Dioxolanones and Related Compounds. II. The Molecular Structure of Methylene Oxalate Studied by Quantum Chemical Calculations*

De Mian Chen, a.§ Ming Bao Huanga and Klaus Serck-Hanssenb

^aDepartment of Modern Chemistry, University of Science and Technology of China, Hefei, Anhui, The People's Republic of China and ^bDepartment of Physiological Botany, University of Uppsala, P.O. Box 540, S-751 21 Uppsala, Sweden

Chen, D. M., Huang, M. B. and Serck-Hanssen, K., 1987. Dioxolanones and Related Compounds. II. The Molecular Structure of Methylene Oxalate Studied by Quantum Chemical Calculations. – Acta Chem. Scand., Ser. A 41: 243–244.

Methylene oxalate, the simplest carboxylic diester, was described for the first time in 1969, and was later studied by physical methods. The infrared and Raman spectra suggested a planar heavy-atom structure, point group $C_{2\nu}$. A structure deviating slightly from planarity was indicated by X-ray crystallographic data.

In the present work, the symmetry group and equilibrium geometry were determined by the semi-empirical MNDO method,⁴ which has been widely used in geometry optimization of relatively large organic molecules.^{5,6,7} The electronic structure was calculated for the MNDO equilibrium geometry by use of the Gaussian 80 *ab initio* program of Pople and coworkers.⁸

Point group. With an initial geometry of $C_{2\nu}$ symmetry, and under its symmetry restrictions, an energy minimum was reached in the full optimization calculations. With an initial geometry of C_s symmetry, obtained by distorting the $C_{2\nu}$ -optimized geometry, full optimization led to the same

Equilibrium geometry. As a final result of the MNDO optimization calculations, the parameter values for the equilibrium geometry shown in Fig. 1 were obtained. The angles are in relatively good agreement with the X-ray crystallographic data,³ but the experimentally observed bond distances are all somewhat shorter than ours, probably partly due to the large thermal motion of the atoms in the crystal.³ The calculated values for

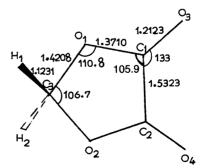


Fig. 1. Bond distances (Å) and bond angles (°) in the optimized geometry of methylene oxalate.

heavy-atom structure as that obtained by optimization of the C_2 geometry. Methylene oxalate is thus predicted to belong to the point group $C_{2\nu}$ rather than to C_s or C_2 , in agreement with the infrared and Raman data.²

^{*}For part I, see Ref. 1.

[§]To whom correspondence should be addressed.

^{*}Prof. Børge Bak *et al.* at the University of Copenhagen, Denmark, have recorded, but not yet published, the microwave spectrum.

SHORT COMMUNICATION

bond angles and distances in C_2 – C_1 (O_3)– O_1 – C_3 are not much different from the experimental values of the corresponding parameters in the general ester molecule (RCOOR'), and the local geometry around C_3 indicates typical sp^3 hybridization, suggesting that there is no large ring strain.

The electronic structure was obtained by ab initio STO-3G calculations for the MNDO-optimized equilibrium geometry. Mulliken population analysis predicted that the charges located on the atoms O_1 , O_3 , C_1 , C_3 and H_1 are -0.254, -0.202, +0.298, +0.141 and +0.09e, respectively. The 26 occupied molecular orbitals were transformed into 26 localized molecular orbitals (LMOs) by the procedure of Foster and Boys.9 There are seven one-centred LMOs involving 1s orbitals on the heavy atoms. Of the remaining 19 LMOs, two one-centred LMOs on each of the oxygen atoms, one two-centred LMO in each of the H₁-C₃, H_2-C_3 , O_1-C_3 , O_2-C_3 , O_1-C_1 , O_2-C_2 and C_1-C_2 bonds, and two two-centred LMOs in each of the C_1-C_3 and C_2-O_4 bonds were found, which clearly indicate the lone pairs, single bonds and double bonds, respectively.

A heat of formation of -151 kcal mol⁻¹ and an ionization potential of 11.7 eV were predicted by the MNDO calculations.

References

- 1. Serck-Hanssen, K. Acta Chem. Scand. 23 (1969)
- 2. Fortunato, B. and Fini, G. Spectrochim. Acta, Part A 31 (1975) 1233.
- 3. Kvick, Å. and Liminga, R. Acta Crystallogr., Sect. B 36 (1980) 734.
- Dewar, M. J. S. and Thiel, W. J. Am. Chem. Soc. 99 (1977) 4899: Ibid. 4907.
- 5. Haddon, R. C. J. Org. Chem. 44 (1979) 3608.
- (a) Huang, M.B., Goscinski, O., Jonsäll, G. and Ahlberg, P. J. Chem. Soc., Perkin Trans. 2 (1983) 305; (b) Ibid. (1984) 1327.
- Huang, M. B. and Pan, D. K. J. Mol. Struct. (THE-OCHEM) 108 (1984) 49.
- 8. Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., Defrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R. and Pople, J. A. Q. C. P. E. 13 (1981) 406
- 9. Foster, J. M. and Boys, S. F. Rev. Mod. Phys. 32 (1960) 300.

Received May 4, 1987.