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In a recent article, Kamlet and Taft challenged our view that linear free energy re-
lationships (LFER), and in particular linear solvation energy relationships
(LSER), are best seen as locally valid linearizations of complicated functional re-
lationships. Here we give evidence that our view is supported by observed data,
while that of Kamlet and Taft is not.

We do not challenge the statement of Kamlet and Taft that their LSER fit a large
number of solvent effect data with some statistical significance. We show, how-
ever, that in these data, as well as in other data measured on series of chemical re-
actions, there are systematic parts which cannot be predicted by general models like
the LSER of Kamlet and Taft.

These system-specific regularities are often not negligible and sometimes sub-
stantial, which means, in our terms, that a given LFER or LSER is not generally
applicable. Indeed, this was also found by Kamlet and Taft, who frequently dis-
cover “outliers” and unpredictable differences in behaviour between families of
solvents when applying their LSER.

To be predictively efficient, a model should be recalibrated for each new investi-
gated system. This is easily done with modern data analytic methods, such as PLS

modelling.

Introduction

In a recent article in this journal,! Kamlet and
Taft (henceforth abbreviated K-T) claim to pres-
ent evidence that their linear solvation energy re-
lationship (LSER) is generally applicable in
“every area of chemistry, and many of biology,
where physicochemical, biological, pharmacolog-
ical, and toxicological properties depend on in-
teractions between solutes and solvents”.

This generality would be inconsistent with our

previously presented statement, supported by ri- -

gorous statistical analysis of several pertinent
chemical data sets, that empirical models includ-
ing LSER have only local validity for classes of
similar chemical systems or processes.?

In the present article, we try to disentangle the
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apparent inconsistencies between the views of
K-T and our own. We propose that our different
opinions are due to differing interpretations of
the concept of applicability of a scientific model.

Recapitulation

Let us first briefly review linear free energy rela-
tionships (LFER), of which LSER is a particular
case dealing with solvent-solute interactions.
Originally,** LFERs were formulated as linear
relations between the change in free energy in
different reaction series subject to analogous
modifications, e.g. the change of the pK, of a re-
actant or the change of a substituent.

As shown by Higman,® Malinowski,® Palm’ and
Wold and Sjostrom,® these models in their sim-
plest form are factor or principal components
(PC) models with one product term as follows:




Xy = ¢ + th, + €. 1)

Here x,, denotes data measured on the k.th series
in its i.th modification. The parameters c,, ¢, and
b, are chosen so that the deviations (residuals) e,
are small.

In the early use of LFER, the custom was to
define the “scales” ¢ by means of measured val-
ues in standard series, but since the models have
the form of factor or PC models, statistical es-
timation methods can be used to estimate par-
ameter values c, t and b which makes a model op-
timally fit a given set of “calibration data”.>'

In the Hammett relation, for example, x, de-
notes the logarithmic rate or equilibrium con-
stant in the k.th reaction series with the i.th sub-
stituent. The value for the “unsubstituted” com-
pound of the series (substituent = H) defines the
value of c,. The parameters o; corresponding to ¢,
are called substituent constants and the par-
ameters g, (b,) are called reaction constants. The
former (o) are often interpreted as expressing the
“inductive” effect of the i.th substituent on the
reaction and the latter () as expressing the sensi-
tivity of reaction k to this effect.

(log k) = (log K)o, + 0,0, + €. (2)

In the 1950s LFERs with several product terms
were formulated and interpreted as modelling
the influence of several effects on the reactions,
one effect per product term. The K-T LSER is an
example of this type of multiple term LFER.

A
X = ¢ + E ba by + € 3
a=1

The statistical isomorphism between LFERs and
statistical PC models inspired an alternative in-
terpretation of LFERs as being linearizations of
complicated unknown functional relationships,
linearizations valid locally for similar reaction se-
ries and substituents (or other modifications, i.e.
solvents in LSERs).>”® Thus, it can be shown
that, provided the modifications corresponding
to the index i are small, a few term LFER (PC-
model) can always be found that well approxi-
mate to any measured data on the set of investi-
gated reactions.

PC-models have the same approximation prop-
erties on data tables as polynomials on continous
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data. In a small “local” domain, a good approx-
imation can always be found, but the approx-
imations differ between different domains.

The two views of LFER/LSER

Today there are, therefore, two interpretations of
LFERs. First the traditional one supported by
K-T, namely that one can specify a number of
“effects” in chemistry and combine them linearly
in any given application to a multiple term
LFER. This means, among other things, that
chemistry, like classic 19th century physics is the-
oretically finite, and that basic research at some
future date no longer is needed because all ef-
fects are discovered and quantified.

In the second alternative interpretation —
called that of chemometricians by Kamlet and
Taft, but which actually originates with Polyani"
and Hammett”? — chemistry and other fields of
science are seen as the study of infinitely com-
plicated systems which, however, when only
slightly modified, can be modelled by means of
perturbation theory, i.e. linearized relationships
based on Taylor expansions of continuous multi-
variate functions.

This more humble view of the theory of
LFERs and other semiempirical models means
that in any fresh problem area there will be regu-
larities in observed data that cannot be inferred
from the behaviour of previously investigated
systems. This does not mean that new systems are
totally unpredictable, but rather that the regu-
larities in data observed in any system can be di-
vided into two parts, one part common with
other systems and one part which is system spe-
cific (Fig. 1). The larger the common part, the
closer is the similarity between the new system
and the ones previously investigated.

We can formulate the K-T viewpoint as being
that the system specific regularities in their LSER
are zero, i.e. that G (for generalizable informa-
tion) in Fig. 1 is not significantly different from
1.0. Our view is that the system specific reg-
ularities are not zero and often not negligible
with respect to the precision of the data, i.e. that
G is often significantly smaller than 1.0.

Empirical evidence for LFER being local
models

In this debate with K-T, we mainly use evidence
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from the field of LSER, since this is the battle-
ground chosen by these authors. Reading their
own papers on LSERs, we repeatedly find state-
ments in direct contradiction to the proposed
generality of LSERs. For instance, many correla-
tions are restricted to what they call “select sol-

Figure 1. The variability of
experimental data measured
in a given series, process or
system, can be divided into
three parts. The present

Variability (V)

T Vo= 100 % debate considers whether
the system specific part (1-
G), is significantly different
from zero.
SV o= (100 - s2) %
.V =G (100 - s2) %

vents”, e.g. no 6-11, 63-71 and others (number-
ing according to Table 1, Ref. 1). In Ref. LSER-4
(Table 1), it is stated: “For reasons stated above,
correlations have been restricted to families of
solvents with similar polarizability characteris-
tics, i.e. only non-chlorinated aliphatic solvents

Table 1. Comparison between error of measurement and residual standard deviation in Kamlet-Taft examples
(a)-(k). Except for sets (d) and (f), the error of measurement corresponds to an experimental precision is
deliberately assumed to be large (2 SD = 5 %). For UV A, (set d) we assume a precision better than 1 mu®
and for '* N NMR (set 10) we assume a precision of 0.3 ppm, being a compromize of the within experiment
precision of 0.1 ppm and between lab precision of 1 ppm.%®

Kamlet-Taft Data type Units Experimental KT-LSER-fit
example (n) precision (residual SD)
a (93) Molar solubility (H,0) log 0.03 0.144

b (25) Molar solubility (blood) log ? 0.16

c (18) Free energy of transfer kecal mol~! 0.1-0.2 0.6

d (32) Frequency of max UV-abs cm™’ 10-30 100

e (23) Rate of t-BuCl solvolysis log 0.02-0.03 0.36

f (16) N NMR shifts ppm 0.2-0.3 0.42

g (37) Adsorb. on activ. carbon log ? 0.19

h (8) Complex formation const. log 0.02-0.03 0.06

i (36) Bacterial EC,, log ? 0.25

k (28) HPLC capacity factors log 0.02-0.03 0.07
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or, in a few instances where sufficient data were
available, only aromatic solvents”.

This is a typical application of local models
where the fit and prediction is good for solvents
of the same type as those for which the model
was calibrated, but less precise outside this do-
main.

In Ref. 2 we used, among other examples, data
of K-T to show that a local LSER model with two
product terms calibrated on solutes which are hy-
drogen bond donors (HBD) predicts significantly
less than 100 % of the systematic behaviour of
non-HBD solutes. The systematic behaviour of
the non-HBD solutes is adequately modelled by
a local one term LSER. The solvent scale in this
latter LSER cannot be seen as a combination of
the two scales of the HBD model. These results,
which K-T prefer not to discuss, is inconsistent
with a view which regards LFERs and LSERs as
generally applicable models, at least in the way
we interpret these terms.

The difference between fit and predictive
power of a model

K-T usually express the success of their LSER ap-
plied to a given data set in terms of the degree of
fit between model and data, the residual standard
deviation (RSD). This measure is also a good es-
timate of the prediction power of the model pro-
vided that the RSD is based on a large data set
with substantially more data than estimated par-
ameters. Since K-T now have about 10 adjustable
coefficients in their LSER, their use of multiple
regression for the data analysis necessitates 40-50
data points per analysed series to make the RSD
a good measure of the predictive power of the
model. In the ten examples used by K-T in Ref.
1, only four have sufficiently many data (Table
1). The example with the largest amount of data
(ex. a) indeed has a RSD which is substantially
larger than the experimental error.

Modern statistics in combination with compu-
ters allow us to use better measures than the de-
gree of fit to evaluate a model. Bootstrapping
and cross-validation are methods that give direct
estimated of the predictive power of the mo-
del.B With cross-validation this is accom-
plished by the recalculation of the model par-
ameters several times, each time with part of the
data kept out of the calculations and thereafter
predicted by the resulting partial model.
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Hence, we now have tools to judge models di-
rectly according to how they predict new data.
Because of the mathematical properties of least
squares fitting, invariably the degree of fit is ap-
parently better than the predictive power calcu-
lated according to bootstrapping of cross-valida-
tion. This leads K-T to overrate the power of
their model.

The choice of data analytic method

One reason why K-T fail to recognize that signifi-
cant parts of their data are not explained or pre-
dicted by their model is that they use multiple re-
gression® (MR) in their data analysis. This
method is based on the assumption that the pre-
dictor variables (here n*, 8, a, B, etc.) are 100 %
relevant. This assumption is equivalent to the
K-T statement that their scales are generally ap-
plicable. However, MR provides no tools or di-
agnostics for testing the validity of this assump-
tion. Specifically, in MR one. reaction series is
analysed at a time, thus excluding the possibility
of seeing systematic deviations from the model
by the simultaneous analysis of several related
data series.

Multivariate data analysis, such as factor
analysis® (FA), PCA" and PLS (partial least
squares models in latent variables)”" analyse
data from several reaction series simultaneously.
The analysis can be made under a minimum of
assumptions; the data need only be continuous
and homogeneous. After the analysis, other as-
sumptions can be checked for consistency with
the results, such as the relation of estimated mo-
del parameters with previously established
“scales”.

With respect to the present debate, we use PC
analysis and PLS analysis (partial least squares
modelling in latent variables)”’ to calculate the
total systematic part of a data set (PC) and how
much of the data set can be explained and predic-
ted by preestablished scales (PLS).

PC analysis gives for a given data matrix Y (see
Fig. 2) a separation into “structure” expressed by
the average vector y and the score matrix T times
the loading matrix B, plus “noise” expressed by
the residual matrix E. The variance of the latter
divided by the variance of the original data ma-
trix Y is a measure of s* in Fig. 1. The score vec-
tors ¢, have the character of “scales” and express
the relation of the different subsystems to each
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Figure 2. The multivariate analysis of chemical data
Y results in a projection of the data (centered by
subtracting the average vector y) on a score matrix T
times a loading matrix B. The number of components
or factors, A, corresponds to the number of columns
in T and rows in B.
In principal components analysis (PCA), the matrices
T and B are estimated from the Y-matrix itself, for
instance, by a singular value decomposition.?
In a PLS analysis,"'"' the projection is computed
from Y plus an auxilliary matrix X containing the a
priori specified predictor variables (here nx*,6,8, etc.).

other. The loading vectors b, specify the combi-
nation of the original x-variables into the score
vectors ¢,. The number of significant dimensions
of the model, A, — the number of factors in the
data — is estimated by cross-validation (see be-
low).

With PLS analysis, the data matrix Y is model-
led in terms of “factors” of another “predictor
matrix”, X (Fig. 2). The results are similar to the
ones of PC analysis, with the difference that the
score vectors ¢, are linear combinations of the X-
columns instead of the Y-columns. Thus a PLS
analysis gives a measure of how much of Y that
can be explained by X in a way similar to multiple
regression (MR)." The difference from MR is
that PLS can handle multiple y-vectors simulta-
neously as well as collinearities in X, and gives a
shrunk solution.’”® PLS includes MR as a limiting
case.’

In both types of analysis, cross-validation (CV)
plays a crucial part in the estimation of the sig-
nificance of the results. With CV parts of the in-
vestigated data set are kept out of the model fit-
ting and thereafter predicted by the resulting mo-
del. The sum of squares of the differences
between predicted and actual values (denoted
PRESS) is formed for the data kept out. Then
another part of the data is kept out, a new model
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calculated, predictions are made, new terms
added to PRESS, etc., until each datum element
has been kept out once and once only.

PRESS gives an unbiased measure of the pre-
dictive power of the given model. This PRESS
can be compared with the PRESS of other mod-
els, for instance with higher complexity, or mod-
els with other predictor variables.

The interpretability of local models

Kamlet and Taft state that their “general’LSER
is preferable to statistically estimated local
LSERs because the “general” model gives an un-
derstanding of the system, while the local models
in the form of PC models do not. To this we
would like to give an answer on two levels.

First, since locally estimated models give bet-
ter fits and better predictions, the “general” mo-
del is in some fundamental way incomplete and
the “understanding” thereby reached is not, in
our view, a good one. In order not to mislead us-
ers of LFERs and LSERs we have preferred to
use locally estimated parameters which are not
transferable to other systems.

Second, however, we realize man’s desire to
use generally applicable concepts and models. If
we intend to understand the relations between
the presently investigated system and other ones,
we agree that the PC models and their score vec-
tors ¢ with loadings p do not immediately convey
this “understanding”. This can, however, be
reached by a subsequent rotation of PC solution
to agree as well as possible with established
scales, so-called target rotation.’

Example

We briefly review the previously published analy-
sis of a data set concerning the solvent effects on
the ®C NMR spectra of indenyllithium. The data
consist of the five C NMR shifts of indenyl-
lithium in thirteen solvents. This type of data are
advantageous in this type of debate since they are
multivariate without always being subject to
inter-laboratory variation. Hence, the precision
of the data is well controlled.

The data were analysed in two ways. First, a
PC analysis was made of the NMR shifts of the
eleven solvents considered to have precise data.
A significant two-component model was ob-
tained, accounting for 96 % of the variance. The




first of these components was very similar to x*
of K-T, but the second showed no relation to any
known solvent scale, indicating a significant sys-
tem specific “effect”.

Second, a PLS-analysis was made using the
NMR-data as the Y-block and an X-block con-
sisting of twelve empirical solvent scales includ-
ing &*. One significant dimension was obtained,
explaining 66 % of the variance. An attempt to
improve the model by including all available
scales of K-T did not change the results. This is
not surprising, considering the fact that the K-T
scales correlate with all other solvent scales.'
Hence, the unbiased estimate of the system spe-
cific “effect” is 30% (96 % in the PC model
minus 66 % in the PLS model).

We conclude that the general information G is
considerably and significantly smaller than 1.0.

The difference between significant and
exhaustive fit

Another way to express the difference in views
between K-T’s and our own is that the former re-
gard a model applicable when it fits a data set
better than chance (statistically significant fit).
All their arguments in Ref. 1 are based on the
fact that their LSER shows a statistically signifi-
cant fit to a large number of data series. This fact
we do not dispute. Their model shows a statis-
tically significant fit to all these data.

Chemical data have good precision, usually
better than 2-3 %. To be of any practical or the-
oretical interest a model must fit data consider-
ably better than just on the level of statistical sig-
nificance.”

The optimal level of fit where the model ex-
plains all regularities in the data we call the ex-
haustive level. We consider that K-T, in order to
show that their model is generally applicable,
should show that their model reaches this level of
regularity exhaustion, at least closely.

K-T make no efforts to show how near the
level of exhaustion their model comes. In fact,
their own results indicate that the fit of their
LSER to measured data is significantly less than
exhaustive. In Table 1 we tabulate the residual
standard deviations as given in Ref. 1 for the ten
data sets (a through k) they use as illustrations of
their LSER applicability. We do not discuss the
Sunner-Kebarle set since evidently the K-T
LSER fails (“Aromatics are excluded ...”). We
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include in the same table the pertinent experi-
mental precision of the data according to the
stated reference.

We see that in all cases where the experimental
precision is known, the fit of the K-T LSER is not
close to this precision. In several cases the fit is
much worse (e.g. a,c,d,e). Hence, even in the ex-
amples selected by K-T themselves, there are
strong indicatons that the K-T LSER does not fit
the data exhaustively.

Additional effects and the deletion of non-
fitting cases

The last correlation discussed by K-T gives a
clear example of another escape route often
taken when a “fundamental” model does not fit
given data as well as expected. As the footnote in
Ref. 1 states: “Aromatics are excluded to exclude
variable polarizability effects”. How were these
“variable polarizability effects” found? And why
was there no term in the model from the be-
ginning which explained them?

Our interpretation is that aromatics deviated
strongly in a way impossible to rationalize with
the given LSER. Thus, when a subset of the data
(here aromatic ligands) does not, in retrospect, fit
the model, a “new effect”, i.e. a rationalization,
is invented which explains away the unexpected
deviations.

K-T in Ref. 1 give another example of the same
type where Kupfer and Abraham find it necess-
ary to “take into account such additional effects
as may be operative for the specific XYZ studied,
such as solvent viscosity in fluorescence relaxa-
tion processes”. What is this if not local models
where new “effects” are brought in when needed
to explain the results?

In our view, for a model to be generally ap-
plicable, it should fit all pertinent data in a model
form specified in advance. A posteriori rational-
izations are, of cource, allowed in practice, but
not with the simultaneous pretention that the
model is generally applicable. Thus K-T in fact
admit that their model is not generally applic-
able; systems showing “variable polarizability” or
influenced by “solvent viscosity” are not possible
to model adequately.

Moreover, the LSERs often give unexpected
outliers, e.g. no 64, 121, 154, 184, 187, 189 and
208 (numbering as in Table 1, Ref. 1). We found
these misfits by scrutinizing a small part of the
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material of Table 1, Ref. 1. Many more outliers
would probably be found by a rigorous and de-
tailed inventory.

Finding and deleting outliers in empirical mod-
els is certainly to be permitted, but not in funda-
mental, “general” ones. In particular, if one or
several observations are deleted from a correla-
tion, one cannot thereafter state that the model
correlates a property as done in Table 1, Ref. 1.
For no 154, for instance, this gives the misleading
impression that 3(2) contains the same informa-
tion as Gutmann’s donor number, which it does
not because three points out of sixteen deviate
strongly from the correlation!

Further evidence ignored by Kamlet and
Taft

An interesting piece of evidence regarding the in-
terpretation of LFERs and LSERs is Fig. 4 in
Ref. 2, showing that the residual standard devia-
tion is roughly proportional to the reaction par-
ameter (@) in the Hammett equation. This be-
haviour is to be expected if LFERs are seen as lo-
cal linearizations of more complicated functions
(F), because when @ increases so do the third de-
gree and higher terms in the Taylor expansion of
F. This, in turn, makes the model show a decreas-
ing degree of fit with increasing @, just as seen in
the figure. It seems difficult to explain this figure
if we see LFERs as fundamental models combin-
ing known and fixed chemical effects.

Conclusions

First we wish to express our appreciation to K-T
who openly and boldly discuss the difficult prob-
lems connected with the applicability of scientific
models. We find their work developing models
for solvent effects admirable and their results
useful in chemical research and practice. This is
as long as it is clearly stated that their LSER is an
empirical model which gives good fit and predic-
tion for solvents similar to the ones where it was
calibrated and which is expected to behave more
poorly the further away one moves from these
solvents.

To quote K-T (Ref. LSER-1 in Ref. 1, Table
1): “With the linear solvation energy relation-
ships involving these other XYZs, however, the r
and SD measures of statistical fit were signifi-
cantly better when the correlations were re-
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stricted to families of solvents with similar polar-
ization characteristics, i.e. (a) non-chlorinated al-
iphatic solvents, (b) polychlorinated aliphatics,
and (c) aromatic solvents. In a subsequent com-
munication we reported that correlations were
better still (average r < 0.985) if restricted to a se-
lected set of ca 30 aliphatic solvents for which =*
values are very nearly proportional to molecular
dipole moments”.

Hence, we interpret their claim that their mo-
del is of general scope as meaning that the model
fits most data significantly better than chance.
This claim we do not challenge.

However, if we adopt a more stringent mean-
ing of the concept of “general applicability”, i.e.
that the model should fit the data exhaustively or
nearly so, without the need to arbitrarily explain
away parts of the data, then LFERs and LSERs
cannot be said to be generally applicable.
Rather, one must admit that in data observed in
a series of reactions or compounds there are reg-
ularities that cannot be predicted from observa-
tions made on other systems. We call these the
system-specific regularities. These can be esti-
mated only by means of local models “cali-
brated” on the same system or very similar sys-
tems to the one we wish to predict. This we can
summarize as chemistry having a fractal nature.”
Indeed, we find that K-T also agree with this with
their repeated statement that “It is also seen that
the goodness of fit improves significantly for the
select solvent set (SSS) correlations”.

We agree with K-T (and everybody else) that
this partly local behaviour of a series does not
make the behaviour of new series totally unpre-
dictable. As long as the new series bears some
similarity to previously investigated series, these
can be used to provide “generalizable” regular-
ities for the new system. Our point is just that the
system specific part of the regularities is not neg-
ligible. And that the regularities predicted from
other systems are less important, the more dis-
similar the other systems are to the new one.

The view that chemical models are, in part,
only locally applicable does not lead to greater
difficulties to interpret the results. Only the local
part needs a local interpretation; the general part
can, if one so wishes, be interpreted in the tradi-
tional way. One should, however, be cautious in
such interpretations, since the general part is
dominant only as long as the current system is
fairly similar to the “reference systems”.




A practical reason to be careful with the con-
cept of generality is that if it is adopted for a
given type of models, all deviations must be in-
terpreted as new effects and soon one finds one-
self in a morass of scales, corrections, exceptions
and anomalies. The correct use of the model in a
given situation is then difficult, and the sound
idea of semiempirical models may (locally) fall
into disrepute, as seems to happen in the field of
LFER in organic reactivity.”

Sadly, the development of LSERs seems to
conform to this line of development. The LSER
of Kamlet and Taft, initially a sound and simple
empirical model, now has ten adjustable par-
ameters (see Ref. 1). Still, according to Ref. 2 in
Ref. 1, there are effects not yet parametrized,
such as steric effects in acid-base complexing, en-
tropy effects, variable aromatic polarizability,
and conjugative-electron donation. And the sol-
vent viscosity effect mentioned in the footnote of
Ref. 1 certainly remains too.

Finally, we might add a purely personal reason
why we prefer the idea of local models to that of
general ones. This makes the fields of future re-
search infinite; Nature and the world will never
be exhaustively investigated and modelled. All
new situations and problem areas will demand
partly new concepts and models, and make life
interesting also for future generations of chem-
ists.

We note that this desirable state indeed has
been formally proven by Godel.” He shows that
within any sufficiently rich axiomatic system,
statements can be formulated which cannot be
shown to be true or false within this system.
Hence, in complicated systems like the ones
studied in chemistry, there will always be events
that cannot be predicted from previous observa-
tions. This, in turn means that there will always
be a need for experiments. And local models.

Acknowledgement. We are grateful for grants
from the Swedish Natural Science Research
Council.

References

1. Kamlet, M.J. and Taft, R. W. Acta Chem Scand.
B39 (1985) 611.

2. Sjostrom, M. and Wold, S. Acta Chem. Scand. B35
(1981) 537.

3. Bronsted, J.N. and Pedersen, K. Z. Phys. Chem.
108 (1923) 185.

REPLY TO KAMLET AND TAFT

4. Hammett, L.P. Physical Organic Chemistry.
McGraw-Hill Book Company, New York 1940.

5. Higman, B. Applied Group-Theoretic and Matrix
Methods, Oxford University Press, Oxford, Eng-
land, 1955.

6. Malinowski, E.R. Thesis, Stevens Institute of
Technology, Hoboken, N.J., USA, 1961.

7. Palm, V. A. Grundlagen Der Quantitativen Theorie
Organischer Reaktionen. Akademie-Verlag, Ber-
lin, 1971.

8. Wold, S. Chem. Scr. 5 (1974) 97.

9. Malinowski, E. R. and Howery, D. G. Factor anal-
ysis in chemistry. Wiley, New York, 1980.

10. Wold, S., Albano, C., Dunn, W.J., Edlund, U.,
Esbensen, K., Geladi, P., Hellberg, S., Johansson,
E., Lindberg, W. and Sjostrom, M. In Kowalski,
B.R., ed. Chemometrics: Mathematics and Statis-
tics in Chemistry. NATO ASI Series C138, D. Re-
idel Publ. Co., Dordrecht, Holland, 1984. p. 17-96.

11. Ogg, R. A. and Polanyi, M. Trans. Faraday Soc. 31
(1935) 604.

12. Hammett, L. P. Foreword in Advances in Linear
Free Energy Relationships, N.B. Chapman and J.
Shorter (ed.). Plenum Press, London 1972.

13. Diaconis, P. and Efron, B. Scientific American,
May 1983, 96.

14. Stone, M. J. Roy. Statist. Soc. B36 (1974) 111.

15. Geisser, S. J. Amer. Statist. Assoc. 70 (1975) 320.

16. Draper, N.R. and Smith, H. Applied regression
analysis, 2nd edition. Wiley, New York, 1981.

17. Wold, H. In Jéreskog, K. G. and Wold, H. (eds).
Systems under indirect observation. North-Holland,
Amsterdam, 1982.

18. Wold, S., Ruhe, A., Wold, H. and Dunn III, W.J.
SIAM J. Sci. Statist. Comput. 5 (1984) 735.

19. Eliasson, B., Johnels, D., Wold, S. and Edlund, U.
Acta Chem. Scand. B36 (1982) 155.

20. Exner, O. Correlation Analysis — Prospect. Organic
Reactivity (Tartu, Estonian SSR) 21 (1984) 3.

21. Mandelbrot, B. B. The fractal geometry of nature.
W. H. Freeman and Co., San Francisco, 1982.

22. Bordwell, F. G., Bartmess, J. E. and Hautala, J. J.
Org. Chem. 43 (1978) 3095.

23. Godel, K. Monatshefte fiir Mathematik und Physik
38 (1931) 173. Engl. translation: On Formally Un-
decidable Propositions. Basic Books, New York,
1962.

24. Golub, G.H. and van Loan, C.F. Matrix Com-
putations. The Johns Hopkins University Press,
Oxford, 1983.

25. Rao, C.N.R. Ultra-Violet and Visible Spectros-
copy, 2nd ed., Butterworths, London, 1967, p. 17.

26. Levy, G.C. and Lichter, R.L., Nitrogen-15 Nu-
clear Magnetic Resonance Spectroscopy, Wiley-In-
terscience, New York 1979, p.28.

Received August 29, 1985.

277



