Stability of AlCl₃NH₃ in Chloroaluminate Melts

T. FOOSNÆS,* B. KNAPSTAD and T. ØSTVOLD

Institutt for Uorganisk Kjemi, Norges Tekniske Høgskole, Universitetet i Trondheim, N-7034 Trondheim-NTH, Norway

The decomposition of AlCl₃NH₃ into AlCl₃ and NH₃ has been investigated in basic MCl-AlCl₃-AlCl₃NH₃ mixtures (M=Na,K) in the temperature range 500-600 °C. The results indicate that AlCl₃NH₃ is relatively stable in NaCl-AlCl₃ melts. Due to a substantially lower activity of AlCl₃ in KCl-AlCl₃ melts, up to 70 % AlCl₃NH₃ may be decomposed in these mixtures. The degree of decomposition increased with increasing temperature. Formation of AlN(s) was detected in all experiments, in increasing amounts with increasing temperature.

1. INTRODUCTION

In an extraction process for direct dehydration of AlCl₃·6H₂O the last intermediate compound is assumed to be AlCl₃NH₃. Hence, the decomposition of the ammine into AlCl₃ and NH₃ is a prerequisite for a successful dehydration process. Possible equilibria involving AlCl₃NH₃ are given with equilibrium constants in Table 1.

Raman spectroscopic studies of molten $AlCl_3NH_3$ have confirmed that the ammine exists mainly as $AlCl_3NH_3$.² Weak dissociation into $AlCl_4^-$ and $AlCl_2(NH)_2^+$ was found. The equilibrium constant for the reaction

$$2AlCl3NH3 = AlCl4 + AlCl2(NH3)2+$$
(7)

was found to be $3 \cdot 10^{-3}$ (Ref. 2).

In acidic chloroaluminate melts $(X_{AlCl}/X_{MCl}>1)$ the association reaction

$$AlCl_3NH_3 + 1/2Al_2Cl_6 = Al_2Cl_6NH_3$$
(8)

is also observed.^{2,3} The equilibrium constant for reaction (8) is ≈ 1 at ≈ 600 K.

A straight forward thermal decomposition of AlCl₃NH₃ into AlCl₃ and NH₃ is not feasible, as the reaction

$$AlCl3NH3(1) = AlN(s) + 3HCl(g)$$
(9)

is energetically more favorable 4,5 than the desired decomposition reaction 6

$$AlCl_3NH_3(1) = AlCl_3(1) + NH_3(g)$$
 (10)

^{*} Present address: Årdal og Sunndal Verk a.s., N-5875 Årdalstangen, Norway.

The equilibrium constant of eqn. (10) is expressed by

$$K_{10} = \frac{a_{AlCl_3(l)} \cdot P_{NH_3}}{a_{AlCl_3NH_3(l)}}$$
(11)

which shows that a reduction of the AlCl₃ activity will favor the decomposition of the ammine, as it causes the partial pressure of NH₃(g) to increase. Hence, a melt which dissolves AlCl₃NH₃ and effectively reduces the activity of AlCl₃ might be used.

The Alcoa process for production of aluminium is based on electrolysis of a mixture of alkali-, earth alkali-, and aluminium chloride, where the aluminium chloride is produced by chlorination of alumina. The activity of AlCl₃ in chloroaluminate melts varies over a wide range depending on composition, thus rendering these mixtures interesting candidates as media for solution and decomposition of AlCl₃NH₃. The production of AlCl₃ by decomposition of AlCl₃NH₃ also suggests utilization of other mineral sources than bauxite for aluminium production.

2. EXPERIMENTAL

2.1. Chemicals. The chemicals used were AlCl₃ (99.992 %, Fluka, AG, Buchs, FRG), KCl (p.a., J.T. Baker Chemicals, Deventer, Holland), LiCl, NaCl (p.a., E. Merck, AG, Darmstadt, FRG), NH₄Cl (p.a., J.T. Baker Chemicals, Deventer, Holland) and NiCl₂· 6H₂O (99.99 % E. Merck, AG, Darmstadt, FRG).

Aluminium chloride was purified by three times distillation in closed, evacuated silica tubes at 200 °C.

Aluminium chloride monoammine was prepared by reacting AlCl₃ and NH₄Cl in closed, evacuated silica cells at 320 °C. The reaction product, AlCl₄NH₄, was transferred to a distillation cell equipped with a tube for collection of AlCl₃NH₃ and a liquid nitrogen cold trap for condensation of HCl. At 300 °C, AlCl₄NH₄ decomposes according to the reaction ⁸

$$AlCl4NH4(s) = AlCl3NH3(g) + HCl(g)$$
(12)

Aluminium chloride monoammine was distilled three times by this procedure to ensure complete decomposition of AlCl₄NH₄.

Potassium chloride, NaCl and LiCl were purified by three times recrystallization from the melt. Only clear crystals were used for preparation of salt mixtures.

Prior to use, NH₄Cl was purified by three times sublimation in closed evacuated quartz tubes at 310 °C.

Anhydrous NiCl₂ was prepared by dehydrating NiCl₂ \cdot 6H₂O in a stream of dry HCl, at temperature gradually increasing from 100-450 °C over three days.

The cells were thoroughly cleaned before use, and residual carbon impurities were burned away with a torch and removed with a stream of oxygen in the cell. All handling of

Table 1.	AlCl ₃ NH ₃ -6	eguilibria	and eo	uilibrium	constants.

(i) Equilibrium	$log K_i(T)$	Ref.
(1) $AlCl_3NH_3(1) = AlCl_3NH_3(g)$	5.45-3760(T/K) ⁻¹	8
(2) $AICl_3NH_3(1) = AIN(s) + 3HCl(g)$	$17.25 - 14320(T/K)^{-1}$	4,5
(3) $AlCl_3NH_3(g) = AlN(s) + 3HCl(g)$	$11.8 - 10560(T/K)^{-1}$	
(4) $AlCl_3NH_3(1) = AlCl_3(g) + NH_3(g)$	13.36-12490(T/K) ⁻¹	6
(5) AlCl3NH3(g) = AlCl3(g) + NH3(g)	$7.91 - 8730(T/K)^{-1}$	
(5) $AlCl_3NH_3(g) = AlCl_3(g) + NH_3(g)$ (6) $AlCl_3(g) + NH_3(g) = AlN(s) + 3HCl(g)$	$3.89 - 1830(T/K)^{-1}$	

the salts was done in a glove box with a H₂O content (volume) less than 5 ppm. Between experiments, the salts were stored in closed, evacuated quartz ampules in the glove box. 2.2. Experimental procedure. The decomposition of AlCl₃NH₃ to AlCl₃ and NH₃ was

performed in closed, evacuated quartz cells. A quartz frit separated the two compartments of the cell; one of these contained AlCl₃NH₃ dissolved in a chloroaluminate melt, the other contained NiCl₂ which absorbed the evolved NH₃(g). 9-13 In all experiments, the total amount of alkali chloride, AlCl₃ and AlCl₃NH₃ was approximately 20 g. An excess amount of NiCl₂ (1-2g) relative to the amount of AlCl₃NH₃ was always used.

The furnace was a kanthal wound quartz tube with two heating zones. The current through the zone where the NiCl₂ part of the cell was situated during the experiments was limited by a resistor in parallel. The temperature in this part of the furnace was varied in the range 250-330 °C, and the temperature in the part of the furnace which contained the chloroaluminate melt was between 500 °C and 600 °C. The temperature in each zone was

monitored by thermocouples.

The charged cell was placed in the furnace and heated to the experimental temperature over 6 h. The cell was held at this temperature in periods ranging from 1.5 to 16 h. During melting, the furnace was moved up and down by a motor to ensure complete mixing of the salts. The experiments were terminated by cooling the cell containing the melt in a stream of cold air, while the NiCl2 compartment was cooled in the furnace to 100 °C before the cell was removed. This was done in order to prevent condensation of the AlCl₃ containing gas components in the nickel chloride compartment.

The chloroaluminate mixture and the NiCl₂ were dissolved in distilled water, and the content of NH₃ in each solution was determined by the Kjeldahl method. For some of the experiments the amount of Al³⁺, K⁺, Na⁺ were determined by atomic absorption, and Cl⁻ by precipitation with AgNO₃. The analyses were carried out by the Division of Analytical Chemistry at SINTEF, Trondheim, Norway.

Vapour pressures above NaCl-AlCl₃-AlCl₃NH₃ melts were determined as described by Linga et al.

3. RESULTS

3.1. Solubility of AlCl₃NH₃ in molten salts. Aluminium chloride monoammine has very low solubility in molten alkali chloride melts. The solubility of AlCl₃NH₃ in molten LiCl/KCl (58.1/41.9 mol %) is less than 1 weight %. The solubility increases by adding 5 mol % AlCl₃ to the LiCl/KCl mixture.

Considerable solubility of AlCl₃NH₃ was observed in acidic chloro-aluminate melts.³ Table 2 shows some qualitative results for basic KCl-AlCl₃ mixtures.

3.2. Partial pressures of AlCl₃NH₃ above basic chloroaluminate melts containing AlCl₃NH₃. Some experiments were carried out to obtain approximate activities of AlCl₃NH₃ in basic chloroaluminate melts containing AlCl₁NH₃. The total pressure above these melts is mainly due to the vapour species AlCl₂NH₃. This may be observed in Fig. 1. The total

Table 2.	Phase	relations	in	some	basic	chloroaluminate	melts	containing	AlCl ₃ NH ₃ .
----------	-------	-----------	----	------	-------	-----------------	-------	------------	-------------------------------------

Melt	Composition (mol %)	T (°C)	Number of phases
AlCl ₃ /KCl/AlCl ₃ NH ₃	43.5/46.5/10	400	1
AlCl ₃ /KCl/AlCl ₃ NH ₃	40.5/50/9.5	520	1
AlCl ₃ /KCl/AlCl ₃ NH ₃	36.6/54.9/8.5	575	1
AlCl ₃ /KCl/AlCl ₃ NH ₃	32.5/60/7.5	650^{a}	$2(\text{melt}+\text{KCl}(s))^b$

^a The cell exploded at this temperature due to the pressure of AlCl₃(g)+Al₂Cl₆(g)+NH₃(g). ^b A white precipitate, which is assumed to be KCl(s), was observed before the cell exploded.

pressure over the NaCl-AlCl₃-AlCl₃NH₃ (45-45-10(mol %)) melt is around two orders of magnitude higher than the pressures above the NaAlCl₄ melt as shown by Linga *et al.*¹⁴ and by Dewing (49.5 mol % AlCl₃).¹⁵

- 3.3. Decomposition of AlCl₃NH₃. A limited number of initial experiments were performed in order to single out the most promising mixture for the decomposition of AlCl₃NH₃. Two methods were used:
 - 1. Decomposition of AlCl₃NH₃ dissolved in the melt.
 - 2. Decomposition of AlCl₃NH₃(g) by bubbling the gas through the melt.

The results of these experiments showed that $AlCl_3NH_3$ decomposes readily in a basic $KCl-AlCl_3-AlCl_3NH_3$ melt. Decomposition of $AlCl_3NH_3(g)$ by bubbling the gas through pure liquid alkali chlorides or basic chloroaluminate melts (bubble diameters ≈ 0.5 mm) did not work properly, presumably due to a too small melt/gas contact surface.

The final decomposition experiments were carried out by dissolving AlCl₃NH₃ in KCl-AlCl₃ melts, as described in Section 2.2. The results from these experiments are presented in Table 3. Detail observations are given below.

Evolution of NH₃ was observed in each experiment by the changes in color of NiCl₂ which was kept at approximately 300 °C in each run. At the onset of an experiment, the color was light yellow; after an experiment it was brownish yellow. In experiments 6-10, part of the NiCl₂ was green after cooling, which indicates formation of NiCl₂ · 2NH₃.

A white deposit was formed on the hot/cold zone interface of the cell wall. The amount of the deposit increased with increasing duration of the experiment and temperature. The deposit was soluble in strong base, and chemical analysis of the basic solution showed excess Cl over Al and N. This may be due to absorbed KCl. X-ray analysis of the deposit (Debye-Scherrer) identified AlN, which contained some KCl. No traces of AlOCl or Al₂O₃ were found in the sample.

4. DISCUSSION

4.1. Experimental procedure. The experimental results are presented in Table 3, which shows that no AlCl₃NH₃ decomposes in acidic chloroaluminate melts. However, decomposition does occur in the basic melts, and to a larger extent in the potassium than in the sodium chloroaluminate mixtures. Samples of the NiCl₂ used in experiments 4 and 7 were analyzed for Al content, which averaged 0.08 weight %. The low content of Al indicates that condensation of AlCl₃NH₃ and AlCl₃ in the NiCl₂ compartment was prevented.

Aluminium trichloride reacts with NiCl₂(s) to give the gaseous complex NiAl₂Cl₈(g). $^{16-19}$ The amount of NiCl₂ which is complexed is small, as the partial pressure of NiAl₂Cl₈(g) under the experimental conditions is estimated to $\approx 10^{-6}$ atm.

As seen from Table 1, decomposition of AlCl₃NH₃ into AlN(s) and HCl(g) is more favorable thermodynamically than the direct decomposition into AlCl₃(g) and NH₃(g). Eqn. (3) has an equilibrium constant of 1 at 895 K, whereas the equilibrium constant of eqn. (5) is 1 at 1104 K.

The partial pressure of HCl(g) in equilibrium with AlCl₃NH₃ at 1 atm is given in Table 4 for different temperatures. This shows that the decomposition reaction should be carried out at a low temperature (300-400 °C) in order to limit the amount of AlN(s) formed. The

Table 3. Decomposition of AlCl₃NH₃ dissolved in chloroaluminate melts.

		,	•						
Exp. No.	NaCl (mol %)	KCI (mol %)	AICl ₃ (mol %)	AlCl ₃ NH ₃ (mol %)	Melt temper- ature (°C)	Duration of experiments (h)	Rel. rest conc. NH ₃ in melt 100n _{NH3} /n _{NH3} (mol %)	Rel. amount NH ₃ absorbed in NiCl ₂ 100n _{NH₃} (NiCl ₂)/n ^N _{NH₃} (mol %)	NH ₃ not account- ed for (mol %)
-		50	40	10	410		1	38	
· C		20	4	10	200		i	50	
1 (*		20	9	10	280		1	09	
) 4	53.5) I	42.9	3.6	290	4.0	68	6	7
٠ ٧	52.7	1	43.4	3.9	009	6.5	8	က	<u> </u>
, v	35.9	18.1	43.1	2.9	905	7.0	88	10	7
, _	ŀ	51.5	43.0	5.5	525	4.0	95	25	9
· oc	I	50.3	43.9	5.8	555	1.5	1	49	1
0	ı	52.2	45.3	2.5	570	3.0	45	3 2	
, 6	I	52.2	45.5	2.3	550	4.0	5 6	0/2	4 /
=	I	53.5	43.4	3.1	230	4.5	25	92	S
12	l	53.4	43.6	3.0	278	16.0	32	61	7
" Acidic	" Acidic melts $X_{MCl} < X_{AlCl_3}$.	$<$ X $_{AlCl_3}$.					≈100	0	

T (°C)	P _{HCl} (atm)
300	0.06
500	$0.06 \\ 0.24$
300 500 700	2.07

Table 4. Equilibrium partial pressures of HCl(g) in 1 atm AlCl₃NH₃(g).

liquidus temperature for basic chloroaluminate melts containing alkali chlorides demand experimental temperatures of 500-600 °C. Thus formation of AlN(s) will ocuur.

4.2. Activities of AlCl₃ in chloroaluminate melts. The activity of AlCl₃ is an important parameter for the decomposition of AlCl₃NH₃ in molten chloroaluminate mixtures. The vapor pressure of pure AlCl₃ is high at the temperature in question.²⁰ However, large negative deviations from ideality effectively reduce the total pressure of chloroaluminate mixture.¹⁴ It has been shown that MCl-AlCl₃ (M=Li, Na, K) mixtures with $X_{AlCl_3} < 0.5$ successfully can be described a anion mixtures of Cl⁻ and AlCl₄ with the common cation M⁺. When an asymmetrical regular solution model is used to describe the mixture, the activity coefficients of MCl(1) and MAlCl₄(2) can be expressed by ¹⁴

$$\ln \gamma_1 = \frac{\alpha \beta}{RT} \left[\frac{X_2}{X_1 + \beta X_2} \right]^2 \tag{12}$$

$$\ln \gamma_2 = \frac{\alpha}{RT} \left[\frac{X_1}{X_1 + \beta X_2} \right]^2 \tag{13}$$

where X_1 and X_2 are the mole fractions of MCl and MAlCl₄, respectively. In eqns. (12) and (13) α is an interaction parameter while β is related to the ratio of the molar volumes, and both parameters are assumed to be independent of temperature. The complex MAlCl₄ dissociates to some extent in the molten mixture, according to the reaction

$$MAlCl4(1) = AlCl3(1) + MCl(1)$$
(14)

which has to be considered when the activity of AlCl₃ in the chloroaluminate mixture is calculated.

Table 5. Activity and activity coefficient of AlCl₃NH₃ in basic NaCl-AlCl₃-AlCl₃NH₃ melts.

Mol % NaCl- AlCl ₃ -AlCl ₃ NH ₃	T (K)	$P_{ m tot}$ (Torr)	$P_{\mathrm{AlCl_3NH_3}}^{\mathrm{o}}$	$a_{ m AlCl_3NH_3}$	$\gamma_{\text{AlCl}_3\text{NH}_3}$
45-45-10	579.4	14.7	69.4	0.212	2.12
	608.2	26.8	140.8	0.190	1.90
	642.3	54.7	299.8	0.182	1.82
	693.4	142.6	809.6	0.176	1.76
	693.2	136.9	806.7	0.170	1.70
47-43-10	737.4	330.3	1705.4	0.194	1.94
	738.0	290.4	1721.7	0.169	1.69
	767.5	514.0	2702.7	0.190	1.90
	798.2	725.0	4170.8	0.174	1.74

Reaction (10) describes the decomposition of AlCl₃NH₃ into AlCl₃ and NH₃, with the equilibrium constant, K_{10} [eqn. (11)]. The numerical value of K_{10} is low for temperatures below 600 °C. In order to achieve a high degree of decomposition of AlCl₃NH₃ at relatively low temperatures, it is imperative that the activity of AlCl₃ is as low as possible. Activity data are not known for the MCl-AlCl₃-AlCl₃NH₃ mixtures. The amount of AlCl₃NH₃ is, however, small (<6 mol %) in all experiments. Hence, by setting $X_{AlCl_3NH_3}$ =0, the thermodynamic model developed for the binary alkali chloride – aluminium chloride may be employed to give a rough estimate of the AlCl₃-activities in the ternary melts.

In order to compare the activity of AlCl₃ in NaCl-AlCl₃ and KCl-AlCl₃ melts, a_{AlCl₃} is calculated as function of melt composition for the temperatures 450, 525 and 600 °C and the results are shown in Fig. 2. Extrapolation below the liquidus temperature is shown with dotted lines.

Fig. 2 demonstrates that the activity of AlCl₃ in the NaCl-AlCl₃ mixtures is roughly ten times higher than in the KCl-AlCl₃ systems. For both systems, the activity of AlCl₃ increases with increasing temperature.

4.3. Equilibrium pressure of NH₃ above MCl-AlCl₃-AlCl₃NH₃ melts. The activity of AlCl₃NH₃ in chloroaluminate melts is not known, but may be estimated from the vapor pressure data of pure AlCl₃NH₃(l),^{3,6} and the total vapor pressures above chloroaluminate-monoammine melts. In a rough estimation of this activity the contribution from gas species like AlCl₃, Al₂Cl₆ and MAlCl₄ to the total vapor pressure can be neglected as can be seen from Fig. 1. Table 5 shows calculated activity coefficients for AlCl₃NH₃ based on this assumption at two compositions in the NaCl-AlCl₃-AlCl₃NH₃ melt. The Table 5 shows that γ_{AlCl₂NH₃} is close to 2, and decreases with increasing temperature.

The partial pressure of NH₃(g) above these melts can be estimated when the following assumptions are made:

- 1. a_{AlCl₃} in MCl-AlCl₃-AlCl₃NH₃ systems can be estimated from the equilibrium constant of eqn. (14) and the activity coefficients of MCl and MAlCl₄ given by eqns. (12) and (13).¹⁴
- 2. $\gamma_{AlCl_3NH_3}$ is set equal to 2.

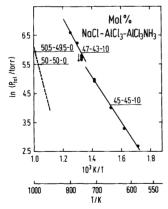


Fig. 1. Vapour pressure above NaCl—AlCl₃NH₃ melts. O: Present work, arrow indicates vapour pressure decrease with time for the basic melt. ----: Linga et al. 14 : Dewing 16.

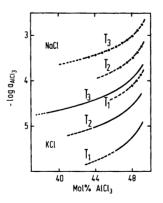


Fig. 2. Calculated activity of AlCl₃ in MCl-AlCl₃ melts. M=Na or K. T_1 , T_2 , T_3 : 450, 525, 600 °C.

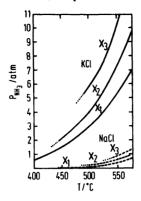


Fig. 3. Estimated vapour pressure of NH₃ above MCl-AlCl₃-AlCl₃NH₃ melts. M=Na or K. X₁, X₂, X₃: X°_{AlCl₃}=0.475, 0.465, 0.450.

The partial of $NH_3(g)$ above NaCl-AlCl₃-AlCl₃NH₃ pressure KCl-AlCl₃-AlCl₃NH₃ melts containing 3 mol % AlCl₃NH₃ is shown as function of temperature in Fig. 3. In the calculation, X_{AlCl}, is calculated from the content of AlCl₃ and MCl in the melt. Recently, the presence of Al₂Cl₆NH₃ has been detected in acidic KCl-AlCl₃-AlCl₃NH₃ melts where equilibrium (8) is established.² As the activity of Al₂Cl₆ is very low, the mole fraction of Al₂Cl₆NH₃ is negligible for the present melts. Dotted lines indicate extrapolation below the liquidus temperature. P_{NH}, increases with increasing temperature, due to the fact that the increase in the equilibrium constant K_{10} overrules the effect of the increasing AlCl₃- activity. The partial pressure of NH₃(g) also increases with decreasing AlCl₃ content. Due to a 10 times lower AlCl₃ activity in KCl - than in NaCl mixtures, the partial pressure pf NH₃(g) is 10 times higher above KCl-AlCl₃-AlCl₃NH₃ than above NaCl-AlCl₃-AlCl₃NH₃ melts. Again, this reflects that the basic KCl-AlCl₃ melts will be more effective as solvents for the decomposition of AlCl₃NH₃ than the LiCl and NaCl chloroaluminate mixtures.

4.4. Concluding remarks. The experiments have shown that it is possible to decompose AlCl₃NH₃ dissolved in chloroaluminate melts through the reaction

when NH₃ is removed by absorption in NiCl₂(s). In basic NaCl-AlCl₃ mixtures, less than 10 % AlCl₃NH₃ is decomposed, whereas 70 % was decomposed in the corresponding KCl-AlCl₃ melts due to the low activity of AlCl₃. The degree of decomposition and the formation of AlN(s) increase with increasing temperature.

Acknowledgement. Financial support from NATO-grant 658/83 is gratefully acknowledged.

REFERENCES

- 1. Bøe, G.H. and Østvold, T. Norwegian Patent No. 150846, 1985.
- 2. Østvold, T., Rytter, E. and Papatheodorou, G.N. Polyhedron (1985). In press.
- 3. Nakamura, K. *Thesis No. 41*, Institutt for uorganisk kjemi, Norges tekniske høgskole, Trondheim 1983.
- 4. Pkletyushkin, A.A. and Slavina, N.G. Inorg. Mater. 4 (1968) 785.
- 5. Renner, T. Z. Anorg. Allg. Chem. 22 (1959) 298.
- 6. Laughlin, W.C. and Gregory, N.W. J. Chem. Eng. Data 20 (1975) 137.

- 7. Grjotheim, K., Krohn, C. and Øye, H.A. Aluminium 51 (1975) 697.
- Laughlin, W.C. and Gregory, N.W. *Inorg. Chem.* 14 (1975) 1263.
 Blitz, W. and Fetkenhauer, B. Z. Phys. Chem. 81 (1913) 513.
- 10. Ephraim, F. Z. Anorg. Chem. 83 (1913) 513.
- 11. Benabdouen, A., Remy, F. and Bernard, J. Acad. Sci. Paris. Ser. C 266 (1968) 1579.
- 12. Murgulescu, I.G. and Segal, E. Rev. R.C. 11 (1966) 13.
- 13. Murgulescu, I.G., Segal, E. and Fatu, D. Rev. R.C. 11 (1966) 291.
- 14. Linga, H., Motzfeldt, K. and Øye, H.A. Ber. Bunsenges. Phys. Chem. 82 (1978) 568. 15. Dewing, E.W. J. Am. Chem. Soc. 77 (1968) 1607.
- 16. Dewing, E.W. Met. Trans. 1 (1970) 2169.
- 17. Binnewies, M. Z. Anorg. Allg. Chem. 437 (1977) 25. 18. Papatheodorou, G.N. J. Phys. Chem. 77 (1973) 472.
- 19. Schäfer, H. Anorg. Allg. Chem. 403 (1977) 119.
- 20. JANAF Thermochemical Tables, 2nd Ed., NSRDS-NBS 37, US Dept. of Commerse, Washington DC 1971.

Received May 21, 1985.