3C NMR Chemical Shifts — a Conformational Probe for

1-Alkoxyalkyl Esters

Kalevi Pihlaja and Aija Lampi*

Department of Chemistry, University of Turku, SF-20500 Turku 50, Finland

Pihlaja, Kalevi and Lampi, Aija. 1986. *C NMR chemical shifts — a conforma-
tional probe for 1-alkoxyalkyl esters. — Acta Chem. Scand. B 40: 196-199.

Eighteen 1-alkoxyalkyl formates, acetates and propionates,
R'CIH-OC2H,R?,
OC30R?
have been analysed by "C NMR spectroscopy.
When the chain length of R, R? or R? increases, the *C NMR resonances of C1,
C2 and C3, respectively, shift to lower field. In addition to the primary sub-

stituent effects there are a few but minor interactive influences which, however,
are clearly significant. All of these effects can be used to predict the most fa-

voured conformation of the 1-alkoxyalkyl esters.

In connection with studies on proton catalysed
hydrolysis of acylals several 1-alkoxyalkyl esters
were prepared. The *C NMR chemical shifts of
the compounds were subjected to multilinear re-
gression analysis, the results of which turned out
to be very helpful in assigning the most favoured
conformation of the 1-alkoxyalkyl esters.

Experimental

Syntheses. a-Chloroethers were prepared by pas-
sing dry hydrogen chloride into the aldehyde
(R'CHO) - alcohol (R*CH,0OH) mixtures' at 0 to
5°C. The progress of the reactions was mon-
itored by '"H NMR spectroscopy. The products
(yields 72-84 %) were used further without dis-
tillation. CH,OCH,Cl and C,H,OCH,Cl were
commercially available.

1-Alkoxyalkyl propionates and acetates (Table
1) were prepared according to the procedure of
Hurd and Green® from a-chloroethers and so-
dium salts of the appropriate carboxylic acids.
The yields varied from 70 to 95 %.

*To whom correspondence should be addressed.
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The formates (Table 1) were synthesised in a
slightly different way. To 0.6 mol of dried, pul-
verized sodium formate, which was warmed to
40°C and protected against moisture, 0.15 mol of
dry a-chloroether was added from a dropping
funnel. When the evolution of heat ceased, the
synthesis was completed in the usual way? (yields
40-60%).

Product analyses. The products were identified
and their purities checked by GC and 'H and “C
NMR spectroscopy. The '"H NMR spectra were
recorded on a JEOL JNM-PMX 60 spectrometer
in CCl, (total concentration 15%) using 1%
TMS as internal standard and the *C NMR spec-
tra on a JEOL FX 60 FT spectrometer as total
concentration 10 % (v/v) in CDCl, with 3 % TMS
as internal standard. The boiling points and 'H
and "C NMR chemical shift data are shown in
Tables 1 and 2.

Results and discussion

The different effects on the *C NMR chemical
shifts of C1, C2 and C3, respectively were given
the following notations:
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The values of the different substituent effects
were solved with a multilinear regression analysis
from the equation:**

oC(x) = oC,(x) + ZSE(x),

where oC(x) is the chemical shift of the x'th car-
bon atom (x = 1, 2 or 3), oC,(x) that of the same
carbon atom in the parent compound (no 1) and
ZSE(x) the sum of the substituent effects influen-
cing it.

For instance, ZSE(1) in the various compounds
(1-18) consists of the following substituent ef-
fects:
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able 1. The boiling points and 'H NMR chemical shifts (8/ppm) of the prepared acylals R'CH-OCH,R?

OCOR®
R' R? R® bp. (C/kPa) ~OCOH R'-CH- —-OCH,CH; —OCOCH,CH; —OCH,CH; CHyCH,CH-O— CH,CH,CH-O- —OCOCH,CH,
| —OCH, —~OCOCH, |
CHCH-0-
|
b b b

1H H H 103-105/101  7.95 5.19 3.41
2 H CHy H 117-118/101  7.98 5.25 3.65 1.18
3 CH, H H  37.8-37.2/8.67° 7.88 5.78 3.33 1.37
4 CHy CHy H  41.0-42.09.337 7.92 5.90 3.55 1.37
5 C,H; CH; H 68-70 /8.67 8.00 5.77 3.37 1.63 0.97
6 H H CHy 118119101 5.07 3.35 2,02
7 H  CHy CHy 57.4-57.7/6.67° 5.13 3.60 2,03 118
8 CH, H CHy 116-117/101 5,67 3.30 2,00 1.27
9 CH, CH; CH, 60.4-60.6/6.27° 5.77 3.60 1.98 1.15 1.25
0 CH; C,Hs CH; 58.4-59.4/3.60° 5.77 3.43 2.00 1.50° 0.92% 1.32
1 CHs H CH; 525-53.5/6.40° 5.53 3.32 2,02 1.58 0.90
2 C,Hs CH; CH, 68.5-69.0/6.67° 5.63 3.55 2.00 1.17 1.60 0.90
3 H H CHs 67-68 /8.00 5.10 3.35 2.30 1.13
4 H. CHy CHy 54-57 /2.67 517 3.60 2.30 1.18 1.12
5 CH; H C,Hy 6668 /8.00 5.70 3.28 2.30 1.33 113
6 CHy CH, C,Hs; 58.8-60.0/6.95" 5.77 3.50 227 117 1.33 1.10
7 CHs H CHg 76-78 /6.67 5.53 3.30 2.28 1.55 0.88 112
8 C,Hg CH; C,H; 82-84 /8.00 5.63 353 2.30 117 157 0.90 113

Distilled with the PERKIN ELMER 251 Auto annular still.
[The methylene proton shifts are given as averages only.
(—~OCH,CH,CHj.
[—~OCH,CH,CH,.
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Table 2. The '*C NMR chemical shifts (8/ppm) of the products R'CH—OCH,R?

I
OCOR®

R' R® R® -OCOR®R'CH- —OCH,~ CH,CH,CH-OR? —OCOCH,CH,; —OCH,CH, CH,CH,CH—OR? —OCOCH,(
| —~OCOCH, |
CH,CH-OR?
|
1 H H H 160709 90.250 57.765
2 H CH, H 160763 88.992 66.229 14.984
3 CH, H H 160763 97512 56449  20.475
4 CH, CH, H 160763 96.313 64.856  20.875 14.927
5 CH; CH, H  160.969 99.540 65103  27.678 14.943 8.168
6 H H CH, 170616 90.375 57.632 20.986
7 H CH, CH, 170665 89.221 66.001 21.046 15.098
8 CH, H CH, 170829 97.457 56.335  20.589 21.218
9 CH; CH, CH, 170775 96.198 64.628  20.875 21.218 14.984
10 CH, C,H; CH, 170.827 96.427 70.862  20.761 21.275 10.466° 22.819°
11 CHs H  CH, 171.003 100.715 56.621  27.452 21.105 21.105 8.121
12 CH; CH, CH; 171.003 99.516 64.914  27.738 21.218 15.041 8.238
13 H H  CHs 174.130 90.246 57.566 27.613 8.966
14 H  CH; CH, 174.057 89.076 65.948 27.678 15.138 8.966
15 CH, H  C,H; 174206 97.228 56.278  20.587 27.795 9.035
16 CH, CH, C,H; 174.325 96.025 64.628  20.875 27.852 15.041 9.035
17 CH; H  C,H; 174.490 100.546 56.621  27.509 27.795 8.178 9.150
18 C,H; CH, C,H; 174.546 99.342 64.908  27.808 27.808 15.073 8.316 9.128
2_OCH,CH,CH,,
5_OCH,CH,CHj.
No. ISE(1)
12927 o'+ B +y+ ¥y + vy + ay’+  tothe ratio of the respective effects at C2 and C4
alyiy? of 1,3-dioxanes.’
13 000 v+ &
14 -117 Y +¥Y+8 +v¥
15 698 o +vy + 3+ ay+ a'd’ H
16 578 a'+ v+ Y +8+yy +ay+ NC=CHj
a'd + alyy’ H™;
17 1030 o'+ B'+ v* + & + aly® + a'd’ = H
18 9.09 o + Y+ ay + P+ vy + oy @‘
+ ooy 4 B+ 8+ oS '/ 2,
H & 0] %,
The effects (Table 3) are considered significant if \ / H
they are larger than twice their standard devia- CH uuu..c .__@
tions. All substituent effects are present at least 3 rt \
twice except two, of those in compound 10, ﬁ 0'
which is the only derivative with R? = C,H;. H A
1-Alkoxyalkyl esters have two structural fea- |
tures, which to some extent predetermine their @ CH3
spatial structure. First of all, the ester end has 7 \ /
probably the s-cis conformation (Fig. 1).° Sec- 0 C,W”
ondly, the O-C-O fragment tends to attain the ‘ IIH
gauche conformation to minimize the anomeric
effect.® H

The magnitudes of the a-effects are quite nor-
mal and the ratio of o' and o is practically equal
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Fig. 1. The most probable conformation of the 1-
alkoxyalky! esters studied.



Table 3. The solved effects at C1, C2 and C3 of
R'C1H-OC2H,R?

I
OC30R?

Carbon Effect Parameter No. of
no. value/ppm occurrences
C1e o 7.2710.02 12
B 3.29+0.02 5
y? -1.25+0.02 10
62 0.21+0.03 1
a'y? —-0.21+0.03 9
&° —0.13+£0.02 6
y? 0.12+0.02 13
Y2 y? 0.09+0.03 7
a'y?y*  -0.06+0.03 5
o' & -0.06+0.03 4
c2° o? 8.42+0.02 10
p? 6.2410.04 1
y! -1.33+0.02 12
&' 0.29+0.02 5
e -0.13+0.02 13
o? el —0.09+0.03 7
C3° o? 9.94+0.02 13
g? 3.44+0.02 6
&' 0.21+0.02 5
ol y! 0.11+0.03 9
By’ e 0.09+0.03 2
y' 0.05+0.02 12

“Av. diff., +0.01 ppm; range 11.56 ppm; rms 0.024

ppm.
bAv. diff., £0.02 ppm; range 14.59 ppm; rms 0.036

ppm.
°Av. diff., £0.02 ppm; range 13.79 ppm; rms 0.032

ppm.

The B-effects are structurally most informative.
It has been pointed out recently that 3, is clearly
larger than B, in cyclic compounds.”®® Accord-
ingly the methyl groups causing the ! and §* ef-
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fects (Table 3) have an orientation which resem-
bles that of B-axial groups, e.g. in 1,3-dioxanes
and oxanes.*® Correspondingly, the methyl
group which is responsible for the B? effect attains
principally an equatorial position (see Fig. 1).

Both y-effects (y'and y*) which are only slightly
negative support strongly the predominant y-anti
orientation of the respective methyl groups® in
good agreement with the above discussion on the
B-effects.

All the other effects are very small but signifi-
cant. Together with the primary effects they al-
low a very accurate evaluation of the *C NMR
chemical shifts of C1, C2 and C3 in the title com-
pounds. This is in line with the deduced structure
since in general ®C NMR chemical shift correla-
tions work best when the basic conformation of
the studied compounds does not change much
with increasing substitution.”
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