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The necessity of using multivariate experimental design in synthesis optimization
is emphasized. Three computer-assisted multivariate methods for the simulta-
neous optimization of several responses are discussed, response surface methods,
simplex optimization with exponential weighing of multiple responses and PLS
modelling. Applications of the methods are illustrated by optimization of the
TiCl,-mediated synthesis of the morpholine enamine from pinacolone. This re-
action is accompanied by self-condensatjon of the ketone. By each of the three
strategies, the yield of the desired product (enamine) was increased and the yield
of the by-product was suppressed. Advantages and disadvantages of the methods

are briefly discussed.

A common problem in organic synthesis is a de-
sired reaction which does not go cleanly; parasitic
side reactions also occur and give rise to by-prod-
ucts. Recently, an optimized titanium tetrachlo-
ride procedure for enamine synthesis was repor-
ted from this laboratory.' Although the method is
of general scope’ the synthesis of the morpholine
enamine, /, from 3,3-dimethyl-2-butanone (pina-
colone) was complicated by considerable self-
condensation of the ketone to give 2,2,3,6,6-pen-
tamethyl-3-hepten-5-one, 2 (see Fig. 1). A brief
discussion of one approach to this problem is
given in Ref. 1. In this paper, we use this specific
reaction as an illustration of the general problem
of side reactions and discuss in more detail how
the problem can be solved. The literature of or-
ganic chemistry shows that the problem of con-
current reactions is generally approached in two
ways: by adjusting the reaction conditions to op-
timize the yield of the desired reaction; and/or by
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developing new, more selective or specific re-
agents. It is obviously a wasteful strategy to de-
velop new reagents whenever this problem turns
up. The preferred approach is, therefore, first to
optimize the reaction conditions by adjusting
various experimental variables such as tempera-
ture, concentration of reactants and reagents,
composition of solvent, etc. to attain an accept-
able performance from the system. If the ob-
tained optimum is not good enough, then a
search for new reagents is appropriate.

When reaction mechanisms are known, it is
sometimes possible to predict by theoretical rea-
soning, ways to suppress the parasitic reaction
and increase the yield of the desired reaction.
However, in most cases, reaction mechanisms
are not known in such detail that this is possible.
This is always the case with new synthetic pro-
cedures. When mechanistic details are obscure, it
is necessary to solve the problem by experiments.
It is essential to use multivariate strategies which
allow for a simultaneous variation of all interven-
ing experimental variables.® In this paper, we dis-
cuss how the general problem can be approached
by using such multivariate strategies as response
surface methods,® sequential simplex optimiza-




tion* and PLS-MACUP.®* We do not go deeply
into the details of these methods; thorough ac-
counts have been given in the references cited.

Methods and results

Response surface method. The result, y, of a syn-
thetic procedure is dependent on how the experi-
ment was done. Hence, we can assume a func-
tional dependence between y and the experimen-
tal variables, x,, x,, ... X, eqn. (1). The nature of

y=flx, ... x). m

the function f is in most cases unknown, but it is
likely that f is continuous and smooth, provided
that the variations in x; are not too large. Under
these conditions; it is possible to approximate f
by a Taylor expansion including a limited number
of terms. This means that a low degree poly-
nomial in the experimental variables will show
the general features of f as in eqn. (2). In most

y=b,+bx,+ ... +bx,+byxx,+ ..+
bxx, + ...+ bx’+ ... +bux’+e (2

cases, it is sufficient to approximate f by a second
degree response surface model. The residual
term, e, contains contributions from higher de-
gree terms in the Taylor expansion. The coeffi-

Table 1. Response surface design.
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cients in the polynomial can be determined by
multiple regression to fit a polynomial to known
experimental results.

Response surface models showng y, (yield of
enamine, /) and y, (yield of self-condensation
product, 2) as functions of the experimental vari-
ables x, (amount of morpholine), x, (amount of
titanium tetrachloride) and x, (temperature)
were obtained from the experimental design in
Table 1. The experimental domain and the cod-
ing of the experimental variables are shown in
Table 2. The models were calculated from the
yields obtained after 4 h. The reactions were

y, =58.54 + 536 x, + 8.64 x, + 5.25 x,
~0.69 x2-1.17 x, - 0.04 x;> + 1.80 x, x,
+088x,x;,+085x,x; +e 3)

y, =12.65 — 3.82 x, + 3.81 x, — 0.78 x,
+ 1.68 x> + 0.83 x> + 0.88 x> — 2.66 x,
x, — 0.86 x, x; — 1.86 x, x, + e. 4)

monitored by GLC and after 4 h, the increase in
yield was insignificant.

Projections of the response surface models are
shown in Fig. 2. Visual interpretation of the pro-
jections indicated that an improved result was to
be expected under the following conditions: in-
crease the reaction temperature, x;; use a large

Entry* X X, X3 Y1 Y2 b
1 -1 -1 -1 41.6 14.6 0.102
2 1 -1 -1 451 6.7 0.3449
3 -1 1 -1 51.7 26.2 2.1E-06
4 1 1 -1 64.7 17.7 0.0567
5 -1 -1 1 47.8 11.9 0.2188
6 1 -1 1 571 175 0.0551
7 -1 1 1 63.6 26.1 3.31E-06
8 1 1 1 77.8 1.0 0.4015
9 1.414 0 0 66.7 8.1 0.487
10 —-1.414 0 0 49.5 22.2 0.00146
1 0 1.414 0 70.4 189 0.032
12 0 -1.414 0 439 8.0 0.3035
13 0 0 1.414 66.4 9.8 0.4142
14 0 0 -1.414 52.4 17.3 0.0547
15 0 0 0 56.5 13.8 0.1856
16 0 0 0 60.0 12.3 0.2668
17 0 0 0 58.6 12.6 0.2469
18 0 0 0 57.2 13.6 0.1967

“The experiments were performed in random order, not as they are reported in the table.
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Table 2. Variables and levels for the response surface design.

Variables Levels

-1.414 -1 0 1 1.414
x,: Ratio morpholine/ketone (mol/mol) 3.00 3.59 5.00 6.41 7.00
X,. Ratio TiCl/ketone (mol/mol) 0.50 0.57 0.75 0.93 1.00
x,: Temperature (°C) 52 60 80 100 108

excess of morpholine, x,; a moderate excess of ti-
tanium tetrachloride, x,. These conclusions were
confirmed experimentally (see below).

In the general case, a combination of isore-
sponse contour projections and canonical analy-
sis of the response function* may suggest ways to
improve the performance of the system.

Simplex optimization. For simplex optimization,
it is necessary to have only one response which is
to be optimized. Of course, it is possible to set
the yield of the desired reaction as response and

X'Z

to optimize on this criterion, or, obversely, to
minimize the yield of a parasitic reaction. Unfor-
tunately, it may not be evident that these criteria
can be met at the same time; often it may well be
the case that an optimal performance is a com-
promise between them. Such a compromise can
be achieved by weighing together all the individ-
ual responses into one. For applications to or-
ganic synthesis, a transformation into the overall
desirability function, D, suggested by Harring-
ton’ seems appropriate. By this procedure, each
individual response, y,, is transformed into a di-
mensionless scale, d,, by the exponential transfor-
mation of eqn. (5). The function d, will have val-

d, = exp(—exp(c, + ¢, y))). ©)

ues between zero and one. A value close to zero
means a very poor result and a value close to one
means an extraordinarily good result. The par-
ameters (¢,. ¢,) in the function can be determined
to describe what is a desired and poor result by
assigning values to d, for values of the response y,.

Fig. 2. Isocontour projections of the response surface
models. Solid lines show the yield of enamine.
Dashed lines show the yield of by-product.




An arbitrary scale for d can be set as d > 0.8 (ex-
cellent), 0.8-0.6 (good to acceptable), 0.6-0.4
(accaptable to fair), 0.4-0.3 (fair to poor), 0.3 >
d (poor to very poor). The overall desirability
function, D, is defined as the geometric mean of
the individual desirability functions, eqn. (6).

D=(dd..d)" (6)

The function D fulfills the requirement for an
overall judgement and even corresponds well
with psychological expectations: it is sufficient
for one of the responses to be poor to give a low
overall desirability. The value of D is excellent
only when the value of each individual d, is excel-
lent. The value of D is equal to d, when all d;s are
equal.

With the function D, it is possible to transform
the outcome of any synthetic experiment into one
response. All that is necessary is that the chemist
state explicitly what is an acceptable and what is a
poor result. Hence, D can serve as an optimiza-
tion criterion in simplex optimization when a
compromise between conflicting responses is
necessary.

By the response surface models, given above in
eqn. (3) and (4), we could predict the yield of 1,
y:» and 2, y, under any conditions specified by the
variables x,—x,. With the function D, we could de-
termine an overall desirability of the result. This
made it possible to carry out a simplex optimiza-
tion by simulation. The individual desirability
functions were parameterized as follows: if the
yield of enamine could reach 90 % it would be a
good result, consequently, d, should be assigned
a value of 0.8, y, = 90 %; a drop in yield to 50 %
was regarded as a poor result, d, = 0.3, y, =
50 % if the yield of by-product exceeds 10 % it is
a poor result, d, = 0.3, y, = 10; a good result is
obtained if the yield of 2 is less than 1%, d, =
0.8, y, = 1%. This gives eqn. (7), (8) and (9).

d, = exp(—exp(2.2956 — 0.4214 y,)) 7
d, = exp(—exp(—1.6872 + 0-1873 y,)) (8)
D = (d, d,)"’. )

The graphs of d, and d, are shown in Fig. 3.
The results of six simplex simulations are sum-
marized in Table 3. The modified simplex strat-
egy by Nelder and Mead™ was used. The simul-
ations were restricted by the following con-
straints: (1) A suggested experiment outside a
possible experimental domain was assigned D =
0,i.e., x, < —141, or x, < —1.41 (less than sto-
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Fig. 3. Desirability functions.

ichiometric amounts), or x; > 2.0 (above the
boiling point of solvent). (2) A predicted yield of
¥, > 105 % (precision in y, (predicted) = 5%, p
= 0.95) was also assigned D = 0. This meant that
the response surface model was no longer valid in
extrapolating results far outside the explored do-
main (Table 1). Without this restriction rather
ridiculous results were obtained, e.g., y, = 172.6
for x, = 8.8, x, = 5.5, x, = 2.0.

It is seen from Table 3 that approximately the
same optimum conditions are found regardless of
the orientation of the starting simplex. An aver-
age is x, = 2.00, x, = 1.67, x; = 1.78 which af-
fords y, (pred.) = 104.0 and y, (pred.) = 10.3, D
= 0.500. Experiments performed under these
conditions yielded y, = 86.5% and y, = 7.8
which was better than predicted for y, but not as
high as predicted for y,. This clearly demon-
strates that it is necessary to be cautious in ex-
trapolations from response surface models.

PLS method, MACUP. In the response surface
strategy outlined above, it is assumed that the re-
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Table 3. Simplex optimization.

Starting Optimum conditions
simplex
Entry X, X, X3 ltera- X, X, X3 ¥i A D
tions

1 -0.5 -0.5 0.5 31 1.98 1.88 1.64 104.6 10.4 0.492
0.5 -0.5 -0.5
-0.5 0.5 -0.5
0.5 0.5 0.5

2 0.8 0 0.8 31 1.85 1.88 1.99 105.0 10.2 0.507
1.2 0 1.2
0.8 0.6 1.2
1.2 0.6 0.8

3 0.5 0 1.0 32 1.93 1.77 1.71 103.7 10.3 0.495
0 0 0.5
0.5 0.5 0.5
0 0.5 1.0

4 0 0 0 31 2.19 1.53 1.77 104.9 10.4 0.492
0.9 0.2 0.2
0.2 0.9 0.2
0.2 0.2 0.9

5 kk45-0.5 —-0.5 -0.5 21 2.01 1.76 1.75 104.9 10.3 0.501
0.5 -0.5 0.5
-0.5 0.5 0.5
0.5 0.5 -0.5

6 0 0.6 -0.3 25 2.05 1.67 1.79 104.8 10.3 0.501
0.5 -0.3 -0.3
-0.5 -0.3 -0.3
0 0 0.6

actions leading to the various products are inde-
pendent processes, that they respond indepen-
dently to perturbations in the experimental con-
ditions. This may perhaps be true in systems like
the present one where the products are formed in
parallel reactions. These assumptions do not ap-
ply. where, in other systems, however, parasitic
products arise from consecutive reactions. The
problems faced by the chemist look the same
whether or not parallel or consecutive reactions
cause the trouble, therefore we suggest yet an-
other strategy, namely MACUP, which does not
rely on prior assumptions of the causes about the
trouble.”

The result of a synthesis experiment can be
characterized by the yields of all products for-
med. y, ... y,. Experiments carried out under dif-
ferent reaction conditions can be characterized
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by their constellations of the various experimen-
tal variables, x, ... x,. Thus, each experiment is
characterized by a variable vector x = (x, ... x,)
and a response vector y = (y, ... y,). A series of
experiments can be described by an experiment
matrix, X (where the rows are the x vectors), and
a response matrix, Y, where the rows are the y
vectors. With the PLS method, it is possible to es-
tablish functional relationships between X and Y
and vice versa. This is the essence of MACUP
(Modelling And Classification Using the PLS
method).* The method is based on PLS decom-
position of the matrices X and ¥ (eqn. (10, 11))
and a correlation between these models. The re-
sulting models are slightly tilted (biased) from
principal components (PC) models to obtain a
maximum correlation between the components
of the X block and the Y block. The PLS al-



gorithm is very fast and completes the modelling
and correlation in one step. The procedure can
be summarized. A correlation between X and Y is
expressed by eqn. (12). The matrices A and G

X=A+TB+E (10)
Y=G+UC+F (11)
U=TD +H. (12)

contain the averages of the corresponding vari-
ables. The columns in T and U are singular vec-
tors of the corresponding PC-like model of X and
Y. This means that each experiment can be char-
acterized by the corresponding columns in the
matrices. The matrices B and C describe the con-
tribution of each of the original variables (x, ...
x,) and (y, ... y,) to the components ¢, and u,. The
matrix D is a diagonal matrix showing the linear
correlation between u and ¢. E, F and H are ma-
trices of the residuals. The procedure is subjected
to cross validation' to extract a correct number
of significant components in the models and can
be illustrated geometrically as in Fig. 4. The ex-
periments in Table 1 were analyzed by the PLS
method. Two significant components (cross val-
idation) were extracted. The first component ac-
counted for 46.6 % of the total variance in the re-
sponse matrix Y (98.7 % of the variance in y, and
9.0% of the variance in y,). With two compo-
nents, 90.4 % of the total variance was described
by the model. In applying the methods, the origi-
nal variables, x, y, were transformed by scaling
to unit variance (autoscaling) over the whole data
set, i.e., each variable was divided by its standard
deviation. In the calculations were also included
the squares of the experimental variables, x?, and
the cross-products, x.x; as variables. This meant
that the matrix X also contained columns for
these derived variables. The squares and cross-
products were also autoscaled. the jth experi-
ment was thus described by row j in X and con-
tained the following elements, z, (original vari-
able): z,(x,), z,(xy), z3(x3), z,(x,)), z5(x,"), z4(x5),
z,(x,x5), zy(x,x3), z4(x-x;). The response variables
were also scaled: w(y,) and w,(y,). The PLS cal-
culations gave the relations in eqn. (13) and (14)
between u, and u, and the scaled response vari-
ables. It is seen that the first component main-

u, = 0.9471w, + 0.3208w, (13)
u, = 0.3338w, + 0.9428w, (14)

ly describes the variation in yield of enamine, y,,
and the second mainly the variation in yield of
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Response variables

Experimental variables

Fig. 4. PLS method. The PLS components, t and u
are marked by solid vectors. They are slightly tilted
from PC eigenvectors (dashed) to achieve a
maximum correlation between the yield components,
u, and the experimental variable components, ¢.

by-product, y,. The coefficients in the relations
are the elements of the matrix C above. For the
experimental variables, the relations in eqn. (15)
and (16) were found for the components ¢, and ¢,.

t, = 0.2469z, + 0.8820z, + 0.3858z, —
0.0210z, — 0.0440z; + 0.0321z, +

0.0130z, — 0.0918z, — 0.0179z, (15)
t, = 0.7351z, — 0.3144z, + 0.2738z, —

0.2232z, — 0.1305z, — 0.1091z, +

0.3710z, — 0.0845z, — 0.2495z,,  (16)

The coefficients (loadings) in the z, terms show
how much each variable contributes to the com-
ponent . These loadings are the elements of the
matrix B above. Evaluation by cross validation
showed that for ¢, only z, was significant and that
neither the linear variables z,, z, nor the quad-
ratic and cross-product terms, z,~z,, contributed
to the systematic variation in response y,. This
meant that the yield of enamine was mainly con-
trolled by the amount of titanium tetrachloride.
For the second component, only the linear vari-
ables, z,-z, were significant. To reduce the
amount of by-product it was therefore necessary
to pay attention to the whole experimental set-
up, i.e., the amounts of the reagents and the re-
action temperature. The correlation between the
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components for the response variables in the Y
block and the components for the experimental
variables in the X block is shown in Fig. 5.

The PLS models can be used for predictions in
both directions: what is the expected result, y =
(v,- -). with a given constellation of the experi-
mental variables, x = (x,, x,, x;); and the reverse,
which experimental conditions, x, shall be used
to obtain a given result, y.

Prediction of y from x can be exemplified by
the optimum conditions determined by the sim-
plex optimization, x, = 2.00, x, = 1.67, x, = 1.78,
which afforded y, = 104.0, y, = 10.3 by the re-
sponse surface models and y, = 98.5, y, = 10.5 by
the PLS model. The result obtained by experi-
ment was y, = 86.5,y, = 7.8.

For predictions of x from y, the PLS model was
updated by including the simplex experiment in
the matrices x and y. A desired result, y, = 100,
v. = 0, corresponded to experimental conditions
x, = 3.70, x, = 1.64, x, = 2.61. However, these
conditions could not be obtained since x, = 2.61
corresponded to a reaction temperature of 132°C
which is above the boiling point of the solvent
(petroleum ether, b.p. 100-120°C). Predictions
for experiments under reflux conditions (x, =
2.00) gave y, = 95.8, y, = 0.5. Experiments car-
ried out under these conditions yielded (y,, y,) =
(92.6, 3.0) and (94.3, 2.0)) in a duplicate run.
This was an improvement compared to the re-
sults obtained in the simplex optimization. An
isolated yield of 85 % of distilled product was ob-
tained on preparative scale.

Discussion

We note that the traditional approach to optimi-
zation in chemistry (adjust one variable at a time)
is a poor strategy, since it fails to attain the opti-
mum conditions when there are interactions
among the experimental variables.* Unfortu-
nately, such interactions are almost always in-
volved, even in simple systems. It is, therefore,
necessary to design experiments in such a way
that interactions among variables can be detected
and taken into account when the reaction condi-
tions are adjusted toward optimum performance
by using multivariate experimental design.® A
proper design becomes even more important
when several responses have to be considered. It
is not likely that the variables will exert a similar
influence on the different responses. In this con-
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Fig. 5. PLS correlation between yield components, u,
and experimental variable components, .

text, we suggest three different general methods
for optimization of a desired synthetic reaction
with a concomitant suppression of parasitic side
reactions. Each method has merits (+) and dis-
advantages (—).

Response surface method. (+): Gives easily inter-
preted models; results can be analyzed graphical-
ly (isocontour projections); calculations can be
carried out using any computer program for mul-
tiple regression. (—): The number of experiments
increases rapidly when the number of variables
increases; a complete set of experiments has to
be accomplished before the result can be evalu-



ated; the method can give misleading results
when responses are interdependent (e.g., yields
in consecutive reactions); extrapolations are un-
reliable.

Simplex method. (+): Easy to apply; does not
necessarily need a computer, calculations can be
handled on a pocket calculator; since the desir-
ability function, D, can be applied to any system
with measurable responses, the simplex method
is general; interactive strategy-experimentation
can be interrupted at any moment when a satis-
factory result has been obtained; no dangerous
extrapolations. (—): The method becomes un-
manageable with many variables; may progress
only slowly towards the optimum.

PLS method (+): Describes all response vari-
ables in one model; can be used for predictions in
both directions; models can be established with a
ratio (number of experiments/number of vari-
ables) <1 which is not possible in response sur-
face methods; models can be updated and refined
by including new experimental results as they be-
come available, which permits a stepwise ap-
proach; results can be analyzed graphically. (—):
The method needs a special computer program;
extrapolations are unreliable.

All these methods led to an improvement of
the result when they were applied to a model re-
action (enamine synthesis). The best result was
obtained by the PLS strategy. Predictions were
also closer to actual experimental results by this
method compared to predictions by response sur-
face models.

Conclusion

The advent of small, powerful and cheap micro-
computers makes computerized tools applicable
to many branches of chemistry. One such area is
synthesis optimization where multivariate meth-
ods are indispensable. In this paper, we have dis-
cussed three general computer-assisted strategies
which can be applied to solve the common prob-
lem of how to optimize the yield of a desired re-
action with a simultaneous suppression of unde-
sired side reactions. The application of the meth-
ods was demonstrated on a model reaction
{enamine synthesis). It is our hope that these
methods will prove useful in many other applica-
tions. In a forthcoming publication, we will dis-
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cuss how the PLS strategy can be used for screen-
ing significant variables when a complex mixture
of reaction products is formed.

Calculations and experimental

The calculations for response surface and PLS
modelling were carried out using Zampo (8-bit),
Toshiba T1100 (16-bit) or Toshiba T1500 (16-bit)
microcomputers. For simplex optimization a pro-
grammable pocket calculator, Casio FX-702P,
was used. Response surface models were ob-
tained by the REGFAC program package and
PLS models by the SIMCA package (SIMCA-3B
version). These programs are available from
Sepanova AB, Ostrandsvﬁgen 14, S-11243 En-
skede, Sweden. The SIMCA program is also
available from Principal Data Components, 2505
Shepherd Blvd., Columbia, MO 65201, USA. A
program for simplex optimization is also avail-
able from Sepanova AB.

GLC analyses were performed on PYE Uni-
cam M64 and PYE Unicam GCD gas chroma-
tographs equipped with FID. A 2.1 m X 4 mm
i.d. glass column packed with 6 % QF-1 on Chro-
mosorb® W-AW 100-120 mesh was used. Yields
were determined by internal standard technique
and integrated peak areas were used for quantifi-
cation. A Spectra Physics Minigrator® or Milton
Roy C-10 integrator was used.

3,3-Dimethyl-2-butanone (purum) from Merck
was distilled. Morpholine (purum) from Kebo
Lab was dried over KOH. Titanium tetrachloride
(purum) from Reidel—de Haen was used as de-
livered. Petroleum ether (p.a.) b.p. 100-120°C
from Kebo Lab was dried over sodium wire.

For the experiments in Table 1, a 500 ml three-
necked flask was equipped with a reflux conden-
ser, dropping funnel and a Hershberg stirrer. The
flask was charged with the given amount of mor-
pholine, x,, and the amount of petroleum ether
to adjust the volume to 200 ml. The flask was
cooled in amrice bath and the given amount of ti-
tanium tetrachloride, x,, was added dropwise
with vigorous stirring. Titanium tetrachloride was
dissolved in an amount of petroleum ether to ad-
just the volume to 50 ml. When the addition was
complete, the ice bath was replaced by a thermo-
stated oil bath at the temperature x, and the
greenish-brown suspension of precipitated TiCl,-
amine complex was allowed to reach temperature
equilibrium. The reaction was restarted by the
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rapid addition of a solution of 10.00 g (10.0
mmol) of 3,3-dimethyl-2-butanone and an accu-
rately weighed amount (~10 g) of phenylcyclo-
hexane (internal standard) in 30 ml of petroleum
ether. Samples were withdrawn at regular inter-
vals and filtered through a plug of cotton, diluted
with hexane and analyzed by GLC.

A preparative scale run was carried out in a
three-necked liter flask mounted with a Hersh-
berg stirrer, reflux condenser and a dropping fun-
nel. The flask was immersed in an ice bath and
charged with 180 ml (2.05 mol) of morpholine
dissolved in 220 ml of petroleum ether (b.p. 100-
120°C). A solution of 22.5 ml titanium tetrachlo-
ride (0.206 mol) in 80 ml of petroleum ether was
added over 10 min with vigorous stirring. The re-
sulting mixture was heated to reflux and 20.0 g
(0.20 mol) of 3,3-dimethyl-2-butanone dissolved
in 80 ml of petroleum ether rapidly introduced.
The reaction mixture was maintained at reflux
for 1 h. Towards the end of this period, the mix-
ture became very thick and 100 ml of petroleum
ether were added to facilitate agitation. After
cooling, the reaction mixture was filtered
through a sintered glass filter. The solvent and
excess of morpholine were removed under re-
duced pressure. The crude product was fraction-
ated over a 25 cm Vigreux column. After a small
forerun (4.12 g, containing ~80 % of enamine)
the pure (>97 %) enamine (28.9 g, 85%) was
collected at 70-71°C/8 mmHg.

Acknowledgements. Financial support from the
Swedish Natural Research Science Council
(NFR) and from the National Swedish Board for
Technical Development (STU) is gratefully ac-
knowledged. We also thank Prof. S. Wold for en-
couraging discussions and Mr. S. Swanson for lin-
guistic revision.

452

References

Y
yA

10.

Carlson, R.. Nilsson, A. and Strémqvist, M. Acta
Chem. Scand. B37 (1983) 7.

. (a) Carlson, R. and Nilsson, A. Acta Chem. Scand.

B38 (1984) 49; (b) Nilsson, A. and Carlson, R.
Acta Chem. Scand. B 38 (1984) 523.

. Carlson, R., Lundstedt, T., Phan-Tan-Luu, R. and

Mathieu, D. Nouv. J. Chim. 7 (1983) 315.

. (a) Myers, R.M. Response surface methodology.

Allyn & Bacon, Boston 1971; (b) Box, G.E.P.,
Hunter, W.G. and Hunter, J.S. Statistics for ex-
perimenters. Wiley, New York, Chichester, Bris-
bane, Toronto 1978.

. (a) Spendley, W., Hext, G.R. and Himsworth,

E.R. Technometrics 4 (1962) 441; (b) Nelder, J. A.
and Mead, R. Computer J. 7 (1965) 308; (c)
Deming, S.N. and Morgan, S.L. Anal. Chem. 45
(1973) 278A.

. (a) Wold, S., Albano, C., Dunn 111, W. J., Edlund,

U., Esbensen, K., Geladi, P., Hellberg, S., Johans-
son, E., Lindberg, W. and Sjostrom, M. In: Ko-
walski, B. (ed.) Proc. NATO Adv. Study in Chem-
ometrics, Cosenza, Italy, September 1983. Reidel
Publ. Co., Dordrecht, The Netherlands 1984; (b)
Lindberg, W., Persson, J.-A. and Wold, S. Anal.
Chem. 55 (1983) 643.

. Harington Jr., E.C. Ind. Qual. Control 21 (1965)

494,

. Dunn III, W.J., Wold, S., Edlund, U., Hellberg,

S. and Gasteiger, J. Quant. Struct.-Act. Rel. 3
(1984) 131.

. (a) Wold, S., Albano, C., Dunn, W.J., Esbensen,

K., Hellberg, S., Johansson, E. and Sjostrém, M.
In: Martens, H. and Russworm, H. Jr., (eds.)
Proc. IUFOST Conf. Food Research and Data
Analysis. Applied Science Publ., London 1983,
147-188;

(b) Wold, S., Martens, H. and Wold, H. In: Ruhe,
A. and Kagstrom, B. (eds.) Proc. Conf. Matrix
Pencils, Pited, Sweden, March 1983, Lecture Notes
in Mathematics. Springer Verlag, Heidelberg 1983,
286-293.

Wold, S. Technometrics 20 (1978) 397.

Received December 2, 1985.



