Scandinavica A42 (1988) 237-253

ever since it appeared. Some of the suspicious
steps in the theory are the use of the Poisson-
Boltzmann equation, in which an equation result-
ing from time-averaging (the Poisson equation
from continuum electrostatics) is combined with
a statistical formula (Bolzmann equation), and
the linearisation of the Poisson-Boltzmann equa-
tion which is obviously not valid close to any
selected ion and which leads to absurd results

237



SORENSEN ET AL.

such as negative concentrations of co-ions in the
neighbourhood of a selected ion. Furthermore,
various rather roundabout charging procedures
(Debye charging and Giintelberg charging) have
to be applied. The latter procedures may be cir-
cumvented in a more modern formulation of the
DH theory based on radial distribution func-
tions,” but this method does not improve on the
other weaknesses of the theory. For example,
only the excluded volume of the central ion is
taken into account, whereas the ions in the ionic
cloud are treated as point particles. In the MSA
theory, which is isomorphous with the Debye-
Hiickel theory, the excluded volume is treated in
a more consistent way.?

Actually, an attempt to formulate a rigorous
statistical mechanical theory was made some 10
years before Debye and Hiickel by Milner,** who
made extensive calculations on the average virial
of a mixture of ions in a dielectric continuum.
Debye and Hiickel refer to the work of Milner in
their 1923 paper, but they do not discuss it. Mil-
ner treats point charges — or rather charges with a
very small repulsive core in order to avoid col-
lapse — avoiding the use of the Poisson equation.
He attacked directly with astonishing courage the
problem of the evaluation of the average virial
(mean energy) of a central ion in a finite, spher-
ical system of ions. Arranging the ions according
to their proximity to the central ion, each sign
sequence (+ + — + — — etc.) makes a contribu-
tion to the average virial which can be expressed
analytically in terms of the gamma function. The
contributions for all sequences then have to be
summed, but this cannot be done analytically.
Finally, the radius of the finite system has to go to
infinity, keeping constant the average density of
positive and negative ions (the thermodynamic
limit).

Milners calculations are not easily checked,
however, and there seem to be some errors and
many uncertainties involved. For example, it ap-
pears that spherical symmetry of ions around the
central ion has been tacitly assumed for all the
configurations for which the energy is calculated
(Ref. 4, p. 555). This is certainly only true in time
average, and the immediate delight at the avoid-
ance of the Poisson equation is hereby somewhat
disturbed. Furthermore, the extrapolation to an
infinite number of particles seems very uncertain
(Ref. 4, figure on p. 577). With the knowledge
we now have about the difficulties associated
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with long-range electrostatic forces in statistical
mechanics, this is not at all surprising. Milner
could only treat a very limited number of ions in
the sequence — all calculations being made by
hand - and he did not suppress surface effects
using periodic boundary conditions. Milner’s fi-
nal result for the average virial is expressed in
terms of a calculated function of a dimensionless
quantity (h) proportional to the cube-root of the
concentration. In a footnote (Ref. 4, p. 575),
Milner gives an analytical formula for the average
virial at very small values of &, but he does not
derive it in the text. The average virial should be
proportional to & to the power 3/2 in that limit,
i.e. to the square-root of the concentration, as in
the Debye-Hiickel limiting law (DHLL).

In his second paper,® Milner discusses the con-
sequences of his theory for the osmotic pressure
and the freezing point depression of electrolyte
solutions. A plot of the above-mentioned func-
tion of & is given. The function is clearly singular
at infinite dilution (h = 0), indicating the square-
root dependence to be limited to an extremely
restricted region. When the analytical result for
small & (footnote, Ref. 4) is introduced into e.g.
the Milner equation for the osmotic coefficient,
results similar to those for the DH limiting law
are found, although the proportionality constants
unfortunately seem not to be the same.

Milners work has largely been overlooked, but
post-Debye-Hiickel authors have tried to remedy
the flaws of the DH theory in various ways. Mod-
els based on the solution of the non-linear Pois-
son-Boltzmann equation are now generally aban-
doned by theoreticians — although not by electro-
chemists and in surface and colloid science —
because such solutions are inconsistent with sta-
tistical mechanics. The first attempt to derive the
DH limiting law (DHLL) by rigorous statistical
mechanics was due to Mayer.® Mayer showed
that the DHLL could be derived by summation of
certain ring-graph contributions to his expression
for the osmotic pressure. However, it is not at all
clear why the contributions from all the other
graphs may be neglected. Probably the most
straightforward way to derive the DHLL is to
make reasonable approximations to the so-called
BBGKY hierarchy of equations,’ but this method
also entails inherent assumptions concerning rel-

ative smallness of terms.
Equally interesting is the nature of the first
deviation from the DHLL when the concentra-
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tion of electrolyte is increased. Is this deviation as
anticipated by Debye and Hiickel? Some of the
present authors have shown® that the Debye-
Hiickel law supplemented with an excluded vol-
ume term (DHEV) has the same first powers in
its expansion as the Mean Spherical Approxima-
tion (MSA) theory and also the theory of Schmitz
et al. based on expansion of the BBGKY hie-
rarchy in the plasma parameter (Ref. 23, pp.
389-411). Furthermore, experimental data for
the mean ionic activity coefficients in the moder-
ately dilute region (0.001 to 0.01 mol dm™3 for 1:1
electrolytes) conform well to such models, with
quite, though not completely, consistent sums of
ionic radii.?

Other sources of information come from
Monte Carlo studies®? and from solutions of the
HNC integral equation.” When the relative ex-
cess energy E(ex)/E(ex, DHLL) is plotted
against xa (x = inverse Debye-Hiickel screening
length, a = contact distance) for such data, sys-
tematic deviations from unity seem to persist
down to very small values of xa (see Ref. 19,
Fig. 1).The deviations are more marked the
higher the Bjerrum parameter B. The Bjerrum
parameter is defined as the ratio between the
Bjerrum length and the contact distance. We
have

B = 2% e¥/(4ne kTa) 1)

for a symmetric (z:z) electrolyte in a medium
with absolute permittivity €. In eqn. (1), e, is the
unit charge, k is Boltzmann’s constant and T is
the absolute temperature. HNC calculations and
Monte Carlo (MC) calculations support each
other, and they seem to deviate from the values
given by the extended theory of Debye and
Hiickel taking into account the contact distance
a. For 2:2 electrolytes (B = 7), the MC calcula-
tions of Rogde and Hafskjold'® suggest that the
direction of deviation from the DHLL at very
small concentrations may even be the opposite of
that predicted by the extended DH law! Their
studies were made with only 216 ions, but the
energies were calculated by the Ewald method.
However, apart from the results given in a pre-
liminary paper,' neither MC nor HNC calcula-
tion have been performed for 1:1 electrolytes (B
= 1.5) at extreme dilutions in order to test the
DHLL and the first deviation from DHLL.
Experimentally, the validity of the limiting law

is not so clear cut as many think. It is quite
difficult to measure EMF values of electrochem-
ical cells with a repeatability much less than 0.1
mV. Furthermore, normal oxidation potentials
are normally found by extrapolation procedures
assuming the extended law of Debye and Hiickel
to be valid. At least, it is assumed that the first
deviation from DHLL has the same power in the
ionic strength as predicted by the extended DH
law. Therefore, the electrochemical verifications
of DHLL are somewhat circuitous. Probably the
most careful experimental studies ever per-
formed were made by N. J. Anderson, who stud-
ied HCI solutions with hydrogen and Ag/AgCl
electrodes down to 3-1075 mol/dm®? where
Nernst ideality may be assumed. His results are
said to corrobate the DHLL for HCI solutions,
but some circuitry still seems to be involved in his
procedures for the determination of the standard
electrode potential difference. Furthermore, the
concentrations of the measuring solutions were
given on the basis of dilution of a stock solution.
They were not independently controlled after-
wards by other means, e.g. conductometry. For
this reason we are presently trying to repeat these
experiments using high-precision measuring
equipment in cooperation with the authorized
pH-calibration department at Radiometer A/S.
Measurements of heats of dilution by precision
calorimetry are sometimes claimed to be the best
test of DHLL, but the monograph of Falken-
hagen (Ref. 23, Table 23, p. 146) reveals consid-
erable uncertainty also for this method.

In short, DHLL as well as the first deviation
from DHLL still remain to be studied carefully,
both theoretically and experimentally. In the pre-
sent paper we continue the Monte Carlo (MC)
calculations of the excess energy, the electrostatic
Helmbholtz free energy and the excess heat capac-
ity for the restricted primitive model (RPM) at a
very low concentration and a Bjerrum parameter
B = 1.546 which we have reported on in previous
publications.!®? The radial distribution functions
are also calculated (with some inaccuracy). From
the excess energy and the values of the radial
distribution functions at contact, the osmotic
coefficients are also calculated. The calculations
show that the extensions of DHLL which are
used in practical electrochemistry today are
somewhat incorrect, since they do not represent
rigorous statistical-mechanical values for the
RPM. As a consequence, the contact distances
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fitted to activity coefficient data for dilute elec-
trolytes by comparison with Debye-Hiickel Ex-
cluded Volume theory (DHEV, Ref. 8) will prob-
ably be too high.

Method

Canonical ensemble Monte Carlo calculation of
the excess energy is normally performed by the
Metropolis method,?* where one randomly cho-
sen particle is moved at a time in a random fash-
ion. The move is accepted if the energy goes
downhill and accepted in proportion to the factor
exp(-AU/kT) in the opposite case. It is rejected in
proportion to 1-exp(-AU/kT), and the previous
configuration is sampled once more. This consti-
tutes an ergodic Markov process with equilibrium
sampling properties as prescribed in statistical
mechanics (detailed balance of all admissible mi-
croscopic transitions). The method is introduced
in order to avoid sampling over a lot of states
with high energy and extremely low statistical
weight. In order to avoid surface effects, periodic
boundary conditions are used. That is, we con-
sider N/2 positive ions and N/2 negative ions in a
cubic box with edge length L measured in terms
of ionic diameters. The box is surrounded by 26
similar boxes with shadow particles moving like
the original ones. Each particle in the middle box
is assumed to interact with all particles in a cubic
box with the selected particle in the center and
with an edge length equal to L (minimum image
approximation). In this way, a particle never
“discovers the cheating” introduced by period-
icity. Nevertheless, the periodicity affects indi-
rectly the thermodynamic results for finite values
of N. Therefore, a way has to be found to extra-
polate the results to an infinite number of parti-
cles in the central box. As mentioned, this prob-
lem was also one that confronted Milner.*?

In the computer programme we have con-
structed, the sampling may be begun starting
from two widely different initial conditions. For
64,216, 512 and 1,000 particles (corresponding to
an even number of ions — 4,6, 8 and 10 — in a
direction parallel to the edge of the box) we
started with a simple lattice configuration, for
which the initial energy is rapidly calculated. For
all the other values of N mentioned in the present
paper a lattice was constructed with 64 ions for
the values N = 32, 34, 36, 44 and 50 ions, and the
excess number of ions was removed evenly, re-
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specting electroneutrality. For N = 68, 80, 100
and 150 ions, a lattice with 216 ions were used
with random removal; for N= 350 the 512-lattice
was used, and for N = 700 the 1000-lattice was
used.

The computing time for each configuration is
roughly proportional to N rather than to the
square of N. The reason is that each configura-
tion in the Metropolis sampling is not a “new”
configuration, since only one ion is moved at a
time. We then have to calculate only the new
interaction of the moved ion with the rest of the
ions. Due to symmetry in the integral kernel with
respect to interchange of the particles, the preci-
sion is roughly the same with the same number of
configurations regardless of the number of parti-
cles. This is the great strength of Monte Carlo
calculations of multiple integrals.

It has been said that a rejection rate around
50% (sum of hard sphere overlaps and electro-
static Boltzmann rejections) is optimal, and the
maximum change in position in any of the three
directions (D) is adjusted to give a rejection rate
around this value. However, with the values of
the dimensionless concentrations o* = N/L? stud-
ied in the present paper, the rate of rejection is
only about 10% even with the maximum reason-
able choice of D, namely L/2. Therefore, there is
no reason not to choose D = L/2 to obtain the
maximum “stirring rate”. In the present study it
was found necessary to take account of a total
number of configurations exceeding considerably
that in any calculations made before, in order to
obtain reliable values of the thermodynamic
quantities. In order to avoid cumulating numer-
ical errors, the total energy was recalculated for
every 5000 configurations. The random number
generator was also reseeded for every 5000 con-
figurations.

We used two different types of computers in
this study (with two different random number
generators). Most of the calculations were run in
parallel on four to eight 8-10 MHz IBM-compat-
ible Taiwanese AT computers (trademark CO-
PAM) with INTEL 80286 processor and with an
INTEL 80287 mathematics co-processor, but
some of the calculations were made on a VAX
11/750 installed at Radiometer A/S. The pro-
gramming languages were compiling Turbo-87
Pascal for the AT-computers (16 significant di-
gits, exponents between —308 and +308 powers
of ten) and compiling VAX 11 Pascal for the




MONTE CARLO INVESTIGATION OF THE DEBYE-HUCKEL LAW

VAX computer (7-16 digits and exponents be-
tween —38 and +38 powers of ten). No differ-
ences between the results from the two computer
systems, apart from the unavoidable statistical
differences, were ever observed.

The standard reference works on MC calcula-
tions for the RPM are the papers by Card and
Valleau,!! and by Rasaiah et al.'? In these papers,
the excess Helmholtz free energy F(ex) is not
directly calculated. We wished to calculate this
quantity, however, to test the DHLL and the first
deviation from DHLL, not only for the excess
energy (equal to the excess Gibbs free energy at
infinite dilution), but also for the excess Helm-
holtz free energy (equal to 2/3 of the excess en-
ergy at infinite dilution). The value of F(ex)/NkT
can be obtained on the same sampling as E(ex)/
NKT by the method of Salsburg and Chesnut.?>?’
This procedure has been criticised in a review
paper of Wood® on MC studies of simple liquid
models. The method is said to converge ex-
tremely slowly and to be without value for hard
core systems. However, it may be rigorously
shown® that for the case of a hard sphere poten-
tial with some “soft potential”, the Salsburg-
Chesnut method yields the excess Helmholtz free
energy over and above the free energy of the
same system with hard sphere interactions only.
For electrostatic systems one should obtain the
electrostatic Helmholtz free energy (AF(ex)/NkT)
in this way after infinitely many samplings. How-
ever, the meaning of “infinitely many” in practi-
cal terms has to be established experimentally. In
the present study we show that acceptable values
of AF(ex)/NkT may be obtained after taking ac-
count of 1-2 million Metropolis configurations by
the Salsburg-Chesnut method in the very dilute
systems treated here. However, the values are
less reliable than the values of E(ex)/NkT. This is
not strange, since the Metropolis method is opti-
mized for finding E(ex)/NkT. For finding AF
(ex)/NkT the method is not at all optimal, since
heavy empbhasis is laid on very seldomly occurring
configurations with high configurational energy
in that one samples values of exp(+ Uy/kT) over
the Metropolis states dominated by low Uy/kT,
where Uy, is the electrostatic energy of some con-
figuration in N ions. The advantage of the Sals-
burg-Chesnut method is that the Helmholtz free
energy is obtained in the same sampling as the
excess energy. The excess heat capacity at con-
stant volume C,(ex)/Nk is also obtained during

the Metropolis sampling from the variance of the
energy fluctuations.

An alternative to the Salsburg-Chesnut
method for AF(ex)/NkT would be time-consum-
ing multistage sampling methods such as de-
scribed by Valleau and Card,' or the “umbrella
sampling” technique described by Valleau and
Torrie.®® Alternatives to the minimum image
(MI) approximation for the configurational en-
ergy are spherical cut-off (SCO) or Ewald sum-
mation (ES).?” SCO can be left out, since it has
been shown to yield poor results (this is another
reason for the failure of Milner’s early calcula-
tions!). ES is a generalisation of infinite Made-
lung summation. The total energy is evaluated
for an infinity of mirror lattices at each stage.
Some authors think that ES yields a quicker ex-
trapolation to the thermodynamic limit (N = ).
However, the method is more time-consuming
than the MI method for each N, and Valleau and
Whittington® have criticised the ES method for
making false long-range correlations between
particles.

The radial distribution functions g,,.(r) =
g__(r) and g, _(r) have been sampled simultane-
ously with E(ex)/NkT, AF(ex)/NkT and
Cy(ex)/Nk from r = a to r = 4a in 60 spherical
shells of thickness 0.05a around each of the N
ions. In some cases, 60 shells of thickness 0.1a
were used (range r = a to r = 7a). The contact
values g, ,(a) = g__(a) and g, _(a) may hereby be
found by polynomial extrapolation, with some
uncertainty. Fortunately, the precise values of
the contact values are not very important for the
evaluation of osmotic coefficients at the high di-
lutions studied here. For precise extrapolation to
the thermodynamic limit of E(ex)/NkT, AF(ex)/
NKT and Cy(ex)/Nk, a large number of values of
N is used for each concentration, and the limit is
obtained by polynomial extrapolation to 1/N = 0
(degree 1 or 2 in the variable 1/N at the 95 %
significance level). The polynomials used are
least-squares polynomials orthogonally gener-
ated over the set of abscissae. In such polyno-
mials, each new coefficient of the orthogonal po-
lynomial of the highest degree is statistically inde-
pendent of the previous coefficients, so that the
significance of the new coefficient can be evalu-
ated by a Student’s t-test at a selected level of
significance.

241



SORENSEN ET AL.
Table 1. Monte Carlo values obtained for B = 1.546 (RPM).

N2 Millions of —E(ex)/NKT —AF(ex)/NkT +C(ex)/Nk g._(a) g..(a) (1-P) Com-
configs. x100 %100 %100 =g._(a) x100° puter
o* =21075
64 15 1.836 1.549 0.5439 3.43+.13° 0.272+.028° 0.6042 AT
(3rd)? (2nd)
100 1.955 1.746 1.423 0.5965 3.69+.21 0.357+.040 0.5735 AT
(2nd) (1st)
150 15 1.687 1.348 0.6139 3.39+.20 0.142+.052 0.5549 AT
(2nd) (2nd)
216 2.36 1.625 1.249 0.6634 421+28 0.278+.035 0.5323 AT
(3rd) (1st)
350 1.44 1.592 1171 0.7061 3.92+25 0.087+.050 0.5222 AT
(2nd) (2nd)
512 1.625 1.565 1.140 0.7281 447+29 0.289+.035 0.5117 AT
(3rd) (1st)
700 1.49 1.652 1.125 0.7491 5.56+.32 0.299+.036 0.5051 AT
(4th) (1st)
1000 1.715 1.542 1.040 0.8347 4.62+.25 0.298+.031 0.5037 AT
(3rd) (1st)
o' = 6.4-10°5
32 11 3.297 2.819 0.9208 2.99+.16 0.296+.027 1.077 AT
(2nd) (1st)
44 15 3.174 2.642 1.014 4.06+.17 0.178+.031 1.030 AT
(3rd) (2nd)
64 2.0 3.037 2.458 1.081 456+.16 0.227+.023 0.9802 AT
(4th) (2nd)
100 1.625 2.916 2.292 1.137 4.19+.18 0.217+.026 0.9425 AT
(2nd) (1st)
150 1.845 2.869 2212 1.184 5.10+.11¢ 0.215+.028° 0.9207 AT
(8th) (4th)
216 1.015 2.806 2.098 1.235 3.18+.13 0.163*x.045 0.9129 AT
(2nd) (2nd)
350 1.2 2.745 2.054 1.267 3.38+.10° 0.310+.023° 0.8903 AT
(4th) (2nd)
512 1.21 2.730 1.965 1.330 4.44+21 0.328+.026 0.8780 AT
(3rd) (1st)
700 1.225 2.709 2.001 1.340 4.15+.13° 0.263+.027° 0.8734 AT
(4th) (3rd) )
0" = 1.25-10*
32 1.8 4.391 3.680 1.366 4.28+.12 0.201+.018 1.405 AT
(4th) (2nd)
44 1.4 4.236 3.468 1.442 3.99+.12 0.187+.037 1.357 AT
(3rd) (3rd)
64 0.92 4.058 3.213 1.563 3.72+.18 0.313+.028 1.300 AT
(3rd) (1st)
100 1.15 3.958 3.069 1.612 3.756+.12 0.249+.027 1.267 AT
(4th) (2nd)
150 2.1 3.905 2.962 1.667 4.14+.08° 0.252+.017°¢ 1.244 AT
(6th) (3rd)
216 1.015 3.834 2.840 1.748 527+.17 0.109+.043 1.208 AT
(6th) (4th)
512 15 3.744 2.745 1.771 4.00+.11 0.304+.026 1.192 AT
(4th) (2nd)
700 1.535 3.743 2.779 1.859 4.99+.12° 0.251+.017¢ 1.179 AT
(7th) (3rd)

(contd)
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Table 1 (contd).

N Millions of —E(ex)/NKT —AF(ex)/NkT +C(ex)/Nk g._(a) g..(a) (1-®) Com-
configs. %100 x100 x100 =g__(a) x100° puter
Q" =25-107*
32 1.92 5.891 4.832 2.008 4.28+.10 0.259+.015 1.845 AT
(4th) (2nd)
44 1.03 5.731 4577 2.142 3.78+.12 0.227+.019 1.805 AT
(3rd) (2nd)
64 1.06 5.539 4.318 2.244 3.42+.09 0.254+.021 1.750 AT
(2nd) (2nd)
100 1.015 5.437 4.139 2.325 41711 0.221+.025 1.697 AT
(4th) (3rd)
150 1.325 5.341 3.995 2.437 3.95+.09 0.241+.013 1.671 AT
(5th) (3rd)
216 1.635 5.290 3.855 2.474 490+.18 0.270*+.015 1.628 AT
(5th) (2nd)
512 1.47 5.186 3.785 2.531 431+.10 0.226+.018 1.610 AT
(5th) (2nd)
700 1.065 5.178 (3.915)¢ 2.446 4.02+.12° 0.255+.018° 1.614 AT
(6th) (3rd)
" =5-10"*
32a 1.00 7.864 6.312 2.896 486+.11 0.297+.018 2.351 VAX
(6th) (2nd)
32b 204 7.838 6.288 2.861 3.81+.05 0.245+.012 2400 AT
(4th) (2nd)
34 1.03 7.840 6.275 2.900 3.81+£.07 0.258+.015 2.400 AT
(3rd) (2nd)
36 1.035 7.793 6.211 2.879 3.70+.07 0.207+.022 2.393 AT
(4th) (3rd)
44a  1.00 7.686 6.012 3.021 3.78+.09 0.250+.011  2.351 VAX
(4th) (2nd)
44b  1.00 7.694 6.025 3.033 3.71£.07 0.250+.015 2.357 VAX
(3rd) (2nd)
50 1.19 7.598 5.903 3.041 3.89+.07 0.270+.013 2315 AT
(4th) (2nd)
64 1.00 7.559 5.845 3.121 455+.13 0.287+.017 2.266 VAX
(6th) (2nd)
68 1.00 7.532 5.784 3.158 425+.10 0.281+.012 2.273 AT
(6th) (2nd)
80 097 7.465 5.693 3.162 3.83+.09 0.264+.014 2.274 AT
(4th) (2nd)
100 1.00 7.411 5.342 3.220 3.69+.08 0.242+.014 2.264 VAX
(3rd) (2nd)
512a 0.50 7.180 (5.278)° 3.502 4.13+.10 0.268+.024 2.163 VAX
(3rd) (2nd)
512b 1.00 7.164 5.051 3.523 3.99+.08 0.245+.017 2.166 VAX
(4th) (2nd)
1000 1.00 7.149 (5.687)° 3.466 3.69+.08 0.221+.023 2.178 VAX
(3rd) (3rd)

2a3,b after number of ions stand for independent simulations. ®The osmotic coefficicients are calculated by eqn.
(5) using the mean contact values given in the two preceding columns. “The range in which radial distribution
functions are sampled is from a to 7a. Normally, the range is from a to 4a. “The degree of the most significant
polynomial at the 95 % level fitting the 60 sampled values of the radial distribution functions is given in
parentheses. °The value is deleted, because the number of configurations is probably not sufficient for
convergence.
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Results

The RPM has only two parameters: The Bjerrum
parameter B given by eqn. (1) and the dimen-
sionless total ion concentration * given by eqn.

(2):
o* = N/IL? = oad® )

(L is the edge length of the central cubic box
measured in units of a, @ is the total concentra-
tion of ions in particles per m®). The Bjerrum
parameter encompasses variation in charge type
(1:1, 2:2, 3:3 electrolytes etc.), in solvent (g) in
temperature (T) and in contact distance (a). All
calculations in the present paper and in the two
preceding papers'®? have been performed with B
= 1.546. By elimination of a from eqns. (1) and
(2) and by change of units, the salt concentration
in mol salt per dm® (Cs) for B = 1.546 is given by

Cs = (1.7428-107%)-(0*) [, (T/298.16)/(z%)] (3)

In water at 298.16 K, the relative permittivity is €,
= 78.54 and we have:

C, = 8.4435-0*/(2%) @)

The lowest dimensionless concentration we have
considered here amounts to g* = 2-107%at B =
1.546. For a 1:1 electrolyte in water this corre-
sponds to a salt concentration Cg = 1.689-107*
mol dm®, which is normally considered as an ex-
tremely low concentration for which the DHLL
should be valid. (Note that for a 2:2 electrolyte, z
= 2, the concentration considered is 64 times
lower, i.e. 2.638-107% mol dm?).

The Monte Carlo runs are summarized in Table
1. The first 5000 configurations have been omit-
ted from the samplings. This omission has signif-
icance for only a few of the heat capacities start-
ing with an irregular lattice with a large number
of particles (e.g. N = 700), where initially
strongly deviating samplings are often found (in a
single case with N = 1000 and @* = 2-107° highly
deviating sampling of the heat capacity suddenly
occurred after around 1.3 million configurations,
most probably making the cumulated value of
Cy(ex)/Nk too high during several hundreds of
thousands of subsequent configurations. Stochas-
tically, such a deviation should be extremely un-
likely, and it was also the only one found in the
whole data material).

The excess osmotic coefficient, ® — 1, is calcu-
lated for each simulation using the pressure equa-

Table 2. Extrapolated thermodynamic quantities for B = 1.546 (RPM).

o* ®a — E(ex)/NkT —AF(ex)/NkT +Cy(ex)/Nk 1-®)
X100 x100 x100 X100
0 0 0 0 0 0
2-10°% 1.9712:1072 1.5126+.0042 1.021+.019 0.822+.025 0.4927+.0020
(2nd)® (2nd) (2nd) (2nd)
6.4-10°% 3.5261-102 2.6776+.0079 1.928+.016 1.387+.013 0.8656+.0035
(2nd) (2nd) (3rd,90and 95 %) (2nd)
1.348+.017
(2nd)
1.25-10°* 4.9279-1072 3.728+.012 2.722+.017 1.852+.023 1.1695+.0057
(1st) (1st) (2nd) (2nd)
2.5-10* 6.9691-1072 5.140+.013 3.734+.023 2.524+.019 1.5877+.0065
(2nd) (1st, 95 %) (1st) (2nd)
3.684+.025
(2nd, 90 %)
5-10~* 9.8559-102 7.118+.012 5.114+.053 3.527+.063 2.165%.011
(2nd) (1st) (1st) (1st)

?Degree of most significant extrapolating polynomium in 1/N at the 95 % significance level given in

parentheses. .
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Fig. 1. Radial distribution functions after

1,385,000 configurations with N = 1000
ions, B = 1.546 and ¢* = 2:107%.
Samplings are taken over each of 1000 ions
in 60 spherical shells of thickness 0.05
times the contact distance. The scatter is
considerable, but the data are improved by
polynomial fitting. The abscissa is (/a)—1.
(a) g._(n), the standard error belt of the
smoothened polynomial values is shown. A
3rd degree polynomial is most significant at
the 95 % level of significance. The contact
value is extrapolated to g, _(a) = 4.73+0.27
with the polynomial shown. After 1,715,000
configurations (Table 1), the contact value is

1.0 2.0 3.0 4.0
B:1.546  p*2.10° N-1000 '
6.0} o 385000 configurations 1
=
1 J
o
T T T T '
o (b) J
< 4
i 4
)
1 T
E
%
s
) .
] ) I 1 [} [ 1

4.62+0.25.(b) g, , (N = g-_(n), 2nd order
polynomial most significant at 95 %, g, .(a)
= g__(a) = 0.217+0.056. With a 1st order
polynomial, a smaller uncertainty is obtained
(0.312+0.038). Comparison with Table 1
shows that a 1st degree polynomial is
significant at the 95 % level after 1,715,000
configurations. The contact value is then
0.298+0.031.

ra

tion. For the restricted primitive model (RPM)
we have:

® — 1 = [E(ex)/3NkT]

+ (m 0*/3)-[ga(a) + 9.-(a)] ©)
In eqn. (5), ga(a) = g.4(a) = g__(a). As is
apparent from Table 1, there is considerable
spread in the extrapolated contact values g,(a)
and g,_(a). This is due to the rarely occurring
close encounters at high dilution. There is no
systematic variation with N. Luckily, the second
term in eqn. (5) is small compared to the first at
small concentrations. The values of E(ex)/NkT,
AF(ex)/NkT, Cy(ex)/Nk and ® — 1 have been
plotted against 1/N and fitted to the most signif-
icant least-squares polynomials at the 95 % level
of significance. The results of the extrapolations
to 1/N = 0 and the standard deviations of the
polynomial extrapolations are given in Table 2.
The relative error in the excess osmotic coeffi-
cient is somewhat greater than the relative error
in the excess energy, due to the uncertainty in the

17 Acta Chemica Scandinavica A 42 (1988)

40

contact values. The electrostatic, negative Helm-
holtz free energy —AF(ex)/NkT converges more
and more slowly when either the concentration or
the number of ions increases. The cumulated
value of —AF(ex)/NkT tends in such situations to
move towards lower values in large jumps occur-
ring very rarely. After a jump, the value in-
creases asymptotically (as a decaying exponen-
tial: towards a new, slightly higher value. After
many configurations (one million or more), the
jumps disappear and the cumulated value stabi-
lizes. When too few configurations are taken,
—AF(ex)/NkT will typically be too high. In few
cases, the value may be somewhat too low when a
large downwards jump has just occurred. A few
values of —AF(ex)/NkT have been left out in the
extrapolations to 1/N = 0 since the number of
configurations most probably is insufficient.

Fig. 1 shows the sampled radial distribution
functions in the range r = a to r = 4a for N =
1000 and @* = 2-107° after 1,385,000 configura-
tions. The scatter is considerable because of the
high dilution. The data may be somewhat im-
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1.0 20 3.0 4.0

B:1.846 p-210"°
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ra
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Fig. 2. Radial distribution functions, after
2,360,000 configurations with N = 216 ions,
B = 1.546 and ¢* = 2:107%. In spite of the
larger number of configurations, the scatter
is about the same as in Fig. 1, since the
averaging is not performed with so many
particles. The most significant polynomia at
95 % are of 3rd order for g, _(r) and of 1st
order for g, (N = g__(n. Contact values
g._(a) =421+028andg,.(a@ = g__(a) =
0.278+0.035.

Fig. 3. Radial distribution functions after 1
million configurations for N = 1000 ions, B
= 1.546 and o* = 5-107*. They are much
better determined than for o* = 2:1075 due
to the more frequent close encounters at
higher concentrations. A 3rd order
polynomial is shown for g, _(r) and a 2nd
order polynomial for g, .(r) = g__(n). Contact
values: g, _(a) = 3.69+0.08 and g, . (a) =
g__(a) = 0.253+0.017.
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proved by fitting the 60 points to the most signif-
icant least-squares polynomial. The standard er-
ror belts of the smoothening polynomial values
are also shown in Fig. 1. For the same concentra-
tion, but with N = 216, the radial distribution
functions.are shown in Fig. 2 after 2,360,000 con-
figurations. The scatter is still considerable. The
scatter is drastically reduced when the concentra-
tion increases. Fig. 3 shows the radial distribution
functions and the fitting polynomials for N =
1000 and o* = 5-10~* after 1 million configura-
tions.

Discussion

An extrapolation to an “infinite system” will only
be successful if half of the box length for the
largest systems is somewhat longer than the effec-
tive range of the forces involved. In the present
case, the Debye screening length 1/« is a measure
of the range of the forces involved. The value of
»a is given in terms of B and @* by the relation-
ship:

®xa = V4nBo* 6)

Since we measure the box length (L) in units of
the contact distance (a), we have the require-
ment:

(ML/Z)largest system — VY J':B(Q)") v Nmax = MIN(7)

For B = 1.546, ¢* = 2-1075 (worst case) and MIN
= 3 or 4, we obtain N, = 564 or 1337. There-
fore, it should be sufficient to choose up to 1000
ions, even in the worst case, in view of the rapid
(approximately exponential) decrease of the
mean electric potential around an ion.

The extrapolated data of Table 2 may be sub-
jected to further statistical treatment, since
smoothening polynomials of the thermodynamic
properties as a function of xa may be found. It is
important to include the value zero for all the
excess quantities at xa = 0, so that a total of six
concentrations are considered. In the first fits,
the Debye-Hiickel limiting laws (DHLL) were
not assumed to be necessarily valid. The resulting
most significant polynomials at the 95 % level are
given below:

—E(ex)/NKT = 0.7832 »a — 0.6205(xa)’ ®8)

17*

— AF(ex)/NKT = 0.5734 xa — 0.5208(xa)*  (9)

+Cy(ex)/Nk = 0.4433 xa — 1.9151(xa)?
+ 10.615(»a)? (10)

(11

The initial slopes predicted from the DHLL in
the four cases are B2 = 0.7730, B/3 = 0.5153,
B/4 = 0.3865 and B/6 = 0.2577, respectively. The
polynomials (8) and (11) correspond quite well
with the DHLL, whereas some deviation is ob-
served in the case of the electrostatic Helmholtz
free energy and in the case of the excess heat
capacity. The deviation of the heat capacity may
easily be explained in terms of the considerable
covariance between the coefficients of a least-
squares polynomial of the third degree. It is of
interest that if we force the degree of the least-
squares polynomial for (—AF/NkT) vs. na to be
unity, we have a slope very close to the DHLL
slope:

(1 — ®) = 0.2540 xa — 0.3584(xa)?

—AF(ex)/NKT = 0.5229 xa (12)
In the next step, we force the least-squares poly-
nomials not only to go through the origin but also
to have the correct limiting slope. We obtain the
results:

—E(ex)/NkT = 0.7730 xa — 0.5038(xa)?  (13)

—AF(ex)/NKT = 0.5153 xa + 1.0508(xa)? _
— 10.518(xa)* (14)

+Cy(ex)/Nk = 0.3865 xa + 1.8467(xa)?

— 58.91(xa)? + 378.94(xa)" (15)

(1 — ®) = 0.2577 xa — 0.3944(xa)’ (16)

It is possible to increase the polynomial degree by
one without losing the significance, since the ini-
tial slope is fixed as well as the initial value. This
has been done for —AF(ex)/NkT and for
Cy(ex)/Nk. A more sensitive plot of AF(ex)/AF
(ex, DHLL) vs. xa reveals a systematic (parabol-
ic) deviation from unity. The scatter is consid-
erable, but the plot is certainly not linear in xa.
Therefore, a third degree polynomial has been
chosen in eqn. (14). A plot of Cy(ex)/Cy(ex,
DHLL) vs. »xa shows that the fit of a third degree
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Fig. 4. (a) E(ex, MC)/NKT, (b)AF(ex, MC)/NKT, (c) C(ex,MC)/Nk and (d) ®(MC)—1 vs. xa, showing the
approach towards the limiting laws. The Debye-Hiickel values (DH) are also shown. On this coarse scale the

uncertainty of the MC calculations cannot be seen.

polynomial of this quantity vs. #a is considerably
better than the fit of a polynomial of second
degree. Thus, a fourth degree polynomial has
been selected in eqn. (15). Similar plots were
made of E(ex)/E(ex, DHLL) and (1-®)/[1-®
(DHLL)], but no improvement could be seen on
increasing the degree of the polynomial.

Figs 4 (a—d) and Figs 5(a—d) show that the gross
features of the present calculations are entirely
consistent with DHLL, but the first deviations
are apparently not in accordance with the laws of
Debye and Hiickel (DH) in common use in elec-
trochemistry. In our formalism, these laws may
be expressed as follows':

E(ex, DH)/E(ex, DHLL) = 1/[1 + xa] a7
AF(ex, DH) = B-F(xa)

=~ (B3)(xa)[1 — (3/4)(xa)] (18)
F(xa) = [In(1 + xa) — xa + (xa*2)/(xa)®> (19)
Cy(ex, DH)/Cy(ex, DHLL) = 1/[1 + »a]* (20)
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®(DH) — 1 =B-G(»a + ®(hard spheres) — 1

(21)
G(na) = [In(1 + xa) — (»a/2)
= (xa)/{2(1 + xa)}}/(xa)’ (22)
®(hard spheres) — 1 =2n0*/3=(xa)%(6B) (23)
®(DH) — 1 ~ —(B/6)xa + [(B/4)
+ 1/(6B)](xa)? 24

Comparing eqns. (16) and (24), it is interesting to
note that the value 0.3944 is very close to B/4 =
0.3865, whereas (B/4) + 1/(6B) = 0.4943. Thus
for the present value of B, the Monte Carlo cal-
culations (which involve the electrostatic as well
as the hard core contributions) seem to give the
same results for the osmotic coefficients as the
Debye-Hiickel equation without accounting for
the excluded volume term. Whether this is funda-
mental or simply coincidence cannot be discussed
before calculation with other values of B have
been performed. However, it seems safe to con-
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Fig. 5. (a)E(ex, MC)/E(ex, DHLL), (b) AF(ex,
MC)/AF(ex, DHLL), (c)Cy(ex)/Cy(ex, DHLL)
and (d) [®(MC)—1)[®(DHLL)—1] vs. xa.
Magnified plots showing the approach
towards the limiting laws in greater detail
than Fig. 4. The uncertainty bars shown for
the MC results are the ones obtained from
the polynomial extrapolations to infinite
systems. The least-squares polynomials are
also shown. The numbers in parentheses
indicate the number of the equation. The
MC results are seen to approach the limiting
law in a way qualitatively different from the
DH laws. AF(ex) and Cy(ex) both exhibit
“negative deviations” from the DHLL at
extreme dilution. E(ex) may have a slight
negative deviation. The regression line for
the excess osmotic coefficient given by eqn.
(16) is very close to the DH expression (24)
without the hard sphere term (1/6B)(xa)?.
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clude that when data for osmotic coefficients (or
for logarithms of mean ionic activity coefficients)
at high dilutions are used in connection with the
DH theory (or MSA theory) to calculate dis-
tances of closest contact (a) (see, for example,
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the case for many 1:1 electrolytes in water at
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It is well known for 2:2 electrolytes, that the
RPM exhibits negative deviations from the De-
bye-Hiickel limiting law for E(ex), i.e. deviations
opposite to those predicted by the DH-theory
(see for example the MC simulations of Rogde
and Hafskjold at B = 6.8116®). In our case there
are apparently no negative deviations from
DHLL for E(ex), but the values of E(ex) are in
between E(ex, DHLL) and E(ex, DH), so it
might be the first sign of a negative deviation at
very small concentrations for somewhat higher
values of B. A clear sign that something is going
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to happen at higher B values is the peculiar con-
centration dependence of the excess heat capac-
ity found in the present study, seemingly very
different from the dependence predicted by the
DH law. It is well known that in statistical me-
chanical calculations, the heat capacity is a much
more sensitive quantity than the internal energy.
Therefore, it is natural that the most drastic de-
viations from the DH law are found for Cy(ex).

It should be mentioned that the values of the
thermodynamic parameters calculated with the
Mean Spherical Approximation (MSA) are ex-
actly the same as the values calculated from the
DH theory in the very dilute region considered
here. This is a result of the isomorphism between
the DH and the MSA theories and the fact that
the shielding lengths of both theories become
identical at extreme dilutions. Thus, even if the
excluded volume is treated in a more consistent
way in the MSA theory than in the DH theory,
they seem to be equally wrong at very low con-
centrations.

The deviation of E(ex, MC) from E(ex, DH)

5.00

may be the reason for some of the poor results for
the limiting slopes from the measurements of heat
of dilution for some salts (see the introduction).
The heat of dilution may easily be calculated
from E(ex) when these values are corrected for
the temperature dependence of the dielectric per-
mittivity of the solvent. In order to measure
something significant it is necessary to begin with
an electrolyte solution of a concentration at
which the DHLL is not valid and then dilute
further. However, when a false relationship is
used, the value obtained for the DHLL constant
will also deviate from the theoretical value.
After the above discussion of the thermody-
namic parameters, we turn to the form of the
radial distribution functions g, _(r) and g,(r) =
g.+(r) = g__(r). We found that the so-called
DHX model seems to approximate the radial dis-
tribution functions quite well at B = 1.546 and at
the small concentrations studied here. In this
model, the effective potential w;; in g;(r) = exp
(—wy/kT) is approximated by the mean electro-
static potential as given by the Debye-Hiickel

4.00
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Fig. 6. Radial distribution | ot
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assumption (dotted) and by the
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“window” shown (from contact to
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2-107% and B = 1.546. The
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5.00
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T Fig. 7. Monte Carlo values
(uncertainty belts) of the radial
distribution functions close to
contact for N = 1000, o* =
5-10~* and B = 1.546 (1 million
configurations, see Fig. 3)
compared to the DH assumption
(dotted) and the DHX assumption
(dashed). DHX and MC values
are statistically identical.
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expression. Thus, we have a double exponentia-
tion:

g.-(r)

= exp[+ Bexp[—na{t—1}/t/(1+xa)]]
ga(r) =rlaz1
Figs. 6 and 7 show the standard error belts (for N
= 1000 ions) for g,_(r) and g,(r) at the lowest
and at the highest of the concentrations consid-
ered, as compared to the DHX model and to the
DH model the latter of which is the linearisation
of the first exponential in eqn. (25). The DH
model is very poor close to contact, but it is
asymptotically valid for large radii. The DHX
model coincides with the DH model at large ra-
dii, but is much better close to contact. In fact,
the correspondence between the smoothened
MC data and the DHX values for the radial dis-
tribution functions is strikingly good at the con-
centrations considered here. The difference be-

tween the MC and the DHX values seems in-
significant in the whole window shown here for
both concentrations. However, the contribution
to the thermodynamic properties lies mostly in
the long “tails” of the radial distribution func-
tions at great dilution which are shown on Figs. 6
and 7. The MC method is not precise enough for
studying the very small differences between g(r)
and unity at large separations.

When the DHX assumption [eqn. (25)] is in-
serted into the energy integral, the DHX of
E(ex)/NkT can be evaluated by numerical in-
tegration. The results are shown in Fig. 8.
Clearly, the DHX values are very close to the
regression line for the MC values, especially for
the lowest concentrations. Therefore, the differ-
ences between the radial distribution functions
given by the DHX model and the real radial
distribution functions must be very small even far
out in the tails. The DHX model seems to repre-
sent a great improvement as compared to the DH
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Fig. 8. E(ex)/E(ex, DHLL) vs. the square-root of the
dimensionless concentration with the DH assumption
(long dashes) or the DHX assumption (short dashes)
for the radial distribution function compared to the
Monte Carlo values. The DHX values (obtained from
the energy integral) are very close to the
smoothened MC values— especially at small
concentrations— and both are certainly different from
the DH values. The DHX values are integrated over
40 times (@) or 30 times one half Debye length (A).
No difference is observed, but below 15 times one
half Debye length the calculated excess energies
deviate significantly. This is a demonstration of the
importance of the long “tail” in dilute systems. Since
the tail is more important the more dilute the system
is, the DHX model seems to be a good
approximation also for the tail at extreme dilution.

model at high dilution, at least for 1:1 electro-
lytes. The DHX model yields good thermody-
namic results for moderately dilute solutions, it
tends towards the DHLL at extreme dilution and
it makes possible a discussion of the double layer
structure close to the ions with great precision,

252

even at extreme dilutions where the DH model
leads to absurdities such as negative local concen-
trations. The DHX model might with advantage
replace the DH model in elementary electro-
chemistry textbooks (in a paper in preparation
we show that a straightforward generalisation of
DHX seems to work even in the case of unequal
ionic radii!).
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