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In aqueous solution, ammine ligand aquation is
the major photoreaction resulting from ligand
field excitation of bromopentaamminerhodium

24 + hv
[Rh(NH,);Br]** + H,0* —>
[Rh(NH,),(H,0)Br]** + NH,*

(II1)*2 and the photoproduct @y, = 0.18(1),
25°CP is mainly, although not exclusively, the
trans isomer. Product stereochemistry cannot be
taken as evidence for the stereochemical origin of
photosubstituted ligands, owing to the high ster-
eomobility of such excited-state reactions.*’
However, N-labelling has proved to be a valua-
ble tool in tracing photoaquated ammonia,®’ and
in order to establish whether axial or equatorial
ammonia is substituted in this octahedral d° pen-
taammine complex with a weak-field hetero-
ligand, trans-NH; has been “N-labelled and the
ammonia released during photoaquation of
[Rh(NH,);Br]** has been subjected to isotopic
analysis.

Stereochemical selection rules, which have en-
joyed considerable success in rationalizing the
stereochemical consequences of photosolvolysis
of d° low-spin octahedral complexes,>® have
largely been based on experiments with rhodium
(IIT) amines. The results communicated here on
the photostereochemistry of [Rh(NH,);Br]** are
of interest in this connection, since the work re-
presents an extension of the previous work’ on
[Rh(NH;);CIJ** to a pentaammine complex in
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which the field difference between the ammonia
ligand and the heteroligand is more substantial.

[Rh(NH;);Br]** was labelled in the trans-posi-
tion using the same strategy as employed previ-
ously for [Rh(NH,);ClI]**:" trans-[Rh(NH,),
(H,0),)(C10,); (100 mg) was heated in 10 ml of a
5N-enriched 0.9 M NH,/NH,ClO, buffer with
pH=9.5 [PNH,IO, prepared from 99%
NH,Cl, (Amersham Int.) by precipitation with
LiClO,] in a sealed ampoule at 85°C for 6 h.
From the reaction mixture, a product mixture
of trans-[Rh(NH,),(’’NH;)Br]|Br, and trans-
[Rh(NH,),(*NH,)(H,0)]Br; was precipitated (by
the addition of 10 ml of 65 % HBr). The product
was heated overnight at 90°C, and the trans-
[Rh(NH,),(*NH,)Br|Br, was reprecipitated as
trans-[Rh(NH;),(**NH;)Br|Cl, and finally con-

Table 1. Fraction of axial ammonia photoaquated? in
[Rh(NH,)sBr)?* in aqueous 0.010 M HCIO,, calculated
from isotopic analysis of NH, released from 6.71 %
SN trans-enriched [Rh(NH,);Br}?*.

[Rh(NH)Br2* NHy%umol  "N/%  Axial NH,?
/umol

233 129 5.81 0.86

24.0 15.0 5.92 0.88

23.9 14.7 5.91 0.87

a\,, = 366 nm. “Amount of complex photolyzed.
°Amount of released NH; separated from photolysis
solution. “Axial NH, released as a fraction of total
released NH;.
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Table 2. Photoisomerization quantum yields for
aquabromotetraamminerhodium(lll) in acidic solution
at 25°C.

Complex [ Prc
[Rh(NH,),(H,0)Br]?* @ 0.457(11)° 0.018(1)
[Rh(NH,)4(D,0)Br])?* ® 0.417(3) 0.034(2)

41073 M HCIO,/H,0: A, = 366, 405 and 436 nm; a
total of 10 experiments. °10~2 M DCIO,/D,0O:

A = 436 nm; a total of 4 experiments. “Previously
reported as 0.50(4) (Ref. 11).

verted into trans-[Rh(NH,),(**NH;)Br](ClO,), by
precipitation with 70 % HCIO,; the latter salt had
the expected UV-absorption spectrum® (1073 M
HCIO,: Mpaes Emax = 359 nm, 1221 mol™! ¢cm™};
424, 26; Cary 219 spectrophotometer).
Solutions  of  trans-[Rh(NH;),(**NH;)Br]
(Cl0,), (1.63% N total enrichment, corre-
sponding to 6.71 % N trans-enrichment; 13.8 ml
of ca. 2 mM aqueous 0.010 M HCIO, solutions)
were irradiated with monochromatic light of
wavelength 366 nm (ca. 7 p einstein min~!, 5 cm
light path) at 25°C for 2 h, and the photoaquated
ammonia was separated from the reaction mix-
ture by the distillation and trapping procedure
described previously.® The amount of NH, thus
separated was determined by titration, and the
5N/MN ratio was subsequently determined by op-
tical emission spectroscopy.'® Experimental re-
sults are summarized in Table 1. With the present

experimental design, a natural “N/*N ratio cor-
responding to 0.36 % "“N is expected for exclu-
sively equatorial photolabilization, whereas
6.71 % is indicative of axial labilization. The ob-
served N/"N ratios correspond to 87+4 % axial
labilization.

The photoproduct [Rh(NH,),(H,0)Br]**,
which notably is also the major photoproduct
resulting from ligand field excitation of both cis-
and trans-[Rh(NH,),Br,]*,!! was previously be-
lieved to be exclusively the trans isomer. Howev-
er, a careful spectral analysis of exhaustively pho-
tolyzed solutions revealed this photoproduct to
be in a cis/trans photostationary state, although
with a strong trans preference:

cis-[Rh(NH,),(H,0)Br]* 2

tc

trans-[Rh(NH,) (H,0)Br]**.

The quantum yields for the interconversion of the
aquabromotetraamminerhodium(III) ions (Table
2) in acidic aqueous solution and in acidic deute-
rium oxide (Norsk Hydro, 99.8 %) were deter-
mined by irradiation of solutions of either isomer
of [Rh(NH,),(H,0)Br]S,0," (monitored spec-
trophotometrically;'>!? ferrioxalate actinometry).
The composition of the cis/trans photostationary
state, calculated from the isomerization quantum
yields and the molar absorption coefficients at
the wavelength of irradiation, is compared in Ta-
ble 3 with the composition calculated from the

Table 3. Photostationary states for cis- and trans-aquabromotetraamminerhodium(lll) at 25°C in aqueous

1073 M perchloric acid.

Aig/nM Reacting complex cis/trans photostationary state
% trans obsd.* % trans calc.®

366 trans-[Rh(NH,) (H,0)Br]** 99.4 99.1
cis{Rh(NH,),(H.0)Br}** 97.6 99.1

405 trans-[Rh(NH,),(H,0)Brj?* 95.9 96.3
cis{Rh(NH;),(H,0)Br}?* 95.6 96.3

436 trans-[Rh(NH,) ,(H,0)Br]?* 94.0 94.5
cis{{Rh(NH;),(H,0)Br** 92.3 94.5
trans-[Rh(NH,),(D,O)Br** 93.6 89.4
cis-{Rh(NH,),(D,0)Br)?* © 89.7 89.4

“Calculated from spectral analysis of exhaustively photolyzed solution. bCalculated from % trans = 100/(1+7),
where r = (@ Efans/Pot £); Cf- Ref. 12. ©1072 M DCIO,, D,0.
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absorption spectra (“observed”), and the agree-
ment confirms that the photoproduct is in a pho-
tostationary state. The relative insensitivity to
deuteration of the water ligand (only coordinated
H,0 is deuterated in acidic D,O, owing to the
vast difference in D/H exchange rate for this li-
gand and for coordinated NH,) is consistent with
observations made for [Rh(NH,),(H,0)CIJ** and
with a dissociative water-exchange mechanism
for the photoisomerization.'

Two results have been obtained in the present
study. Firstly, the ammonia which is preferen-
tially photoaquated in [Rh(NH,);Br]** has been
identified as the axial ammonia, although ca.
10 % originates from the four equatorial posi-
tions, implying that axial ammonia is labilized ca.
30 times as efficiently as the equatorial ammonia
ligands. Secondly, the photoproduct [Rh(NH,),
(H,0)Br]** has been shown to form a photo-
stationary state with a strong trans preference.
The selection rules based on the angular overlap
model*®!! correctly predict axial ammonia to be
photolabilized in [Rh(NH;);Br]** and the pho-
toproduct [Rh(NH;),(H,0)Br]** to have the
trans geometry. However, the important conclu-
sion that can be drawn is that, although these
selection rules lead to predictions which are qual-
itatively correct, finer details remain to be discov-
ered for these excited-state reactions.*
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