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In order to find a generally applicable method for calculation of the theoretical
electrode response for reactions coupled to heterogeneous charge transfer, a
detailed comparison has been made of various numerical methods for treatment
of the homogeneous kinetic terms in explicit finite difference methods in which
the diffusion and the homogeneous kinetics are treated sequentially.

The methods for treatment of the homogeneous kinetic terms include (i)
analytical integration of the rate laws, (ii) linearization of the rate laws followed
by analytical integration, (iii) finite difference integration, and (iv) higher order
Runge-Kutta integrations.

The error introduced by the approximate methods during treatment of the
homogeneous kinetics as well as that introduced by the sequential treatment of
diffusion and homogeneous kinetics was evaluated for a number of reaction
mechanisms.

Of the approximate methods, 4th order Runge-Kutta integration was found to
be superior and to give data indistinguishable from those obtained by analytical
integration within the time step limits imposed by the sequential treatment of
diffusion and homogeneous kinetics.

Fourth order Runge-Kutta integration is a general, easily applicable method
even for complicated reaction mechanisms and is recommended in cases where
analytical integration of the rate law is impossible, or where analytical integration
results in expressions from which the concentration of interest cannot be explicitly
calculated.

Over the past twenty years digital simulation has
been used extensively to obtain theoretical data
for the electrode response for a number of differ-
ent experimental situations. Several numerical
methods have been applied to the general prob-
lem which consists of solving a number of cou-
pled partial differential equations for which the
initial and boundary conditions are dependent
upon the particular experimental require-
ments." In order to secure a uniform and un-
ambiguous terminology the presentation which
follows is confined to only one electroanalytical
technique, linear sweep voltammetry (LSV).
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In the case of a reversible electron transfer
followed by a homogeneous chemical reaction
which is so fast that the steady state assumption is
valid for the primary electrode product, the
mathematical problem reduces, by application of
Laplace transformations, to numerical solution of
integral equations. In the transition zone be-
tween pure diffusion control (a totally reversible
voltammogram) and pure kinetic control (a to-
tally irreversible voltammogram) reduction of the
problem to equations in one variable is generally
not possible, and numerical methods are required
to solve the associated set of partial differential
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equations. The methods employed for this pur-
pose have been (a) explicit finite difference meth-
ods, (b) (semi-)implicit finite difference methods,
and (c) orthogonal collocation.

In general, all three methods are readily appli-
cable to the most simple mechanisms. This is,
however, not the case when more complicated
kinetic terms are involved in the mathematical
description of the electrochemical system. The
aim of this study has therefore been to find a
general numerical method satisfying the follow-
ing requirements:

(i) The method must be applicable even for
complex reaction schemes with large rate
constants.

(ii) The method must be easily implemented
even on small laboratory computers and
therefore be independent of access to sophis-
ticated computer library routines.

(iii) The application of the method should not
require detailed mathematical knowledge.

(iv) The simplicity of the method must not be
achieved at the expense of accuracy in the
theoretical data obtained.

Of the methods mentioned above, orthogonal
collocation [method (c)] requires access to com-
puter library routines for solving sets of ordinary
differential equations in order to be efficiently
implemented.? Furthermore, the use of large, di-
mensionless rate constants requires combination
with the heterogeneous equivalent method in or-
der to give data of satisfactory accuracy.* We
therefore eliminated orthogonal collocation from
consideration at an early stage.

Of the finite difference methods, the semi-im-
plicit method is mathematically the most satis-
factory.> However, when the reaction mechanism
becomes complex, the application of the semi-
implicit method is not straightforward and itera-
tive procedures have to be included if the semi-
implicitness is to be retained (see Appendix 1 for
further discussion of this point). Consequently,
the derivation of the necessary equations and the
programming involved become much more
elaborate.

We therefore concluded that optimization of
an explicit finite difference method was the most
promising approach in the search for a general
numerical method fulfilling requirements (i)-

(iv).
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For a given reaction mechanism, the mathe-
matical description of a voltammetric experiment
consists of a number of normalized differential
equations of the general form

da d%
37 -3 2 + kin,(a,b,...)
3b 3%

Py + kin,(a,b,...)

M

with known initial and boundary conditions. The
terms 3%a/dx?, 3*b/3x?, ... represent the diffusion
(Fick’s 2nd law for semi-infinite linear diffusion
to a planar electrode), and the terms kin,(a,b,..),
kiny(a,b,..), ... represent the homogeneous ki-
netics for the species A, B etc. The variables are
in dimensionless notation: a = C,/C%, b =
Cy/C%... (CY is the initial molar concentration of
substrate,C,, Cg, ... are the solution molar con-
centrations of species A, B etc.), t = ¢'-0 (¢' is
the time in seconds and 6 is equal to nFv/(RT)
where v is the voltammetric sweep rate in Vs™!)
and x = X/V/ (D/B) (X is the distance from the
electrode in cm and D is the diffusion coefficient
in cm’s~!, which in general is assumed to be iden-
tical for all species). In the kinetic terms, the
normalized first order rate constants are of the
form A = k/8 (k in s™!), and correspondingly for
the normalized second-order rate constants A =
kC%/0 (k in M~1s71).

The discretization of time and space variables,
tand x, in At and Ax units is common for all finite
difference methods. The explicit methods require
that the stability criterion A#/(Ax)* < 0.5 is ful-
filled, and the value of 0.45 has commonly been
chosen for this quantity.!? Having selected the
size of At/(Ax)?, only the size of At or Ax can be
determined independently. Since the homogene-
ous kinetic terms are dependent only on At, the
free choice of At is preferred.

The number of Ax units required in the sim-
ulation, corresponding to the thickness of the
diffusion layer, remains to be determined. Nor-
mally, the approximation for the diffusion layer
thickness in dimensionless formulation is given
by eqn. (2), from which the number of volume
elements (NVE) can be estimated as shown in



x =6Vt 2)
eqn. (3), where NTS is the number of time steps.
NVE = 6VAl/(Ax)’-NTS 3)

The number of volume elements, and thereby the
computation time may be reduced by introduc-
tion of expanding volume elements.®® This ap-
proach is not included in the following discussion,
but may be applied independent of the method
chosen for treatment of the homogeneous kinet-
ics.

The most frequently used version of the expli-
cit finite difference method is due to Feldberg!
and is based on sequential treatment of diffusion
and homogeneous kinetics, which is convenient
from a programming point of view. For each time
step the procedure consists of the following three
steps:

(1) Establishment of the boundary conditions at
the electrode surface and calculation of the
fluxes of the electroactive species to deter-
mine the current.

(2) For each species: adjustment of the “old”
concentrations in each volume element to ac-
count for diffusion, as described by the finite
difference formulation.

(3) For each species: adjustment of the concen-
trations calculated in step 2 to account for the
homogeneous kinetic terms in the differential
equations.

The discussion below deals with various options
for modification of step 3 in the above sequence.
However, the sequential treatment of diffusion
and homogeneous kinetics (steps 2 and 3) is not
the only possible explicit approach. Another pos-
sibility is to calculate the changes due to homoge-
neous kinetics using the “old” concentrations as
input values instead of the diffusion-changed con-
centrations,?® but it is easy to demonstrate that
this approach does not constitute an improve-
ment of the explicit method (see Appendix 2).

Results and discussion

The integration methods. Having accepted the se-
quential treatment of diffusion and homogeneous
kinetics in the simulation, the problem is now the
following: how are the concentration changes due

DIGITAL SIMULATION

to the homogeneous kinetic terms calculated
most satisfactorily, or in other words: which is the
best way to solve a set of ordinary differential
equations of the form

a
E = kin,(a,b,...)
db

— = kin,(a,b,...)

dr

4

in each time step?

The most satisfactory method would obviously
be application of the analytically integrated form
of the kinetic terms, which involves no approxim-
ation. Application of this method was actually
proposed by Feldberg and Auerbach,!® but was
not included in Ref. 1 and for that reason has
apparently received only little attention.!""'* Un-
fortunately, analytical solutions to the differen-
tial equations describing the homogeneous kinet-
ics are normally not available for complex reac-
tion schemes, and in some of the cases where a
solution is available an explicit expression for the
new concentration cannot be derived.

A semi-analytical method has been suggested
for kinetic terms for which direct analytical in-
tegration is impossible.!" This method consists in
linearization of the kinetic term into a form to
which analytical integration can be applied (see
Appendix 3 for discussion of an example of this
approach). Although the linearization followed
by analytical integration expands the number of
reaction mechanisms for which analytical or
semianalytical integration is possible, there still
remain a number of complex mechanisms for
which other integration methods must be found.

In spite of the fact that an analytical solution
exists for many reaction schemes, the most fre-
quently used method for the treatment of the
homogeneous kinetic terms is simply the applica-
tion of the finite difference version of the differ-
ential equation.! The advantage of the finite dif-
ference method is the straightforward program-
ming of even the most complex reaction
mechanisms. The disadvantage is that it is a
rather crude approximation of the differential
equations unless very small time steps are used,
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which may result in unacceptably long computa-
tion times.

Another completely general and much more
powerful method for the treatment of the kinetic
terms is Runge-Kutta integration (RKI).'*'® This
method has previously been proposed? for in-
tegration of rate laws for which analytical in-
tegration is impossible, but to the best of our
knowledge the method has never actually been
used as a sub-method in digital simulation. Since
the application of RKI appears to be new in this
context, a brief description seems relevant.

Explicit RKI belongs, like the simple finite
difference version, to a larger class of single step
methods for numerical solution of ordinary dif-
ferential equations.' For the ordinary differen-
tial equation describing the kinetics of e.g. spe-
cies A [the first part of eqn. (4)], the general
expression for RKI is given by eqn. (5), in which
a’ is the starting concentration and 4, is defined as
in eqns. (6) and (7):

a=a + z wh, 5)
i=1
i-1

h, = At-kin(a' + 2, qh) i=12,...v  (6)

j=1

i.e.
hy, = At-kin,(a’)
h, = At-kin(a' + q,h,)

hy = At-kina' + gyh, + g3hy)
hy = At-kinga' + quh, + qph, + quhs)

™)

The parameter v indicates the number of inter-
mediate evaluations of ¢ made between ¢ and
t+At. If v = 1, the method reduces to the simple
finite difference version, which means that the
evaluation of a is made only at the end of the
interval. For simplicity, the simple finite differ-
ence approximation (the Feldberg approach) is
referred to in the following as RKI-1. The larger
the number v, the more accurate the RKI is sup-
posed to be."

A number of undetermined parameters appear
in eqns. (5) and (6): the weights w, w,,..., w, and
the coefficients g.,,..., q..—;- The key point in
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RKI is to choose these parameters so that the
determination of a(t+Af) fits the Taylor series
expansion in a’ to as high an order as possible.'

A number of combinations of the undeter-
mined parameters satisfy the requirements for
fitting the Taylor series for higher order RKI.'"

The limitations normally encountered in the
application of Runge-Kutta methods are not re-
lated to the complexity of the reaction mecha-
nism but to the stiffness of the set of ordinary
differential equations.'*"” However, during the
application of Runge-Kutta integration as a sub-
method in digital simulation, problems due to
stiffness are not likely to be encountered. First,
the nature of the chemical processes associated
with heterogeneous charge transfer is in general
such that the steady state approximation is valid
for the intermediates formed during the reaction
of the primary electrode product; second, the
time step length in digital simulation is generally
small. Introduction of more sophisticated and ef-
ficient numerical treatments such as predictor-
corrector methods'*? is therefore normally not
necessary.

The reaction mechanisms. In order to compare
the accuracy of the different approximate nu-
merical methods, five reaction mechanisms have
been chosen for which direct analytical integra-
tion of the homogeneous kinetics is possible. A
summary of the five mechanisms, together with
the differential equations describing the homoge-
neous kinetics after application of the relevant
steady-state approximations, is given in Table 1.
The variables (time, distance, rate constants and
concentrations) are in the usual dimensionless
form. For mechanism IV a simplification was ob-
tained by addition of the equations describing a
and b, which reduced the number of equations
for which changes due to homogeneous kinetics
had to be calculated from three to two, thereby
reducing the computation time.

The equations resulting from analytical inte-
gration of the rate laws are summarized in Table
2. For mechanisms IV and V in particular, the
integration was performed by taking advantage
of the stoichiometric conditions: b—b' = c—¢’ <
¢ = ¢'+b—b' (mechanism IV) and b—b' =
2(a—a’') < b = b'+2(a—a’) (mechanism V).
However, the differential equations associated
with mechanisms I'V and V can also be solved by
the linearization procedure already described,



Table 1. Mechanisms and rate laws.

DIGITAL SIMULATION

Mechanism Rate law Linearized rate law
N b _ _
I +e =B o Mb
B - C (k,)
I A+e =B %’ = —o\p
2B - C (k)
I A +e =B -27" - —2\ab?
A +B —C (k)
B +C —->D + A (fast)
v A +e =8B a(2a+b)=0a,c
at
B +C—->D +E (k)
b _ b _ , ,
B +D oA +F (fast) o2 = —2hbe 92 = —heb - b
F +C > G +E (fasy g—f = —2\be g—f = —Mc'b — Mbe
. da da , ,
\Y A +e =B 3t = -\ab? at = —Y%\b’a — Yah,a’b
A +B—>C +D (k)
B +C—>A +E (fast) g—f = —2\ab % = —\b'a— hab
+ A - F + D (fast)

aAssumption: 3¢/dt = 0. *Assumption: dd/dt = 3f/d3t = 0. °The ordinary flux expression, flux, =

exp[—§(t+Ah)]-a, — b,
{exp[—E(t+Af]+1}[2- A(AX)?]
9Assumption: 3c/ot = de/dt = 0.

which made it possible to evaluate this method as
well. The resulting set of linear ordinary differ-
ential equations is also given in Table 1, and the
explicit expressions for the new concentrations
are found in Table 2. The details of the analytical
integration using this approach are described in
Appendix 3.

Table 2 also gives the simple finite difference
approximations, RKI-1, of the rate laws for all
five mechanisms. As examples of higher order
RKI’s, the 3rd order Nystrgm version (RKI-3)
and the 4th order classic version (RKI-4) have
been chosen. ' The expressions resulting from the
straightforward applications of RKI-3 and RKI-4
to the five mechanisms are given in the last two
columns in Table 2.

The numerical results presented in the follow-

should be substituted by: flux, =

exp[—E&(t+Ad][(2a+b),—b,J2 — b,
{exp[—E(t+AD]+1}/[2- A AX)?T

ing serve several purposes according to the fol-
lowing outline.

(1) Evaluation of the accuracy of the different
numerical methods for integration of the rate
laws in one volume element.

(2) Determination of the error introduced in the
values of E,, E,, and I, by the sequential
treatment of diffusion and kinetics as a func-
tion of (i) the mechanism and (ii) the mate-
rial conversion, which reflects simultaneously
the values of the dimensionless rate constant
and the time step length.

Determination of the additional error intro-

duced in E, E,, and [, by the various ap-

proximate methods of integration of the rate
laws.

(€)
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(Linearized,
analytical
integration)

change in b (%)

Fig. 1. One volume element comparisons of the errors introduced by various approximate methods of

integration of the kinetic terms.

The accuracy of the different methods of integra-
tion — one volume element comparisons. The dif-
ference between the concentration changes in
single volume elements calculated by each
method of integration and the concentration
changes calculated by analytical integration have
been determined in order to specifically evaluate
the approximate methods for integration of the
rate laws. In the following this difference is re-
ferred to as the error.

For mechanisms I and IV, a given value of
A - At and A, ®- At (c>b), respectively, corre-
sponds to a certain percentage change in the con-
centration (b) of the primary electrode product
independent of the initial value of b. Conse-
quently, the deviation from the analytical inte-
gration result which is observed for the other
integration methods can be recorded as a func-
tion of the percentage change in b, when the
calculations are made for a single volume ele-
ment.

For mechanisms II, IIl and V, the percentage
change in b depends on the initial value of b. For
mechanism II, the maximum change occurs when
the initial value of b is 1. This maximum initial
value of b has been used for the comparison for
mechanism II.

30 Acta Chemica Scandinavica A 41 (1987)

For mechanisms III and V, the percentage
change in b is influenced by the fact that a and b
are interdependent. However, the maximum
change in b is obtained when a equals 1. This
maximum value of a has been used for the com-
parisons for mechanisms III and V. The results
for all the one volume element comparisons are
illustrated in Fig. 1. The most remarkable result
is the considerable improvement in accuracy re-
sulting from the application of RKI-4 compared
to RKI-1. For all five mechanisms, the error in-
troduced by RKI-4 was less than 0.2 % for a 40 %
change in b.

The results obtained by linearization followed
by analytical integration for mechanisms IV and
V show that this method offers an improvement
compared to RKI-1, but in both cases the error
was considerably greater than that observed for
RKI-4.

A third point of interest is that larger errors
appear in general to be associated with mecha-
nism II, the only mechanism for which the rate-
law is second-order in b. However, it should be
kept in mind that the definition of the material
conversion for mechanism II differs somewhat
from that for mechanisms I and IV, and that for
mechanisms III and V.
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Fig. 2. Deviations of E,—E°
from the true value, caused
by the separate treatment of
diffusion and kinetics, as a
function of the percentage
change in b per time step.

deviation in E;—E° (mV)

10 20 30
change in b (%)

Another notable result is the sign of the error.
In all cases, except for RKI-4 applied to mecha-
nisms I, III and V, the numerical integration
results in overestimation of the concentration
changes; in other words, the response is as if the
rate constants are larger than is actually the case.

Comparison of the results for RKI-3 and
RKI-4 indicates that RKI-4 should be recom-
mended for treatment of new mechanisms, espe-
cially those for which the rate-law contains se-
cond-order terms in b.

The error introduced by the sequential treatment
of diffusion and homogeneous kinetics. For a re-
versible system without chemical follow-up reac-
tions, the deviation in EP—E0 on going from 1 mV
per time step to 0.1 mV per time step is only
=~0.02 mV, which illustrates that simulation er-
rors due to the numerical treatment of the diffu-
sion alone are small and may safely be neglected
for At values in this range or smaller. To evaluate
the error introduced by the separate treatment of
diffusion and homogeneous kinetics in the Feld-
berg approach, LSV simulations were carried out
using analytical integration of the Kinetic terms
for all five mechanisms. The parameters eval-
uated were the values of E,—E° and E,,—E°
which are of most interest in LSV, but for the
sake of completeness the values of I, were eval-
uated as well, although the mechanistic and ki-
netic information obtainable from the peak cur-
rent is, in general, rather limited.
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The results of simulations carried out with val-
ues of At so small that the effect on the potential
values of bisecting At was less than 0.02 mV were
chosen as the “true” values for E,—E°, E,,—E°
and .. This choice was justified by the agreement
between the limiting potential values for At — 0
and previously published values calculated by
other methods which are not based on the separa-
te treatment of diffusion and kinetics.?""?

The errors in the simulated values of E,—E°
and E,,—E° as a function of the percentage
change in b as defined previously are illustrated
in Figs. 2 and 3. By comparison of the results in
these two figures it is seen that the five mecha-
nisms fall into two groups. In the first of these,
which consists of mechanism I, II and IV, the
deviations of E,—E° and E,,—E° from the “true”
values are in all three cases negative and of simi-
lar magnitude. As a consequence of this, the
errors in the differences between E,—E° and
E,,—E° almost cancel, resulting in values of the
half peak width, E,—E,, which are very close to
the “true” values (Fig. 4). In the other group, i.e.
mechanisms III and V, the deviations in EP—E0
and E,,— E® are all positive, but in this group the
deviations are much more pronounced for
E,,—E’ than for E,—E’. It appears that the posi-
tive deviation in E,,,Z—E0 is compensated for to
some extent during the simulation between the
half peak and the peak, and consequently, the
errors in E,,—E, (Fig. 4) are of similar magni-
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' Fig. 3. Deviations of E,,~E°

Roo: from the true value, caused

by the separate treatment of
diffusion and kinetics, as a
function of the percentage
change in b per time step.

deviation in Ep,—E° (MV)

10 20 30
change in b (%)

tude to those in E,—E’, although the signs are
reversed.

The difference in response for the mechanisms
in the two groups is clearly significant, and is
most likely related to the fact that only b appears
in the rate law for mechanisms I, II, and IV,
whereas for mechanisms III and V both the sub-
strate concentration, a, as well as b contribute to
the kinetic term.

Since E,—E° and E,,—E, are the calculated
results of most importance in LSV-simulations, it

is of interest to determine the maximum change
in b which may be allowed in a simulation in
order to attain a certain accuracy in these two
quantities. Tables 3 and 4 summarize the maxi-
mum percentage change in b for the five mecha-
nisms if the errors in E,—E° or E,,—E, are to be
kept below the two arbitrarily chosen limits, viz.
10.1 mV and *+0.4 mV. The trends in the data
are as expected from the discussion in the previ-
ous paragraphs and in addition, it is of interest to
note that if the errors in E‘,—E0 and E,—E,
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Fig. 5. Deviations of /, from
the true value, caused by
the separate treatment of
diffusion and kinetics, as a
function of the percentage
change in b per time step.

deviation in /p (%)

10 20 30
change in b (%)

should simultaneously be less than 0.1 mV, the
change in b should be kept at a maximum of
approximately 10 % almost independent of the
mechanism.

The +0.1 mV and 0.4 mV levels of error
toleration result in deviations in the peak current,
I, of less than 0.1 % and 0.3 %, respectively, for
all five mechanisms. This illustrates that the
magnitude of the peak current in an LSV-sim-
ulation is not very sensitive to errors introduced
by the approximations used. It is seen from Fig. 5
that the signs of the peak current deviations cor-
respond to the deviations in E,,— E, as expected:
peaks which are too narrow are associated with
peak currents which are too high (mechanisms III
and V), and peaks which are too broad are asso-
ciated with peak currents lower than the “true”
values (mechanisms II and IV).

Since, as it was pointed out in the beginning of
this part of the discussion, the errors introduced
in the simulation by the explicit treatment of the
diffusion alone are small, and since the treatment
of the homogeneous kinetic part in the calcula-
tions reported above has been exact, the obvious
conclusion is that the deviations from the “true”
values shown in Figs. 2—4 are caused mainly by
the separation of diffusion and kinetics in the
calculations.

The additional influence of the inaccuracy in the
treatment of the homogeneous kinetics on the sim-
ulated potentials. The influence of the errors in-
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troduced by the non-analytical integration meth-
ods on the simulated E,—E° and E,,~E, values
can be determined in several ways. We have
found it most relevant to compare simulated val-
ues of E,—E° and E,,—E, with the limiting val-
ues obtained at small values of At. Thus, the
resulting errors include contributions from both
the inaccuracy in the numerical integration of the
kinetic terms and the separation of diffusion and
kinetics.

As discussed previously, the simple finite dif-
ference integration, RKI-1, as well as lineariza-
tion followed by analytical integration, results in
overestimation of changes in the concentration of
B due to homogeneous kinetics (Fig. 1). Conse-
quently, the simulated peak potentials are ex-
pected to be more positive than the “true” va-
lues, and this is in fact the case (Fig. 6). The peak
potentials calculated for mechanisms I and IV are
affected most strongly, especially when it is re-
called that sequential diffusion and homogeneous
kinetics caused E,— E’ to adopt too negative val-
ues when analytical integration was used (Fig. 2),
i.e. the error in the treatment of the homogene-
ous kinetics not only compensates for the built-in
error caused by the sequential treatment of diffu-
sion and kinetics, but owing to its magnitude
results in an over-all error in the opposite direc-
tion.

The largest error in the one volume element
comparisons was associated with the second-or-
der reaction (mechanism II), and although the
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Fig. 6. Deviations of E,—E° from the true value, caused by the separate treatment of diffusion and kinetics and

the application of simple finite difference integration (RKI-1) or linearization followed by analytical integration of
the kinetic terms.

absolute value of the error introduced by the smaller for mechanism II than for mechanisms I
sequential treatment for this mechanism is and IV.

smaller than that for mechanisms I and IV, the The simulations for mechanisms III and V be-
error using RKI-1 in the simulation is much have almost identically when RKI-1 is applied.
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Fig. 7. Deviations of E,,—E, from the true value, caused by the separate treatment of diffusion and kinetics

and the application of simple finite difference integration (RKI-1) or linearization followed by analytical
integration of the kinetic terms.
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Also, for these mechanisms the simulated EP—E0 '

values are too positive; this was, however, also
the case when analytical integration was used, so
that the error caused by use of the approximate
method is apparently just amplified.

For the two mechanisms IV and V, for which
linearization of the kinetic terms is possible, it is
clear from Fig. 6 that this method represents an
improvement compared to RKI-1, especially for
mechanism IV. This improvement corresponds
rather closely to the improvement in the calcula-
tion of the concentration changes due to homoge-
neous kinetics as shown in Fig. 1.

A comparison of the values of E,,—E, calcu-
lated by application of RKI-1 with the “true”
values (Fig. 7) reveals that the simulations for
mechanisms III and V are the most sensitive to-
wards errors in the concentration change. The
peaks are too broad, which for these mechanisms
would correspond to an apparent rate constant
larger than was actually used, and this is the
opposite of the results found for the same two
mechanisms using the analytical integration. This
effect is similar to that seen for mechanisms I, II
and IV with respect to the peak potential. Sim-

ulations using RKI-1 for mechanisms I, II and IV
result in peaks that are too narrow, which for
these three mechanisms also corresponds to rate
constants larger than those actually used.

Again, linearization followed by analytical in-
tegration is an improvement compared to RKI-1,
but for the E ,—E, values the improvement is
now most significant for mechanism V and not
mechanism IV.

Choosing, as previously, +0.1 mV and +0.4
mV as the tolerable error limits for £,—E° and
E,,—E,, the maximum acceptable concentration
changes are summarized in Tables 3 and 4.

In general, it may be concluded that both
RKI-1 and linearization followed by analytical
integration lead to excessive changes in b; conse-
quently, the simulations respond by predicting
peak potentials and peak widths corresponding to
apparent rate constants larger than those actually
used. From inspection of Figs. 6 and 7, and
Tables 3 and 4, it appears that there is no simple
relationship between the magnitude of the errors
introduced in the simulation and the magnitude
of the errors introduced in the kinetic terms alone
on going from analytical integration to RKI-1 or

Table 3. The maximum percentage change in b due to homogeneous kinetics corresponding to an error in the

peak and half-peak potentials of less than +0.1 mV.

Mechanism E,—E°* E—E7 E,—F° and E,,—E*
| 12 2 - >50 18 - 12 2 -
] 12 9 - 25 8 - 12 8 -
1 40 4 - 10 4 - 10 4 -
v 12 3 4 >50 12 23 12 3 4
\ 25 6 8 10 4 11 10 4 8

“First column: analytical integration or 4th order Runge-Kutta integration; second column: ordinary Feldberg
approach (1st order Runge-Kutta integration); third column: analytical integration of linearized expressions.

Table 4. The maximum percentage change in b due to homogeneous kinetics corresponding to an error in the

peak and half-peak potentials of less than +0.4 mV.

Mechanism E,—E°* E,,—E? E,—E’ and Ej,—E,*
| 30 7 - >50  >50 - 30 7 -
I 40 21 - >50 26 - 40 21 -
i >50 16 - 30 13 - 30 13 -
v 30 8 14 >50 26  >50 30 8 14
v >50 17 28 28 12 32 28 8 28

2See footnote to Table 3.
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Table 5. Maximum values of the kinetic simulation
parameters during analytical integration or 4th order
Runge-Kutta integration corresponding to errors in
the peak and half-peak potentials of less than +0.1
mV and +0.4 mV.

Mechanism  Simulation +0.1mV +04 mV
parameter?

| kM- At 3.28 9.15

] Cok® - At 1.75 8.55

1] CokM - At 1.35 4.60

v CokM- At 1.64 459

Vv Cok/® - At 1.37 4.39

2Atin mV/time step. °CZ > C3 is assumed.

linearization followed by analytical integration. It
is therefore recommended that the changes in b
due to homogeneous kinetics should not exceed a
few per cent when the electrode response of a
new mechanism is calculated by application of
RKI-1 or the linearization procedure if the errors
in the simulated values of E,—E° and E,,—E,
should not exceed 0.1 mV.

In contrast to this, the results presented for
RKI-4 in Fig. 1 demonstrate that the concentra-
tion changes calculated by this method are almost
identical to those originating from analytical in-
tegration when the conversion of B ranges from 0
to 30-40 %; consequently, simulated data based
on the RKI-4 treatment of the kinetic terms will
be practically indistinguishable from those based
on the integrated rate laws. The data in Table 4
show that a conversion of 30-40 % corresponds to
an error limit of £0.4 mV, but even at 0.1 mV
RKI-4 permits concentration changes as high as
10 % (Table 3).

The maximum percentage change in b can be
converted to the approximate values of the di-
mensionless kinetic simulation parameter found
in Table 5. As an example of how to use Table 5,
let us consider mechanism I and a dimensionless
rate constant, k/8, equal to 10. A simulation in
which the peak potential and the half-peak width
are both determined with an error of less than
+0.1 mV requires At < 3.28/(k/8) mV per time
step = 0.328 mV per time step. For a potential
range of 200 mV this corresponds to a minimum
of 610 time steps. In order to carry out the same
simulation using RKI-1 with the same accuracy, a

DIGITAL SIMULATION

maximum concentration change of only 2% is
allowed (Table 3), which translates to /0 - At =
0.5088 and At < 0.5088/(k/0) mV per time step =
0.05088 mV per time step; in other words, 3931
time steps as a minimum or about 6.5 times as
many time steps as for analytical integration or
RKI-4.

For a fixed number of time steps a simulation
based on RKI-4 is approximately twice as time-
consuming as a simulation based on the simple
finite difference approximation, while the com-
putation time for simulations including analytical
integration is similar to that based on RKI-4 if
exponentials have to be evaluated in each volume
element and similar to that based on RKI-1 if this
is not the case.

In the example above, the RKI-1 simulation
required about 8 times as much computer time as
the RKI-4 simulation, and about 16 times as
much computer time as the simulation involving
analytical integration to achieve the same degree
of accuracy.

Conclusions

The application of analytically integrated rate-
laws for evaluation of the homogeneous kinetic
terms in digital simulation based on an explicit
formulation of the diffusion kinetic problem rep-
resents a considerable improvement over the or-
dinary finite difference approach for the same
number of time steps. For the same accuracy the
computation time may be reduced by a factor of 6
to 10.

In cases where analytical integration is not pos-
sible or where an explicit expression for the new
concentrations cannot be derived, the application
of 4th order Runge-Kutta integration is recom-
mended. For the five mechanisms investigated,
4th order Runge-Kutta integration gave results
indistinguishable from those obtained by analy-
tical integration within the error limits imposed
by the separation of diffusion and kinetics in the
calculations at material conversions of up to 30-
40 % in each volume element in each time step.
Fourth order Runge-Kutta integration is easily
applied even to very complicated reaction
Schemes. 14-16,24-25

In practical work, the separation of diffusion
and kinetics does not constitute a problem. Peak
potentials and half-peak potentials may be sim-
ulated to an accuracy of 0.4 mV at material
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conversions of up to 30-40%, and £0.1 mV at
material conversions close to 10% in a single
time step.

Computational details

All calculations were carried out in PASCAL on
an HP9826A desk-top computer working using 8
bytes in the internal representation of real num-
bers.

Simulations of LSV were carried out using a
200 mV interval positioned on the potential scale
relative to E° so that the peak appeared approxi-
mately 5 mV before the end of the interval.

In order to obtain the peak potential, E,, with
the same precision independent of the step size,
the normalized current values in a potential range
of +1 mV around the apparent peak point were
fitted to a second-order polynomial from which
the peak potential was determined by differentia-
tion. The second-order polynomial was subse-
quently used to determine the dimensionless
peak current, I,

To calculate the half-peak width, E,,—E,,
where E,, is the value of E at I = I /2, the
normalized current values in a range of *1 mV or
less around the apparent half-peak point were
fitted to a first-order polynomial from which the
half peak potential was calculated.

All simulations were carried out using At/(Ax)?
= 0.45, and the necessary number of volume
elements in each time step was estimated from
eqn. (3). The current function was calculated in
the manner described by Feldberg,' since higher
order approximations”?*’ were deemed unneces-
sary.

For the sake of convenience the time step size
in Table 5 is given in mV per time step. In the
simulations, this value was converted to dimen-
sionless form according to the expression:

At (dimensionless) =
At (mV per time step) F/(1000RT)

with T = 298.13 K. All other variables (concen-
trations, distance from electrode, rate constants
etc.) were normalized in the usual way, as de-
scribed in the introduction.
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Appendix 1

The semi-implicit finite difference method, or the
Crank-Nicholson method, was primarily deve-
loped in the context of partial differential equa-
tions of parabolic form, i.e for application to
“pure” diffusion problems, for which it has been
shown to be superior to the explicit finite differ-
ence methods with respect to computer time re-
quirements vs. accuracy.® This improvement is
achieved by greater stability, which allows A¢/
(Ax)? values larger than 0.5 to be used in the
calculations.?®* However, if diffusion takes place
in more than one direction, or if the homogene-
ous chemical reactions are not simple first-order
or pseudo first-order processes, no straightfor-
ward application of the semi-implicit method is
available.

In general, the finite difference approximation
of the pure diffusion equation for a species C in
one dimension for a single volume element, i, can
be written as eqn. (Al):

¢ —c; 1
At (A
[Y(ci v1—2¢/+ ¢/ ) +(1=v)(cir1—2¢i+¢i-1)]

(A1)

If y = 0, only “old” concentration values, c,
appear on the right hand side of (A1), and the
eqn. is then identical with the usual explicit finite
difference form. If y = 1, only “new” concentra-
tion values, ¢, appear on the right-hand side of
(A1) and the formulation is fully implicit. This
form is normally not used, although it has been
suggested.?

The Crank-Nicholson semi-implicit method en-
tails y = /4, corresponding to an average of “old”
and “new” concentration values on the right-
hand side of (A1).

The consequence of the semi-implicit formula-
tion is that the calculation of the diffusion cannot
be carried out volume element by volume ele-
ment; instead, the entire concentration array
must be changed simultaneously, normally by a
Gauss-elimination procedure.®

The major problem associated with the semi-



implicit method is, however, the treatment of the
homogeneous kinetic terms. To maintain the im-
provement in stability, the entire set of differ-
ential equations must be treated semi-implicitly.
For a simple EC-mechanism this approach is pos-
sible. The semi-implicit formulation of eqn. (A2)

3¢ d%

-87 - x> (AZ)

takes the form (A3)

¢i—c; 1 ,
At - 2(Ax)2 (ci+1
—YM(c]+c,)

—2c!+c! _1+¢ip—2c+ciq)

(A3)

which, like (A1), can be rearranged to an equa-
tion containing only “old” concentrations on one
side and only “new” concentrations on the other
side, so that the Gauss-elimination procedure can
now be applied with different coefficients for the
¢; and ¢ terms. However, Heinze et al.? have
suggested another treatment of the simple EC-
case, using the approximation -Ac; for the kinetic
term instead of -AMc/ + ¢;)/2, i.e. an implicit in-
stead of a semi-implicit treatment of the homoge-
neous kinetics. This method was claimed to be
consistent with previous results and to be capable
of handling dimensionless rate constants up to
10

If the mechanism is more complicated and in-
cludes a second-order reaction [eqn. (A4)], the
semi-implicit formulation takes the form (AS):

3c d%
555" (A4)
¢/ —c; 1

At m (€ e1=2¢i+c] 1+ —2c+¢iy) —

2M[(c/ +c)2P (A5)

Eqn. (AS5) cannot be rearranged to a form suit-
able for application of the Gauss-elimination pro-
cedure because of the second order term in ¢;’.

DIGITAL SIMULATION

Two approximate methods have been sug-
gested to overcome this problem.?*%%? The first
method®3! consists of an iterative procedure in
which ¢/ in the first iteration is substituted by c;
in the term —2\[(c/+c;)/2]* and a value for ¢/ is
calculated. In the next iteration the first calcu-
lated value for ¢ is inserted in the kinetic term,
still with the original value for ¢;. The process is
repeated until the calculated values of ¢; differ
insignificantly in two consecutive iterations. The
other method® entails a linearization of the term
-2M? to —2Ac!c. Substitution of -2A[(c!+c;)/2]?
with -2Ac/¢; in (A5) allows rearrangement of (AS)
to a form to which the Gauss-elimination proce-
dure can be applied.

An explicit treatment of second-order kinetic
terms has also been suggested, but in this way the
stability improvement is clearly lost.

Second-order reactions in two different spe-
cies, A and B, cause difficulties also. The strictly
semi-implicit formulation of the kinetic term in
(A6):

Sa _Ja Aab A6
ar a2 ¢ (A6)
is

A a+a b'+b A7
- > "2 (A7)

which gives rise to a term containing the product
of the “new” concentrations, a’'b’, making the
appropriate rearrangement impossible. Lineari-
zations and iterative procedures have also been
suggested in this case.*** The most simple form
replaces (A7) with (A8). Eqn. (A8a) is then used
in the eqn. related to species A, and eqn. (A8b)
in the equations related to species B:*

—\a'b (A8a)

—\ab’ (A8b)
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The other linearization method replaces (A7)
with (A9) where (A9a) and (A9b) are used in the
equations for species A and B, respectively.*

ab ab
T3

(A9a)

(A9b)

Alternatively, the same kind of iteration as for
the reaction second-order in a single species can
be applied to (A7). First, Gauss-elimination is
applied to the equations related to species A with
b' in (A7) substituted with b. Second, Gauss-
elimination is applied to the equations related to
species A using the values just calculated for
species A as a’-values. Third, recalculation of the
new values for species A using the newly calcu-
lated values for species B as b’-values, and so on,
until the concentration values for A (and B) cal-
culated in two consecutive iterations differ in-
significantly. Obviously these iterative proce-
dures require additional computer time, and the
work involved in the programming for both the
linearization methods and the iterative method is
much more complicated than for any of the expli-
cit methods.

For mixed first order kinetic terms as in (A10)
the semiimplicit formulation of the kinetics is
given by (Al1l). In this case it is possible to
handle the equations related to species A and B
simultaneously and keep the strict formulation of
(A11).

da d%a

—_——= —— — Al10

YR (A10)
a'+a b'+b (All)

-\ > + A\, >

Appendix 2

As pointed out in the introduction, the applica-
tion of the diffusion-changed concentrations as
input values for the kinetic calculations is not the
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only explicit approach. Alternatively, the “old”
concentration values might have been used.

Let us as a beginning emphasize that when a
new volume element is included in the calcula-
tion, b (“old” value) in that volume element is
zero. If we now for simplicity consider only the
first two time steps in a simulation of a reversible
electron transfer process followed by a simple
irreversible first-order reaction of the primary
electrode product, B, we have the following
events: After the calculations associated with the
first time step, only the first volume element con-
tains a non-zero concentration of B (b,). During
the second time step the concentration of B in the
first volume element is reduced due to diffusion
by 0.45b,, which is transferred to the second vol-
ume element assuming the value of At/(Ax)? to
be 0.45. If now 20 % of the “old” value of b,
disappears due to the follow-up reaction, the to-
tal amount of B remaining in the first volume
element after diffusion and kinetics corresponds
to b, — 0.45b, — 0.2b, = 0.35b,. Since the “old”
concentration of B in the second volume ele-
ment, (b,) is zero the value of the kinetic term is
also zero; accordingly, the amount of B in the
second volume element after diffusion and kine-
tics corresponds to 0 + 0.45h; —0 = 0.45b,. In
other words, the “new” concentration of B in the
second volume element is larger than that in the
first volume element, which is an impossible
physical situation. The problem is obviously
caused by the rather high conversion of B in the
kinetic step, and it is easy to see that the con-
version should never exceed 10 % if this unpleas-
ant situation is to be avoided.

Using instead the diffusion changed values as
input in the kinetic calculations we arrive at the
following “new” values of b in the second time
step. In the first volume element we have b, —
0.45b, — 0.2(1-0.45)b, = 0.44b,, and in the se-
cond volume element 0 + 0.45b, — 0.2-0.45b, =
0.36b,. 1t is seen that the value in the second
volume element is now smaller than that in the
first volume element and this will always be the
case independent of the degree of conversion.

When the two methods are compared in test
simulations using conversions lower than 10 % in
the kinetic step, the results demonstrate that the
method based on diffusion changed concentra-
tions as input values in the kinetic step is still
superior and converges much faster to the “true”
potential and current values.



Appendix 3

The linearized form of the differential equations
describing the homogeneous kinetics for mecha-
nism IV (cf. Table 1) is of the general form (A12)
for which an analytical solution exists, (A13):

ob

—872—(11)—[36 _
dc

5= —yb — dc

(A12)

(A13)

Here, M is the diagonal matrix of eigenvalues
(equal to the roots in the characteristic polyno-
mial of K), L is the corresponding matrix of ei-

’

genvectors, and is the column vector of

CI
the diffusion-corrected concentrations.

The characteristic polynomial for K is given by
(A14) and the eigenvalues for K are given as the
roots of this polynomial, (A15):

oa-m B _

det(K — mE) = vy o-m| "

m — (o + 8)m + (ad — Py) (A14)

(a0 + 8) + V(o + 8)? — 4(ad — By)
m, = 5

(A15)

(o +8) — V(o + 8)* — 4(ad — By)
m, = 3
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M is then of the form (A16). A matrix of eigen-
vectors, L, is found from the identity (A17). Still
using m; and m, as the eigenvalues, L can take
the form (A18) and from this expression for L
follows (A19):

m; 0
we () i
KXL=LXxM (A17)
p B
N <m,—a mz—-a> (A18)
S p——— ( e —B> A19
" Bmemy\ ~(m-w) ) A

Using (A16), (A18), and (A19) the expression
for (A13) becomes (A20), which can be reduced
to (A21) in which ¢, and ¢, are given by (A22):

b 1 B p
(C>= B(mz—ml)(m,—-a mz—a) ’
N T
0 e mA J\—(m=-a) B)\c

< P~ P
b 1 m—a my,—a
(C> m,—m, B i B
@ = ((my=a)b’ — Be)e™mA
%, = ((m—a)b’ — Pe)e " (A2
Having now calculated the values of m; and m,
(A15) in a given time step it is possible to calcu-
late b and ¢, the new concentrations of species B
and C, by application of (A21) and (A22).

The same method can be applied to sets of
3,4,5... linear differential equations.

(Pz) (A21)
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