Short Communications

Relative Thermodynamic Stabilities of the Isomeric Cyclooctadienes

ESKO TASKINEN and KARI NUMMELIN

Department of Chemistry and Biochemistry, University of Turku, SF-20500 Turku, Finland

About a decade and a half ago, Turner et al. 1 measured the enthalpies of hydrogenation of a number of unsaturated cyclic hydrocarbons such as the three isomeric cyclooctadienes 1-3. As might be expected, the conjugated diene 3 proved to be the most stable species, the enthalpy of isomerization of the 1,5 diene (1) to the 1,3 form (3) being -19.7 ± 0.4 kJ mol⁻¹ in acetic acid at 298 K. Interestingly, the enthalpy of the 1,4 isomer (1) was found to be 6.7 ± 1.3 kJ mol⁻¹ lower than that of 1. Owing to our interest in the thermodynamic stabilities of the alkoxy derivatives of some cyclic dienes (vinyl ethers), 2 we considered it worth the effort to determine also the relative stabilities of 1-3 by an independent route, viz, chemical equilibration (Allinger et al. 3 have employed the same method but in a less quantitative sense and at a single temperature only).

Experimental. The equilibration experiments were conducted in DMSO solution (ca. 20%) with KOBu-t (ca. 10%) as catalyst. Commercial 1 and 3 were used for the equilibrations, after purification by fractional distillation with a Perkin-Elmer M 251 Auto Annular Still. The 1,4 form (2) was identified in the gas-chromatographic analyses of the equilibrium mixtures by means of its retention time as follows. The normal boiling points of 1, 2 and 3 are 148.5, 143.0 and 141.0 °C, respectively, 1 and since the retention times of 1 and

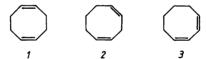


Table 1. Values of the mean equilibrium constant K for the equilibria between isomeric cyclooctadienes at various temperatures (n=the number of samples analyzed).^a

T/K	n	K(3/1)	K(3/2)	K(2/1)
333	6	1904(18)		
343	6	1712(14)		
353	6	1495(24)		
363	9	1165(13)		
373	5	939(13)	185(6)	5.10(0.22)
388	4	726(21)	142(1)	5.12(0.13)
403	5	637(7)	128(1)	4.97(0.06
413	4	535(6)	113(1)	4.73(0.05)
423	6	464(6)	98.1(1.5)	4.73(0.07
433	8	393(11)	87.0(0.9)	4.52(0.09)
443	4	359(18)	79.0(0.3)	4.54(0.22

^a The uncertainties are the standard errors of the mean.

^{© 1985} Acta Chemica Scandinavica

Table 2. Thermodynamic data (DMSO solution, 298.15 K) for the isomeric cyclooctadienes. The errors are twice the standard errors of a least-squares treatment of $\ln K$ vs. T^{-1} .

Reaction	ΔG^{Θ} /kJ mol $^{−1}$	ΔH [⊕] /kJ mol ⁻¹	$\Delta S^{\Theta}/J K^{-1} mol^{-1}$
1→2	-4.65(0.11)	-2.8(0.8)	6.3(2.0)
$2 \rightarrow 3$	-16.20(0.20)	-2.8(0.8) $-16.4(1.4)$	6.3(2.0) -1(3)
<i>1</i> → <i>3</i>	-20.94(0.22)	-19.4(0.9)	5.0(2.4)

3 were 4.88 and 3.07 min, respectively, a peak with a retention time of 3.35 min appeared to be well ascribable to the 1,4 form, especially, since no other significant peak between those of I and S could be detected. The position of the thermodynamic equilibrium was approached from two initial mixtures of isomers: (a) a mixture of 98 % of S and 2 % of S, and (b) a mixture of 90 % of S and 10 % of S. The equilibrations were carried out at S temperatures between 100 and 170 °C; the equilibrium S however, was monitored at 4 additional temperatures down to 60 °C (since the peaks of S and S were not completely resolved, the peak area of S could not be determined with sufficient accuracy in samples equilibrated below 100 °C due to the low concentration of S at these temperatures). The equilibrated samples were quickly cooled by immersion into ice-water, followed by immediate analysis by GLC using a 25 m XE-60 capillary column (inner diameter 0.32 mm) with S as the carrier gas. The apparatus consisted of a Perkin-Elmer Sigma 2B gas chromatograph and a Hewlet-Packard 3380 S integrator.

Results and discussion. The results of the equilibration experiments are shown in Tables 1 and 2. The enthalpy of isomerization of I to $3 \ (-19.4\pm0.9 \ \text{kJ mol}^{-1})$ is in excellent agreement with the data of Turner et al., $-19.7\pm0.4 \ \text{kJ mol}^{-1}$. The entropy of 3 is $5.0\pm2.4 \ \text{J}$ K⁻¹ mol⁻¹ higher than that of I but it appears that this difference arises from mere statistical factors: the 1,3 form is statistically favored over I by a factor of 2, which has an effect of $5.8 \ \text{J}$ K⁻¹ mol⁻¹ on the ΔS^{\odot} value of the $I \rightarrow 3$ reaction. Similarly, 2 is favored over I by the same statistical factor, and the observed entropy change for the $I \rightarrow 2$ reaction, $6.3\pm2.0 \ \text{J}$ K⁻¹ mol⁻¹, is seen to correspond to this effect only. On the other hand, our enthalpy value for the $I \rightarrow 2$ reaction, $-2.8\pm0.8 \ \text{kJ}$ mol⁻¹, is clearly different from the value, $-6.7\pm1.3 \ \text{kJ}$ mol⁻¹, suggested by the data of Turner et al. It is not easy to see the origin of this difference.

- Turner, R.B., Mallon, B.J., Tichy, M., Doering, W. von E., Roth, W.R. and Scröder, G. J. Am. Chem. Soc. 95 (1973) 8605.
- 2. Taskinen, E. and Nummelin, K. J. Org. Chem. In press.
- 3. Allinger, N.L., Viskocil, J.F., Jr., Burkert, U. and Yuh, Y. Tetrahedron 32 (1976) 33.

Received April 9, 1985.