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A Convenient Preparation of N-Protected Nucleosides with
the 2,2,2-Trichloro-¢-butyloxycarbonyl (TCBOC) Group.
Structural Assignment of N,N-bis-TCBOC Guanoside and
Its 2’-Deoxy Analogue
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TCBOC protected derivatives of nucleosides have been prepared using a ‘‘one-pot’’
procedure involving protection of the hydroxyl functions with trimethylsilyl chloride.
Spectroscopic studies showed that the TCBOC groups of the guanine moiety of bis-TCBOC-
guanosine and its 2’-deoxy analogue are at N* and at the N? positions respectively; while in the
mono-TCBOC derivatives, the TCBOC group is, as expected, at the N? position.

The 2,2,2-trichloro-t-butyloxycarbonyl- (TCBOC) group was proposed * for the protection
of the exocyclic amino function of adenosine and for the protection of the urethane function
of uridine.? Subsequently, the TCBOC-protected derivatives of cytidine and guanosine and
their 2’-deoxy analogues have also been prepared.> Both groups employed a two-step
procedure for the preparation of these base-protected nucleosides which made the
employment of TCBOC group in oligoribo- and deoxyribonucleotide synthesis time
consuming. It may be noted that uridine, cytidine and adenosine, both in deoxyribo and ribo
series, gave only mono-TCBOC derivatives; while guanosine and 2’-deoxyguanosine > gave
bis-TCBOC derivatives. The structures of these bis-TCBOC derivatives of guanosine and its
2'-deoxy analogue were not clearly elucidated; nevertheless, evidence was advanced to
support that the second TCBOC group could be at the N! and not at the O° position. We
herein describe a simple and general procedure for the “one-step” preparation of TCBOC
protected nucleosides with free sugar hydroxyl groups and subsequently, we present direct
spectroscopic arguments for the chemical structure of bis-TCBOC-guanosine and its
2'-deoxy analogue.

The general procedure for the “one-pot” synthesis of the TCBOC-protected nuc-
leosides, I to 10, involved trimethylsilylation of a nucleoside in dry pyridine solution at
20 °C, which is followed by the addition of TCBOC-Cl in situ and then hydrolysis. Standard
work-up and crystallization from aqueous ethanol gave compound 1 to 10 in 60—95 % yield
respectively (experimental section). Element analysis and spectroscopic properties of these
newly synthesized compounds were identical to the authentic ones. We believe that such a

* To whom enquiries should be addressed.

0302-4369/85 $2.50
© 1985 Acta Chemica Scandinavica



762 Zhou, Ugi and Chattopadhyaya

s
f
Q
.’I‘.
o
I
a
o
Q
a

H B_ ATCBOC

R=OH B=CTCBOC
R H' B_CTCBOC
R=OH; B=TCBoC
R H B_ TCBOC
R OH‘ B= GTCBOC

b

R . GTCBOC
R=0 : B= G(TCBOC)z
R=H; 1’3 G(TCBOC),

=
H

-

-

HO (o)

0

SO LA W~

-

HO R

~

“one-step” preparation of TCBOC-protected nucleosides, I to 10, would promote their
applications in the areas of DNA and tRNA synthesis.

We then elucidated the position of the second TCBOC group in 9 and 10, in comparison
with the corresponding mono-TCBOC derivatives 7 and 8, respectively. A perusal of their
ultraviolet absorption spectra at pH 2, 7 and 13 show that the compounds 7 and & absorb at
257 and 278 nm(sh). While the former band has a bathochromic shift (ca. 12 nm) in the
alkaline pH, the latter undergoes a hypsochromic shift. Compounds 9 and 10, on the other
hand, have absorptions at 255 and 245 nm(sh) at pH 2 and 7. These bands undergo a much
smaller bathochromic shift in alkaline pH (4 to 5 nm). A comparison of infrared spectra of
compounds 9 and 10 with 7 and 8 respectively, shows that the stretching frequencies of the
conjugated carbonyl groups originate, in the latter, in the region of 1710—1690 cm™, while
in the former, one observes a non-conjugated carbonyl stretching frequency at 1820 cm™
beside other conjugated carbony! frequencies (1720—1680 cm™). It may be added that such
a small high frequency shift of carbonyl frequency has been also observed® upon the
protonation of the N”-nitrogen of the guanine residue. A comparison of *C chemical shifts
of compounds 7 to 10 with guanosine and deoxyguanosine (Table 1) show that the chemical
shifts of the C%-carbon atoms were very similar, suggesting that the nature of the sp’
hybridized carbon in these compounds have remained unchanged. However, a comparison
of the chemical shifts of the C%-carbons in guanosine and its mono- and bis-TCBOC
derivatives has revealed that the C?-carbon is more shielded by 1.9 and 10.5 ppmin 7 and 9,
respectively, in comparison with its chemical shift in guanosine. A similar correlation is also
observed for the chemical shift of the C?-carbon in comparison with the *C spectra of
2'-deoxyguanosine and its mono- and bis-TCBOC derivatives. It is clear that the attachment
of an acyl group to the ring nitrogen would appear to favour localization of ring m-electrons
in the various double bonds within the ring which is very similar to a situation that exists in
the case of a protonation. Such a localization effect, due to N'-acylation, would be expected,
in an analogy with the “a-protonation effect”®, to be most pronounced on the C?-carbon as
seen in its shielding (ca. 10.5 ppm) in the derivatives 9 and 10 as compared to 7 and 8
respectively; while the small change of the chemical shifts of the C-carbon can be attributed
to its overall non-conjugated nature from the rest of ring n-electrons.

These spectroscopic properties, along with the observed stability towards alkali, of the
bis-TCBOC derivatives of guanosine and deoxyguanosine, 9 and 10, are consistent with
their 1,2-bis-N-TCBOC structures, 11 and 12, respectively.

Further indirect evidence for the bis-TCBOC structures, /1 and 12, has emerged by the
'H NMR study of the exchangeable protons of the aglycones. Such a study has shown that
the N' and N? protons of 7 and 8, in anhydrous deuterated dimethylsulfoxide absorb at &
11.48 and 11.38 respectively. These protons are shifted to §11.22 and 10.5 respectively upon
warming the solutions to 70 °C; these chemical shifts remained unchanged upon returning to
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the ambient temperature. In contrast, the N—H proton of the bis-TCBOC derivatives, 9 and
10, absorbed at 6 13.0 which, upon warming at 70 °C, shifted to the high field region where
all other exchangeable sugar protons absorb (above § 6.0): Upon cooling to the ambient
temperature, the N—H proton reverted to the original chemical shift. This suggests that
there is very little hydrogen bonding between N'H and N*-acyl function in 7 and 8; on the
other hand, a strong hydrogen bonded structure for the bis-TCBOC derivatives, like 13,
seems to be possible.

EXPERIMENTAL

'H NMR spectra were measured (& scale) at 60 MHz with a Perkin-Elmer R 600 and at 90
MHz with a Jeol FX 90Q spectrometer using tetramethylsilane as an internal standard. B¢
NMR spectra were recorded at 23.7 MHz in the same solvent mixture. UV absorption
spectra were recorded with a Cary 2200 spectrophotometer in pure methanol. Reactions
were monitored by using Merck pre-coated silica gel 60 F,s4 plates. 2,2,2-Trichloro-tert.-
butyloxychloroformate (TCBOC—CIl) was prepared using a literature procedure 13
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Table 1. *C-absorptions from the base residues (& scale).

C-6 C-2 C-4 C-8 C-5

Guanosine 157.12 153.7 151.4 136.0 116.6
(4.5 Hz) (214 Hz) (11.2 Hz)

) 155.2 151.8 148.9 137.9 120.0
(2 Hz) (215.6 Hz) (11.2 Hz)

) 156.7 143.2 147.1 139.6 123.5
(1.5Hz) (2123 Hz) (11.2 Hz)

2'-Deoxyguanosine 157.4 153.8 151.1 136.0 116.6
(1 Hz) (214.6 Hz) (11.2 Hz)

) 155.2 151.8 148.4 137.7 120.0
(15Hz) (211.2Hz) (12.3 Hz)

(10) 156.8 143.0 146.8 139.5 123.7

(25Hz) (213.0Hz) 11.2 Hz)

Preparation of 6-N-(2,2,2-trichloro-t-butyloxycarbonyl)adenosine (1) A general proce-
dure: Adenosine (1.34g, 5 mmol) was dried by co-evaporation with dry pyridine (2 X ca. 10
ml) and was then re-dissolved in the same solvent (50 ml). To this solution was added
trimethylsilyl chloride (10 eq. per mmol of Nucleoside) under an atmosphere of argon at
20 °C. The reaction was monitored by TLC using 30 % ethanol—chloroform mixture as an
eluent. When TLC showed the formation of a single higher R¢ product, TCBOC—CI (1.25 g,
5.2 mmol) was added. After 3h at 20 °C, TLC (5 % ethanol—chloroform mixture) showed a
complete conversion to a higher R; product. Water (2.0 ml) was added. After about 30 min,
a TLC analysis (20 % ethanol—chloroform mixture) revealed a mixture of two compounds
in the reaction mixture. Aqueous ammonia (d 0.9) was added to adjust the pH to 9—10.
Water (20 ml) was added after 30 min stirring; the reaction mixture was subsequently
extracted with chloroform (3 x 20 ml). The organic layers were pooled, dried (MgSO,) and
concentrated on a rotavapor to a gum. The residue was first dissolved in a volume of
pyridine (ca. 0.2 ml) and then taken up in chloroform (ca. 1.5 ml). This solution was
subsequently precipitated from light petroleum. The precipitate was subsequently crystal-
lized from 20 % ethanol—water mixture. Yield 2.14 g (91.2 %); mp. 162 °C; UV: A5, 267
nm gs 17000) (pH 7); 268 nm (& 13500) (pH 2); 294 nm (¢ 17500) (pH 13). IR (nujol): 1750
cm™’; TH NMR (CDCly): 8.67 (s, 1H); 8.2 (s, 1H); 5.92 (d, 7 Hz, 1H); 4.85 (m, 1H); 4.38 (m,
2H); 3.88 (m, 2H), 2.03 (s, 6H).

Compound (2). This was prepared using essentially similar procedures described for the
compound I. A precipitate of 2 was crystallized from ca. 15 % aqueous ethanol in 82.3 %
yield. mp. 168 °C.

UV: Anax 267 nm (£ 17500) (pH 7); 268 nm (& 14000) (pH 2); 294 nm (& 18000) (pH 13);
IR (nujol): 1755 cm™; 'H NMR (CDCl,): 8.73 (s, 1H); 8.20 (s, 1H); 6.42 (dd, 6 Hz, 1H); 4.7
(m, 1H); 4.19 (m, 1H); 3.88 (m, 2H); 2.68 (m, 2H); 2.05 (s, 6H).

Compound (3). Essentially, a similar reaction condition as for / was used for the
preparation of 3; however the solubility of 3 allowed it to be dissolved in a small volume of
chloroform for precipitation in light petroleum. The precipitate was crystallized from ca.
5 % ethanol—chloroform mixture in 95.5 % yield. mp. 125 °C.

UV: Ayax 295 nm (& 8000), 241 nm (e 15500) (pH 7); 295 nm (& 7200), 241 nm (¢ 12000)
(pH 2); 293 nm (& 17000) (pH 13). IR (nujol): 1755 cm™. 'H NMR (CDCl,): 8.49 (d, 8 Hz,
1H); 7.25 (d, 8 Hz, 1H); 5.75 (s, 1H); 4.21 (bs, 3H); 3.91 (m, 2H); 1.98 (s, 6H).

Compound: (4). This was also prepared using a reaction condition as for compound 1;
however, the solubility properties permitted it to be dissolved in a small volume of
chloroform for precipitation in light petroleum. The precipitate was subsequently
crystallized from ca. 5 % ethanol—chloroform mixture in 93 % yield. mp. 155 °C.
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UV: Apax 294 nm (€ 7000), 240 nm (e 13500) (pH 7); 295 nm (& 6300), 240 nm (& 10500)
(pH 2); 293 nm (& 14500) (pH 13). IR (nujol): 1750 cm™". 'H NMR (CDCl;): 8.29 (d, 8.2 Hz,
1H); 7.16 (d, 8.2 Hz, 1H); 6.12 (dd, 6 Hz, 1H); 4.36 (m, 1H); 4.30 (m, 1H); 3.84 (m, 2H);
2.50 (m, 2H); 1.94 (s, 6H).

Compound: (5). This has been prepared using a very similar condition as reported for the
preparation of I except that the TCBOC—CI reaction time is around 24 h. The precipitate
has been crystallized from ca. 5 % ethanol-chloroform mixture in 89 % yield. mp. 136 °C.
UV: Apnax 263 nm (& 8500), (pH 7)1 262 nm (& 8000) (pH 2); 265 nm (& 5000) (pH 13). IR
(nujol): 1785, 1720 and 1680 cm™. 'H NMR (CDCl,): 8.17 (d, 8.2 Hz, 1H); 6.0 (d, 8.2 Hz,
1H); 6.0 (d, 4Hz, 1H); 4.44 (m, 3H); 4.09 (m, 2H); 2.31 (s, 6H).

Compound: (6). This has been prepared using a very similar condition as reported for the
preparation of I except that TCBOC—CI reaction time is around 24 h. The precipitate has
been crystallized from ca. 5 % ethanol—chloroform mixture in 88 % yield, mp. 132 °C. UV:
Amax 270 nm (£ 9500), (pH 7); 270 nm (& 8000) (pH 2): 270 nm (& 8000) (pH 13). IR (nujol):
1795, 1715 and 1660 cm™. *H NMR (CDCl): 7.61 (bs, 1H); 6.17 (dd, 6.9 Hz, 1H); 4.37 (m,
1H); 3.80 (m, 3H); 2.25 (m, 2H); 2.07 (s, 6H); 1.93 (bs, 3H).

Compound (7). Same procedure as for the preparation of 1 except that 1.05 equiv. of
TCBOC-CI was used for the reaction for 3 h. The precipitate was crystallized from ca.
10 % ethanol—water mixture in 72 % yield. mp. 224 °C. UV: 4., 257 nm (& 15000), 278 nm

€ 10300) (pH 7); 257 nm gs 1400), 278 nm (& 9600) (pH 2); 268 nm (12800) (pH 13). IR
nujol): 1710 and 1695 cm™. '"H NMR (DMSO-dy): 8.26 (s, 1H); 5.83 (d, 6.1 Hz, 1H); 4.50
m, 1H); 4.05 (m, 4H); 1.95 (s, 6H).

Compound (8). Same procedure as for compound 7 was used. The precipitate was
crystallized from ca. 10 % ethanol—water mixture in 60 % yield. mp. 214 °C. UV: A,ax 257
nm (& 16000), 278 nm (¢ 11300) (pH 7); 257 nm (18 12300), 278 nm (& 9800) (pH 2); 268 nm (&
14600) (pH 13). IR (nujol): 1705 and 1690 cm™. TH NMR (DMSO-dj): 8.22 (s, 1H); 6.22
(dd, 6.2 Hz, 1H); 4.46 (m, 1H); 4.0 (m, 3H); 2.52 (m, 2H); 1.94 (s, 6H).

Compound (9). Same procedure as for the preparation of 1 was used except that 2.5
equiv. of TCBOC-CI was used for reaction for ca. 16 h and then a hydrolysis step with
water. The precipitate was crystallized from ca. 25 % ethanol—water mixture in 90 % yield.
mp. 252 °C. UV: Aax 252 nm (& 7700), 244 nm (sh) (pH 7); 252 nm (¢ 6500), 244 nm (sh)

pH 2); 256 nm (g 7500) (pH 13). IR (nujol): 1820, 1705 and 1695 cm™. 'H NMR
DMSO-d): 8.37 (s, 1H); 5.78 (d, 6 Hz, 1H); 4.44 (dd, 6 Hz, 1H); 3.96 (m, 2H); 3.66 (m,
2H); 1,90 (s, 12H).

Compound (10). Same procedure as for compound 9 was used. The precipitate was
crystallized from ca. 25 % ethanol—water mixture in 88 % yield. mp. 234 °C.

UV: Amax 252 nm (€ 7600), 245 nm (sh) (pH 7); 252 nm gs 6400), 244 nm (sh) (pH 2); 257
nm (& 7400) (pH 13). IR (nujol): 1820, 1720 and 1705 cm™'. 'H NMR (DMSO-dg): 8.30 (s,
1H); 6.22 (dd, 7.2 Hz, 1H); 4.36 (m, 1H); 3.78 (m, 3H); 2.52 (m, 2H); 1.88 (s, 12H).
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