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In thermodynamics one would like to develop variational principles in order to test the
stability or instability of non-equilibrium stationary states in analogy to the methods devised
by Gibbs to study phase transitions. Gibbs used exergy (available energy) as a Lyapounov
function, but exergy cannot be used away from thermodynamic equilibrium. Entropy
production (or dissipation) is a Lyapounov function close to equilibrium, which means that
stationary states in the Onsager region are always stable. However, entropy production (or
surplus entropy production) cannot be used for stability test far from equilibrium.

Prigogine and Glansdorff have suggested another thermokinetic criterion. The idea is to
investigate the sign of the quadratic form corresponding to the socalled excess entropy
production. We formulate the P.G. criterion especially for homogeneous, chemical reaction
systems and apply it rigorously to two chemical reaction models known to be able to show
instabilities in the form of limit cycles: The Brusselator and the Oregonator. We conclude that
the P.G. criterion is much more difficuit to use than linear stability criteria. Simultaneously,
the P.G. criterion is much less conclusive. It may be indeterminate in both stable and unstable
regions. Therefore, the problem of devising thermodynamically founded stability criteria in
nonequilibrium systems has still not been solved.

The systematic exploration of instabilities, catastrophes, bifurcations and chaos in a
multitude of nonlinear systems of interest for physicists, chemists, biologists, engineers and
many others has been much in fashion during the last decade. Refs. 19 are but a small
selection from the flourishing literature. However, only a few researchers have attempted to
interpret instabilities in terms of the language of thermodynamics. Most notably this angle of
attack is characteristic of the ‘“Brussels school of thermodynamics” under the leadership of
Ilya Prigogine.

Prigogine and coworkers have focussed on the second variation of the entropy and its
time derivative, since the principle of minimum entropy production is no longer valid in
far-from-equilibrium situations. The time derivative of the second variation of entropy is
named the excess entropy production. This quantity is a quadratic form in the deviations
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from the nonequilibrium stationary state considered. If the excess entropy production is
positive definite, the stability of the stationary state is warranted. This will be the case in the
Onsager-region of linear, irreversible thermodynamics close to equilibrium, where also the
theorem of minimum entropy production holds. Furthermore, the excess entropy
production will be positive definite in a certain extension beyond the Onsager region (the
socalled “thermodynamic branch”). By the stability theorem of Lyapounov, we are still able
to guarantee stability on the thermodynamic branch. However, at some distance from
equilibrium, the stationary states need not to be stable anymore. Marginal states of stability
may conveniently be found by linear stability theory (small perturbations) or by catastrophe
or bifurcation theory (finite perturbations). Thermodynamically, there may be certain
“directions” in which the deviations are “dangerous” in the sense that the excess entropy
production becomes negative. Then, instability is possible, but the system needs not to be
unstable.

It has some relevance to ask whether the thermodynamic (or rather thermokinetic)
stability criterion of Glansdorff and Prigogine is really useful in the sense, that it is simpler to
use than for example linear stability theory and that it furnishes us with reasonable,
approximate stability boundaries in the space of system parameters. In order to investigate
this question, we shall study two relatively simple model reaction systems which are known
to be unstable under appropriate conditions: The Brusselator and the Oregonator. Both
model systems may exhibit limit cycle behaviour, and the outbreak of this behaviour is
correctly predicted by linear stability theory (Hopf bifurcation).

In order to motivate the reader to search for thermodynamic criteria of stability, we shall
commence by resuming the results of a largely neglected, early paper of J.W. Gibbs,!° in
which he uses the available energy (or exergy) of a system as a Lyapounov-function to
explore the stability boundaries of the cusp catastrophe of liquid-gas phase transition. The
analysis was made in the year 1873, 19 years before the pioneering work of Lyapounov !’ and
some 100 years before the general exploration of he “elementary catastrophes” by René
Thom.? Although the paper of Gibbs is concerned with the stability of equilibrium states,
the concepts are useful also for the attempts to construct thermodynamic criteria of stability
for nonequilbrium stationary states.

1. THE EXERGY OF GIBBS AS LYAPOUNOV FUNCTION

In the second paper on thermodynamics by J.W. Gibbs!® a method of geometrical

representation of thermodynamic properties of substances by means of E(S,V) surfaces is
introduced. Such topics as the stability of a superheated liquid or an undercooled vapor are
discussed in terms of the curvature of the energy surface and in terms of an available energy
(exergy) function corresponding to a given temperature (T,) and pressure (p,). The function
used by Gibbs is given by:

O=E—T,S+p,V 1)

Actually, this function may be seen as a generalization of the function named “Gibbs
free energy”. Notice, that whereas E,S and V are respectively the total energy, the total
entropy and the total volume of the system, the system needs not to have the temperature T,
and the pressure p,. The system may indeed possess many different temperatures and
pressures. If the system is allowe#l to communicate entropy and volume (but not substance)
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with a surrounding reservoir with temperature T, and pressure p,, then the maximum
amount of work which can be done by system+surroundings (the conditional exergy) is
given by:

Ex=0-® 2)

In eqn. (2), ®., is the value of Gibbs’ ®-function, when the system is in internal
equilibrium and also in external equilibrium with the surroundings, i.e. T=T, and p=p,,. For
a discussion of the exergy concept in a broader context, see for example Refs. 13—15.

By means of the first and second law of thermodynamics, Gibbs showed that the function
® never increases:

3®/ot=3Ex/3t<0 3)

If we consider a given amount of substance (some water, say), then we may plot E as a
function of § and V in a three dimensional E—S—V space. If the water is at rest (no
whirlpools) and in internal equilibrium, we may draw the lowest possible energy surface:
The surface of dissipated energy (Gibbs’ expression). It is easy to find the temperature (7)
and the pressure (p) on each point of the dissipated energy surface E(S,V) by means of the
osculating tangent plane at (S,V). The slope of this plane in the S-direction is simply T,
whereas the slope in the V-direction is — p. On the other hand, we may search for states on
the E(S,V) plane in external equilibrium with a reservoir (7,,p,). We just draw the plane
P,: (T,S—p,V) through (S,V)=(0,0) and seek the osculating planes on E(S,V) which are
parallel to P,. Then, the vertical distance between the surface of dissipated energy and the
plane P, is the ®-function given by eqn. (1).

We envisage different parts of the dissipated energy surface E(S,V) which correspond to
liquid water, vapor and ice, respectively. Coexisting phases are determined by having
common osculating planes. Three coexisting phases fix completely the tangent plane (the
triple point), whereas two coexisting phases have one degree of freedom, since the
osculating plane ‘“slides and rolls” on the two corresponding parts of the surface of
dissipated energy. In this way a relation between p and T can be derived, e.g. the equation of
Clapeyron. The lines connecting E(S;,V;) of pure phase No. 1 and E(S,,V>) of pure phase
No. 2 may be regarded as mixtures of the two phases, and the relative quantities of the two
phases can be found by the lever rule. Those “tie lines” trace off the true surface of
dissipated energy in the case of mixtures of two phases.

Next, we envisage also a smooth transition between the two phases (liquid and gas, say).
Such states will be metastable (superheated liquid, supercooled vapor) or hypothetical
(impossible). Since such states are not in true equilibrium, they have to be situated above the
surface of dissipated energy, so that energy may be drawn reversibly from the system at
constant S and V. Fig. 1 shows a vertical, plane section through the surface of dissipated
energy and through the smooth transition surface. The tie line connecting /; and v,
coexisting at (T,,p,) lies as well in the surface of dissipated energy for liquid-vapor mixtures
as in the osculating plane E=T7,S—p,V+const.

Now, we take a “test plane” P(T,p) tangent to the E(S,V) surface at a given point (S,V).
The vertical distance between E(S+AS, V+AV) of a neighboring point and the test plane is
the conditional exergy of the neighboring state relative to an external reservoir at (7,p). This
exergy is seen to be positive, when the test plane is positioned in any points at the surface of

Acta Chem. Scand. A 39 (1985) No. 10



778 Torben Smith Sgrensen and Lars Eger

E
A vapor

liquid

surface of dissipated energy

—7
S+t V=const.

stable states
_____ metastable states

weeeeesee unstable states

Fig. 1. A section through the E(S,V) surface demonstrating how the curvature of this
surface can be used to distinguish between stable, metastable and unstable states. The
parameter a denotes a fixed ratio between S and V. It should not be confused with a in Figs.
2, 3 and 4.

dissipated energy for the stable, pure liquid or vapor. This is due to the upward curvature in
all directions of the surface of dissipated energy. Since the exergy always decreases during
irreversible processes the exergy will always diminish in value, reaching zero asymptotically.
In this way stability is always assured.

When the liquid is superheated (dashed line between /; and b,), stability can still be
assured for infinitesimal perturbations by similar arguments. For finite perturbations (such as
introducing a bubble of vapor), we need not have stability, however. The test plane drawn
Fig. 1 clearly intersects the continuous transition surface. For perturbations above that size
we have negative values of the exergy. Since the exergy still decreases by the second law of
thermodynamics, the value of the exergy will now become more and more negative. The
system will never revert to the point of departure with Ex=0. Thus, we have only local
stability on the metastable surfaces. Finally, when the test plane is positioned somewhat on
the dotted part of the curve (between /, and v,) we see, that even infinitesimal fluctuations
lead to negative exergies. The points on the part of the continuous transition surface with
downward curvature in at least one direction are therefore unstable, and that part of the
surface represents hypothetical states which are not physically possible.

When T, (and thereby p,) is varied, the points /; and v, trace out curves in space. When
these curves are projected on the S—V plane, the limits of absolute stability appear. These
curves at the same time denote coexisting liquid and vapor, meeting each other in the critical
point. The projections of the points /; and v, on the S—V plane similarly trace out the limits
of local stability, sometimes called the spinodal curves. They too meet each other and the
coexistence curves at the critical point, and all the curves have a common tangent in this
point. The points /, and v, are characterized by saying, that one of the principal curvatures
on the E(S,V) surface changes sign from a positive value to a negative value in those points.
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For further details about the geometry in the vicinity of the critical point (the cusp point
in the nomenclature of Thom), the reader is referred to Gibbs. (For example he proves that
the heat capacity at constant pressure is infinite in the critical point). The purpose of the
present section has only been to point to an elegant paradigm given by the master of
thermodynamics on how to treat stability problems. Are we able to devise similar variational
methods for nonequilibrium systems?

2. LEAST DISSIPATION IN CHEMICAL REACTION SYSTEMS

Unfortunately, exergy (or entropy) cannot be used as Lyapounov function for non-
equilibrium stationary states. The reason is, that there is already an exergy content (or
entropy deviation) in the stationary state. This is not the case in thermodynamic
equilibrium, where the exergy and its time derivative are both zero. In thermodynamic
equilibrium, the exergy is a strict minimum, at least when we do not consider degrees of
freedom along which reversible transformations occur. The minimum value of the exergy is
zero by definition, and the time derivative of the exergy is everywhere negative except at
equilibrium, where it is zero. Thus, by Lyapounov’s theorem on asymptotic stability (Ref.
16, theorem 4.2) we are sure, that thermodynamic equilibrium is asymptotically stable. This
fact should hardly come as a surprise, however.

In a non-equilibrium stationary state, where the thermodynamic variables are main-
tained constant through flow of energy or matter across the system, we might still define an
exergy by momentarily “freezing” the flows in the system and bringing reversibly the system
in internal and external equilibrium. This will be possible under the usual “local
equilibrium” assumption. This exergy will always be positive outside equilibrium, but it will
not be zero in a non-equilibrium stationary state. One might attempt to use the ‘“‘excess
exergy” AEx=Ex—Ex (Ex,, for the exergy in the stationary state) as a Lyapounov function.
The problem with this function, however, is that it is an uneven function of the deviations
from the stationary state. In the direction towards equilibrium it is negative, whereas it is
positive in the opposite direction. Thus, the excess exergy will never have a minimum in a
non-equilibrium stationary state. However, there may exist quasi-equilibrium situations,
where the (excess) exergy is minimum in certain rapidly relaxing directions.

Now we turn instead to the dissipation (or entropy production) as a candidate for a
Lyapounov-function. Since the papers of Onsager 1”1 we have known, that non-equilibrium
stationary states close to equilibrium have least dissipation in comparison to neighboring
instationary states, and that this theorem of least dissipation is equivalent to the validity of
Onsager’s reciprocal relations (ORR) for the transport coefficients. We shall see this here in
the special case of chemical reactions between ideally dilute species. At the same time we
shall demonstrate the existence of a potential function for the kinetics near equilibrium in
the sense required by classical theory of catastrophes.!? Given n dilute species we write for
the dissipation pr. unit volume (®,):

®=- X & (w—i)=— X RTIn. %‘] "¢ “
i=1 i=1 ;

A dot over a symbol means differentiation with respect to time, y; is the chemical
potential of species i and j; the same at equilibrium. Assuming small deviations from
equilibrium (Ac;/¢;<1) we have:

Acta Chem. Scand. A 39 (1985) No. 10



780 Torben Smith Sgrensen and Lars Eger

®,=-RTY, ¢ Ac/5;=0 3

i=1

The equality sign corresponds to thermodynamic equilibrium. Now, according to
conventional irreversible thermodynamics, the dissipation may be written as a product sum
of fluxes and corresponding driving forces. Taking ¢; as the fluxes, the forces (X;) close to
equilibrium become:

X;=—RTAc/c; (i=1,n) 6)

Close to equilibrium there will also be proportionality between fluxes and driving forces:

-EE: it Xj (i=1,n) ™

Insertion of eqn. (7) into eqn. (5) yields the following expression for the dissipation close
to equilibrium:

= (RT)ZE )y Ly Aidg o, ®)
i=1j=1 C, CI

If we differentiate the dissipation with respect to the deviation in the k'th concentration
we obtain:

A Ac;
KK <k 2 (Lt Ly)— c )
Ck ik Ci

2
od,/3Ac, 2(1_(7’) L
Ck

By comparison between eqn. (7) with i=k and eqn. (9) we observe that if and only if

we have that:

2RT (k=1, n) (11)

Eqn. (11) may be written in a more symmetric form introducing the following variables:

A (=1, 12)
=
= VeJ2RT ")
Then we have:
X=—0®,/3x; (k=1, n) (13)

Eqn. (13) shows that the dissipation (®;) is a true kinetic potential in the sense of the
word used in catastrophe theory. This will only be the case close to equilibrium, however,
when ORR are valid. The physical content of ORR is, that all reactions are in detailed
balance at equilibrium, which is easily seen by considering specific, kinetic examples. (For
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example the triangular reaction considered by Onsager).

In any stationary state we have x,=0 for all k and eqn. (13) shows, that the dissipation
has a stationary value with respect to variation in the variables x, in such a state. The further
properties of the dissipation in the neighborhood of the stationary state are then given by the
Hessian matrix taken at the stationary point (minimum, maximum or saddle). However,
since the Hessian matrix around thermodynamic equilibrium (L/(c)) is positive definite by
the second law of thermodynamics, any local Hessian at a nearby stationary state will be the
same. Therefore, ®; and A®,=d;—®f will have strict minima in the stationary state, and
the latter (the ‘“‘excess dissipation’’) has a minimum value equal to zero. The time derivative
of the excess dissipation is given by:

n n
AD/3t=3D,/3t= Y, %;- (3D,/ox)=— X (%)*<0 (14)
i=1 i=1

It is seen, that the existence of the kinetic potential secures that the time derivative is
negative (or zero in the stationary point). In summary, the excess dissipation fulfils the
requirement of Lyapounov’s theorem, so that the asymptotic stability of near-to-equilibrium
stationary states is warranted.

Further from equilibrium, when the dissipation cannot be written in the form of eqn. (8),
it also ceases to be a kinetic potential for the reaction system. Therefore, the dissipation is
no longer stationary in stationary states. (Notice the difference between the mathematical
term ‘“‘stationary” and the physical term ‘‘stationary state”. A stationary state is a
time-invariant state, whereas a function is ‘“stationary” in minima, maxima or saddle
points). Therefore, stationary states are no longer characterized by having minimal
dissipation. Furthermore, the time derivative of the dissipation is not necessarily negative as
in eqn. (14), since there is not necessarily any kinetic potential. At least the kinetic potential
is not the dissipation. In special cases, however, there might be another kinetic potential,
and by the same arguments as used in eqn. (14) we observe that the time derivative of any
such kinetic potential always have to be <0. Stability questions may then be answered by
looking at the Hessian taken in the stationary state of the kinetic potential itself.
Unfortunately, such situations are rare.

The time derivative of the dissipation may be divided into one part, which is due to the
time variation of the fluxes (J;=¢;) and another part, which is due to the time variation of the
forces (X;=—RTIn(c/c)):

3/01/31=X X;-¢=—RTL In(c/c) - & 15)
.3 (D
3x®/3t=2, é;- X;=—RTEL~2—<0 (16)
i i Ci
3D,/3t=0,D,/3t+3xD,/ot (17)

It is seen that 3,®,/0t is always negative except at the stationary state. This result is
general and was proved as a “universal evolution criterion” in irreversible thermodynamics
by Glansdorff and Prigogine ’*?*?!. Only the usual thermodynamic stability criteria
(together with the assumption of local equilibrium) are used in the proof.

Near to thermodynamic equilibrium, each of the two contributions to the dissipation can
be shown to be one half of the total dissipation. In that case, eqn. (16) may be used as a
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Lyapounov stability criterion. Far from equilibrium, however, dx®, cannot normally be
written as an exact differential d® of a function of the concentrations only. This would
require that:

d e,.) 3 (e‘ ) .
— =)= i+
aCj (Ci Sci C]‘ (a ! j) (18)

Eqn. (18) imposes a severe restriction on the form of the rate laws. It can be shown,
however, that an integrating denominator &(c,,c,'*-c,) exists, if dy ®,=0 has a solution. The
latter will always be true in the case of two variables.?? Then, we have:

d, 0,
0

do= (19)

In eqn. (19), d® is now an exact differential. Since ® may be taken as ®, and 6 as 1/2
close to equilibrium, there will also be a certain nonlinear region in which @ is positive and
3®/at=< 0. In such cases, the excess function AD=0—d,, might be proposed as a candidate
for a Lyapounov test function. However, as we have seen we must also require, that A® has
a strict minimum in the stationary state in order to have absolute stability.

3. THE PRIGOGINE-GLANSDORFF STABILITY CRITERION

Another Lyapounov test function has been considered by Glansdorff, Prigogine and
Nicolis.!? The function chosen was the second variation of the entropy. In our case,
however, it is more convenient to take the second variation of Gibbs’ free energy, which is
the appropriate exergy function at constant temperature and pressure. Let g be the free
energy density (J/m®). By a Taylor expansion of g around a stationary state we obtain:

g=gu+g+(12)5g (20)

We cannot use dg as a Lyapounov test function away from thermodynamic equilibrium,
since it changes sign with the direction of the fluctuation from the stationary state. However,
it can be shown that &g is always positive, because of the stability conditions for local
equilibrium. Thus, in the simple case of ideally dilute species (corresponding to reaction
kinetics with constant rate constants) we have:

Fg=2y —=— ai g dc;0c; ZZ( a‘:’ )s,& oc; (21a)
ij ;0 J
Fg= RTZZ( ag;c,. )s, - &i&,=RTZ%‘;)—Z >0 (21b)
ij i i i

Eqn. (21a) is generally valid, and we have used the fact that 6g=2 I; 6c; at constant T

and p. Eqn. (21b) is valid for ideally dilute species, in which case the Hessian matrix is
diagonal. Since &% has a strict minimum in the stationary state, it may be used as a
Lyapounov test function. We then have to distinguish between the following cases:
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36"
—a_f_so (=only for all 5¢;=0) (22a)
a8
a_tg <0 (=also for some &c; #0) (22b)
_agzt_gzo (=only for all 8c;=0) (22¢)

In the first case, the stationary state is asymptotically stable. This means that all
deviations from the stationary state vanish asymptotically with time. The case (22b)
corresponds to Lyapounov’s theorem of stability (Ref. 16, theorem 4.1). Stability means,
that any solution starting inside a sphere around the origin (all 6c;=0) will remain inside
another sphere (maybe with a larger radius) at all subsequent times. The case (22¢) is a
special case of Chetayev’s instability theorem (Ref. 16, theorem 4.3) which is a kind of
anti-Lyapounov theorem securing instability. Finally, we also have the indeterminate case:

35g >

32 (22d)

In the case (22 d), the time derivative of &°g is a quadratic form, which is neither convex
nor concave, i.e. a saddle. In that case, the stationary point may be stable or unstable.
For ideally dilute species we obtain by differentiation of eqn. (21b) with respect to time:

o¢; 6¢;
852g18t=2RT'Z——cs-‘—- (23)

When we linearize all the kinetic rate equations around the stationary state we obtain

where A; is a kinetic matrix. Inserting eqn. (24) into eqn. (23) we obtain:
38%g/ot=2R TZZ—A;;'} 8c;bc; (25)
ijG

Thus, we only have to investigate the quadratic form with the following matrix:

A

In the further investigation it is an advantage to transform the matrix of the quadratic
form into a symmetric matrix:

B;=}B;+B;} (27)

If the B*-matrix is negative definite (22a), then the stationary is surely asymptotically
stable. If it is negative semi-definite (22b), then the stationary state is stable in the sense of
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Lyapounov. However, there might appear a stable limit cycle surrounding the stationary
point (or even a strange attractor). Thus, stability in the Lyapounov sense is not equivalent
with the stability concept as used by the Brussels school, since the latter refers to the
outbreak of a limit cycle as an instability.

When the B*-matrix is positive definite (22c), the stationary state is surely unstable, and
we can neither have a stable point attractor, a limit cycle nor a stable torus attractor or a
stable strange attractor (chaos), at least not in the linearized neighbourhood of the
stationary state. In the indefinite case (22d) we cannot safely induce anything about the
stability.

4. A SPECIFIC EXAMPLE: THE BRUSSELATOR

In the subsequent sections we shall give some examples concerning the use of the
function

@, =5 (28)

as a Lyapounov test function in chemical reaction systems. The simplest model chemical
system known to be able to produce limit cycle behaviour is the socalled “Brusselator”
invented by Prigogine and Lefever in 1968.2 Here we shall consider a slightly generalized
version of this model (with reversible chemical reactions):

ky
A=—=X
k_y

B+X —= Y+D
(29

The species A,B,D and E appear in “large” concentrations which may be considered as
constant parameters in the model. Only the species X and Y need to be followed with regard
to concentration vs. time. In dimensionless variables the differential equations for those
concentrations read as follows:

dx - . . %

— =A—(B+1)x+Dy+xy—— 302
G =A=(B+ 1) Dy+xy—— (302)
dy . . %

= =Bx-D-y-x}y+— 30b
ar ~Br-Dey=xyta e (30b)
t=(kyt+k_y) -t (dimensionless time) (31)
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k
x= k4+3k_1 -[X] (dimensionless conc.) 32)
= ks Y] dimensionl ) 33)
y= Ktk [ (dimensionless conc. (33)

- k: ki[Al+k4[E

A=/ k4+3k_] . il k3+k::[ ] (dimensionless conc.) 34
B= k4f_2k_1 -[B] (dimensionless conc.) (35)
p=—1t=2 -[D} (dimensionless conc.) (36)

katk,y
Ki=ksylk_3 (equilibrium constant) 37

The stationary point is easily determined by taking zero time derivatives in eqns. (30a)
and (30b):
B A

=+

A K

(sts Yor)= A,m (38)

Linearizing the kinetic equations around the stationary point by taking the Jacobian
matrix around that point we obtain the following kinetic matrix:

BQRa-1)-p(3-2e)-1 A%a

A=| _BQa-1)+p(3-20) -A%a (39)
12
as—A;“ﬁ(M a<1) (40)
12
b= (620) (a1)

For the original Brusselator (with all reactions completely irreversible) we have a=1 and
B=0. The eigenvalues of the kinetic matrix are found as roots in the second order equation:

22—[(2a-1)-B—1-(A%a)- p(3—2a)]A+(A%a)=0 42)

The marginal states of stability (according to linear stability theory) are found for the real
parts of one of the roots equal to zero. It is easy to see that no physically meaningful solution
exists to eqn. (42) with Re(A)=Im(1)=0. Thus, there are no stationary, marginal states. To
find the oscillatory, marginal states we put A=iw in eqn. (42) and obtain:
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A

o= Va 43)
1+ 2 L p3-20)

Bu(kinetic)=——— (44)

2a-1

The angular frequency given by eqn. (43) is the frequency at the outbreak of the limit
cycle (when B passes B.,) according to the Hopf bifurcation theorem. According to linear
stability theory, the stationary state is asymptotically stable, when the following condition is
met:

1 . A?
Re(A)=Re(d)=—+|2a=1)- B~1~ “—~p(3~20)| <0

The condition may be reformulated as:

_ | <Bofkinetic), 0.5<a<1 (45a)
B i (Asymptotic stability)
> B (kinetic), 0<a<0.5 (45b)

In the case (45b), B.,(kinetic) <0 and since B is always positive, the inequality (45b) will
always be satisfied. Thus, the stationary state is a/lways asymptotically stable for 0<a<0.5.

Now, let us turn to the Glansdorff-Prigogine criterion. The matrix of the quadratic form
of o®,/37 close to a stationary state is given by eqns. (26), (27) and (39):

. B(2a-1)-p(3-20)-1

" A (46a)
Sl SO

Bp= 7 Bep o

B},=Bj =2 [1+ B3-20)-B-(20-1) -

2a | B+B

According to Ref. 22 section 10.16 it is possible to show, that a quadratic form is surely
negative definite, if the matrix of the quadratic form is made symmetric and if all the
principal minors of the matrix are negative as well as the full determinant of the matrix. In
the present case (2X2 matrix) we have the following conditions:

Ay=B,;<0 (47a)
. diagonal conditions

By, <0 (47b)

A,=By; - By—(B3)?<0 cross condition (47¢)

The inequality (47b) is always fulfilled, but the diagonal condition (47a) may be violated.
The physical reason is that species X participates in the autocatalytic reaction No. 3 in the
scheme (29).
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We obtain:

<LB20+1 g (diagonal), 0.5<e<1 (48a)
B 2a—-1

> B (diagonal) <0 0<a<0.5 (48b)

The case (48b) always leads to fulfilment, so that the only violation of the inequality
(47a) possible is one for which B> B, >0 and 0.5<a=< 1. In that case we have:

22
B> B_,(diagonal)=B,,(kinetic)— A ﬁ < B,,(kinetic) (49)
a 2a-

(instability thermodynamically possible, 0.5<a<1)

The instability is not thermodynamically sure before also the inequality (47c) is violated.
The stationary state may be unstable, when the inequality (49) is fulfilled. We know,
however, that the stationary state will not be unstable before B> B,,(kinetic). Thus, there is
a zone between B,,(diagonal) and B,,(kinetic), where the Glansdorff-Prigogine criterion is
indeterminate.

It can be shown (Ref. 22, section 10.16) that it is possible to perform a variable
transformation

(5)-<[&) o

transforming the quadratic form considered to a diagonal form (congruent transformation):
Ay G+(Ar/A) - & &)
Therefore, we now consider the condition (47c). Introducing the variable
b=B+p (2)

instead of B in the matrix elements By, the inequality (47c) may be written as:
b \? 1+2ap
—_ A== —L p— 2<( 53
(A ) 2 o (o) 3)

Therefore, we have:

bl=71g[1+2aﬁ— V 1+4ap ] (54
bz=$[1 +2ap+Vi+4ap ] (55)
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A;<0 for B+B<b, or B+p>b, (56)
Az?O for b]SB'}'ﬂsbz (57)

In other words, A, is zero when B=B%, or B, and A, is greater than zero between
those critical values:

A,=0for BY, ,<B<B2, (58)

P | 1-a

By =—5[1-V1+4ap |+ B (59
242 a

B:{2=B:{,,+% V1+dap (60)

Expanding the square root to the third power in af we obtain for small values of ap:
By =-p+f-2-p-a (af<1) (61)

It is seen that BX,(a=0) is negative for 0<B<1 and positive for > 1, whereas
B2 \(a=1) is always negative for §>0. For =0, B, is equal to zero for all values of a.

The nature of the quadratic form 36%g/3t is now by the expression for its diagonal form
(51) determined by the changes of sign of the determinants A, and A,. On Figs. 2,3 and 4 we
have shown the various stability limits as a function of a for =0, 1 and 2. Only in the case
where A, is negative and A, is positive will the quadratic form be negative definite, and the
stability of the stationary state is guaranteed by the theorem of asymptotic stability of
Lyapounov. In the other areas of the diagrams, the Prigogine-Glansdorff criterion is
indeterminate with one “dangerous direction” and one “stable direction”. However, the
system needs not to follow along the dangerous direction. This depends on the solutions to
the differential equations. Therefore, nothing can be said about the stability or instability of
the system in those areas. If both A; and A, were found to be positive, instability would be
predicted safely (at least locally) by means of Chetayev’s instability theorem. No such areas
are found for the generalized Brusselator, however.

The diagonal condition of stability A; <0 leads to B< B = B,,(diagonal) given by the
inequality (48a). This condition corresponds to the linear stability condition as A tends
towards zero. Thus, the diagonal condition misses the influence of the A parameter on the
stability of the system. In short, the Prigogine-Glansdorff criterion of stability yields a rather
conservative (cautious) estimate of the stability region. It predicts possibility of instability in
cases where no instability exists. Fig. 4 shows that there may even appear regions deeply
inside the region of guaranteed asymptotic stability, wherein the P.G. criterion become
indeterminate (lower left corner).

5. ANOTHER EXAMPLE: THE OREGONATOR

We shall briefly investigate still another example, namely the socalled Oregonator proposed
by Field and Noyes (from Oregon) in order to model some of the features of the oscillating
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Belousov-Zhabotinskii reaction.?* The model has three variable concentrations. Using the
quasi-stationarity assumption for one of the variable concentrations (HBrO,), the model is
in effect reduced to the case of a Thomian “cusp catastrophe” with the concentration of
Ce** and a model parameter (g) as control variables and the Br~ concentration as “jump
variable”. Thus, the quasi-stationarity condition provides a cusp surface on which the phase
point of the system slides and jumps, because of the slow variation of the Ce** concentration
governed by two dimensional differential equations in the Br™ and the Ce** concentrations.
For further details about this approximation, the reader is referred to the treatments by
Tyson? or by Serensen.?® In the present study we shall stay with the three dimensional
Oregonator, however, in order to provide an example with one dimension more than
possessed by the Brusselator.

The Oregonator contains a ‘““stoichiometric factor” £, for which a plausible experimental
value seems to be 0.5 (when defined as in Ref. 26). We therefore fix the value of f to this
value. The model is then described by the following three differential equations:

dx/dr=—i—- (x+y—xy—gx?) (62a)

dy/d1'=i <Z~y—Xy (62b)
q

dzlde=" -x—-l— -z (62¢)
p p

The variables x,y and z are dimensionless concentrations of HBrO,, Br- and Ce**,
respectively. the dimensionless time is given by 7, and p, g and ¢ are model parameters
determined by the rate constants and the concentration of BrO3.

The stationary solutions to eqns. (62a-c) are readily found to be given by:

Xs
(Xs6 Yso zst)'__(xsn_‘_— » q 'xst) (63a)
1+x

xs,=% { \/ %+1 —1} (63b)

The Jacobian matrix in the stationary point may be written as:

~1 ( 1 ) Xt -
— - 2gx; - 0
£ 1+x,, P £
. —1- 1
A= 1+x, N q (64)
4 0 L
Re p
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The characteristic equation is given by:

B+Cy - 224+ CA+C,=0 (65)
111 Xgr ]
=] —(1+x,)-A 66
0 » [8 1+x,, (A+xg) - Apy (66a)
1+4x x2 1 ’
Ci= o 5t —(1+ s+—-)~A 66b
1 P o(1+x,) Xst P 1 (66b)
1
C2=(1+Xs,+";’)—A11 (66C)

In eqns. (66a—c), A, is element 11 of the Jacobian matrix (64). The conditions for
having (linear) stability with all real parts of the A-roots negative can now be found from the
Hurwitz criterion. For a characteristic equation of third degree, the criterion amounts to the
following three inequalities (see for example Ref. 27, chapter 9, section 4):

Condition I:  C,>0 (67a)
Condition II: C,C;—C,>0 (67b)
Condition III: C, - (C,C;—C,)>0 (67¢c)

Table 1 shows the dependence of x,, A;1, Co, C1, C; and C,C;—C, on the parameter ¢,
fixing the other parameters in the Oregonator to the following values:

£=2-10" p=310 (68)

The above values seem plausible from known values of the individual rate constants, but
the value g=8.4 - 107% in the original Oregonator was pure guesswork, and comparison with
experimental oscillations seems to indicate, that g should be many orders of magnitude
higher (see Refs. 25 and 26).

Table 1 shows that C, and C, are always positive, so condition I is never violated.
Conditions II and III are violated simultaneously at q.,=0.10999125. (The sensitivity in the
determination of the root g, is great. At the mentioned value of q.,, C,C,—C, is found to be
+0.3711. At ¢=0.10999122 one finds C,C;—C, to be —8.279). The result of the linear
stability analysis for the parameter choice (68) is therefore given by:

Li { stability ¢>q.,=0.10999125 69)

instability g <gq.,

Turning now to the Prigogine-Glansdorff criterion, we may form the B-matrix by the rule
given by eqn. (26). After symmetrisation we have:
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Table 2. Values of A, and A, as a function of q for the Oregonator with f=0.5, £=2- 10 and

p=310.

q A; A3
8.4 10°¢ —4969 +10.132
10 —4966 +11.043
107 —4893 +33.98
1073 —4653 +98.17
1072 -3821 +219.7
7.625- 10r§ -1076.3 +1.305- 10-;
7.626- 10~ -1076.3 —4.667 10"
0.1 -312.5 —-150.00
0.11010 -2.839-1072 -217.8
0.11011 +2.780- 10! -217.8
1.0 +25000 —7500

. L * 1
Bii=Awxe  Bp=—(1+x,)%x,  Bju=-— (70a)
Paxs
* 1 1 »
Bp=——- (1 +“‘)=le (70b)
2 £
- ]. *
Bjz=——— =By (70c)
2:p-xy
B;3=_li£u__ =B;, (70d)
2:q-xq
The principal minors are given by:
Ay=Bj;=A,/x, <0 for all values of g (Table 1) (71)
- . » 1 + 2 1
Ay=B11Bp—(By)*=—Ay- (—'&') - (72)
Xt €
2 -1
pq(_x_,,___) . A3=L4_11_ +1 _xi_z (73)
1+x Xst € (I+xy)

Table 3. Stable and indeterminate regions for the Oregonator with f=0.5, ¢=2-10™ and
p=310 from the Prigogine-Glansdorff criterion.

q <0.07625 <q <0.11010 <q
A neg. neg. neg.
A, neg. neg. 0 pos.
Ay pos. 0 neg. neg.
Ay/A; pos. pos. 0 neg.
A/A, neg. 0 pos. +o neg.
P.G. crit. indeterminate stability secured
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By a congruent transformation, the quadratic form may be transformed to the following
form:

A1 E+(Ad/A) - G+(Ay/Dy) - (74

For the parameter choice (68), A, and A; are shown as functions of ¢ in Table 2. Two
critical g-values are found, where A, respectively A; change sign. Those values are:

42=0.11010 ¢9=0.07625 (75)

Table 3 shows the changes of sign of the principal minors and of the coefficients in the
diagonalised quadratic form (74). It appears that we have:

q>4¢?=0.11010 Stability secured by P.G. criterion
(76)
7<¢¥=0.11010 P.G. criterion indeterminate

log, (8)

GENERAL BRUSSELATOR

P.G. criterion
Indeterminate

2.5

2.0

/

LINEAR INSTABILITY
PG.criterion indeterminate)

1-5 A1>° A2< o

P irreversible
1.0 Dru:ul-tor
y
2kingRa
B, "(A 2)
0S5}
.k{mun
kin
gy B
[A,<0 4,>0
3 1 2 i“fo 5::" (l=0.5)
er, X ki
or E:r 'ﬁc’"(lgo)
o 0.5 1ec

Fig. 2. Critical values of B for the general Brusselator for f=0. BX" is determined by linear
stability analysis for various values of A. B is determined by Prigogine-Glansdorff’s
criterion (diagonal fluctuations in the x-concentration). B%), are similarly determined from
the P.G. criterion allowing for cross fluctuations (simultaneous fluctuations in x and y). The
abscissa parameter () is the parameter defined by eqn. (40).
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'oqw(i)

GENERAL BRUSSELATOR

2G.criterion
indeterminate

/

LINEAR INSTABILITY
P.G. criterion indeterminate

A,>0 4,<0

Bl (K=2)

0.5 Bin(R=1)
ghin (R=0.5)
BE B X" (X=0), as0|

STABILITY
SECURED

r

[
R Afo A2>0 EXV <0

0
I R | P W S |

) 0.5 105

Fig. 3. Critical values of B for the general Brusselator for f=1. See text below Fig. 2.

When ¢ is less than 0.10999125, the Oregonator is linearly unstable. In this specific case,
the P.G. criterion of stability is only slightly more “conservative” than the linear stability
criterion. This should be contrasted to the situation found for the general Brusselator. (The
difference between q.,(linear) and ¢{? seems to be real and not just due to numeric error.
Also there seems not to be any theoretical reason for the identity of the two critical values).

6. CONCLUSION

The Prigogine-Glansdorff criterion yields a sufficient condition for stability. However, the
stability limits may be rather conservative in comparison with the linear stability criterion
(Figs. 2,3 and 4). The P.G. criterion may be indeterminate in linearly unstable situations
(Figs. 2,3,4 and section 5.). The P.G. criterion may also be indeterminate in stable situations,
not only near the linear stability boundary (Figs. 2,3 and 4) but also in regions deeply buried
inside the linearly stable region (Fig. 4). Since the criterion of Glansdorff and Prigogine is
more complicated to use than linear stability analysis in two-, three- and higher dimensional
systems, and since linearisation is involved anyway, there seems to be no real advance in
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GENERAL
BRUSSELATOR

PRG.citerion
Indeterminate

LINEAR INSTABILITY
PG.criterion indeterminate

A,>0 4, <0

LINEAR
STABILITY

KINR:1)

*°r BN (Ri0), 4,0
STABILITY SECURED
4,<0 A,>0 A z0
o 20,203
RG. /]
cﬂ:oﬂon ~xy
minete B <0
-0.5 M
1] 0.5 1.0<

Fig. 4. Critical values of B for the general Brusselator for f=2. See text below Fig. 2.

using their thermokinetic criterion instead of linear stability analysis. Those remarks should
apply a fortiori for more complex systems (e.g. thermo-hydrodynamical systems, interfacial
systems, crystallisation), where the Prigogine-Glansdorff criterion (in some generalized
form) has been applied during the course of time.

In a recent paper,?® Rastogi and Shabb have recommended the use of the Prigogine-
Glansdorff criterion for the investigation of the stability of nonequilibrium, homogeneous
stationary states in chemical reaction systems. However, the examples investigated by
Rastogi and Shabd are rather trivial, since they may be grouped in two classes: Either, there
is only one reaction kinetic degree of freedom (auto-inhibited reaction, autocatalytic
reaction), or only the “diagonal conditions” of the P.G. criterion are investigated
(monomolecular triangular reaction, Lotka-Volterra model). This is far from sufficient in
systems with more than one dimension. For example, Fig. 2,3 and 4 clearly shows, that the
P.G. stability boundary for the Brusselator depends on whether one assumes §Y=0 or one
considers general variations (6X, 8Y). Also, section 5 shows, that the Oregonator is not
unstable at all, if one considers diagonal fluctuations only. In an earlier paper, Keizer and
Fox? have expressed a similar criticism against the P.G. criterion. The arguments of these
authors are somewhat unclear to me, however. Firstly, they show some region, where the
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simple, reversible and autocatalytic reaction X + Y =2X should have a possibility for being
unstable according to the P.G. criterion, but is not in the sense of Laypounov. However, the
P.G. criterion is seemingly applied on a closed and instationary system, which is against the
intention of the P.G. principle. (In the present context it is obvious, that linear stability and
P.G. stability are completely coincident when there is only one element in the kinetic
A-matrix and one element in the B-matrix of the P.G. principle). Secondly, Keizer and Fox
analyze the Brusselator, but consider only fluctuations in X and not simultaneous
fluctuations in X and Y as done in the present paper. In summary, it is quite safe to
conclude, that thermokinetic criteria of stability and instability for nonequilibrium
stationary states analogous to the exergy method of Gibbs (Fig. 1) have still not been
successfully developed.
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