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It is shown, that reasonable distances of closest
approach between ions in aqueous solutions can
be calculated from data for activity coefficients in
dilute electrolyte solutions, if the usual Debye-
Hiickel formula is used in connection with an
“excluded volume” term (DHEV-model). The
contact distances may be evaluated from the
formula and fittings of Guggenheim by solving a
cubic equation. Two possibilities are investi-
gated, DHEV I with all kinds of excluded
volumes and DHEV II with excluded volume
between cations and anions only in accordance
with the specific interaction principle of Brgn-
sted. The difference is not great, though DHEV
IT distances are somewhat greater than DHEV I
distances.

Ionic Lattice/Excluded Volume models are
also considered using Madelung constants for a
NaCl lattice for 1:1 electrolytes and for a CaF,
lattice for 2:1 electrolytes. For ILEV I and ILEV
II (without and with the Brgnsted assumption)
the contact distances differ widely, and only the
ILEV 1 distances are close to the distances
calculated from DHEV I or DHEV II.

The Debye-Hiickel/Excluded Volume model
can be derived as a limiting case in a Bogoliubov-
expansion for small plasma-parameters using the
BBGKY-hierarchy for the ionic distribution
functions, when we further restrict ourselves to
the case of a symmetric electrolyte with ions of
equal size and to the case of small Bjerrum
parameters (no ion pair formation). The DHEV
model can also be seen as a limiting case of the
mean spherical approximation (MSA) model of
Lebowitz et al. There seems to be no basis for the
Brgnsted assumption in rigorous statistical-
mechanical theory.

At higher electrolyte concentrations (0.1-1
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mol/dm®), no rigorous theory exists, although as
well ILEV as the Bogoliubov expansion and the
MSA model can be fitted with some success. A
realistic model would have to take into account
dielectric lowering and short-range forces from
the water molecules. However, we present semi-
empirical formulae for easy calculation of activity
coefficients of various 1:1 and 2:1 electrolytes at
various temperatures. We also discuss the
temperature variation of the semi-empirical con-
tact distances in the light of the water theory of
Bernal and Fowler.

The theory of very dilute solutions of strong
electrolytes was proposed first by Milner ' and
later in a more simple form by Debye and
Hiickel® in 1923. From the thirties till now, the
derivations of Debye and Hiickel have been
criticised severely for lack of statistical-mechanic-
al rigour, but it was not before 1950, that an
alternative derivation in terms of a cluster expan-
sion was carried out by Mayer.® In this way, the
limiting law of Debye and Hiickel was strictly
verified.

As late as 1968, Résibois ’ wrote the following
statement: ‘‘unfortunately, the considerable
effort which has been put into this problem has
not resulted in much interest. No rigorous theory
is presently available beyound the limiting-law
region”. In hindsight, Resibois seems here to be
too pessimistic. From 1966, Schmitz®® devised
elegant expansion methods in the so-called plas-
ma parameter by an extension of Bogoliubov’s
perturbation method for the BBGKY-hierarchy
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(linking n’th order ionic distribution functions to
distribution functions of order n+1). The results
of Schmitz are neatly summarized in the mono-
graph of Falkenhagen.!® Schmitz calculated the
first deviations from the limiting law of Milner-
Debye-Hiickel.

Later on, the so-called integral equation
methods have become more popular. The first
approach of Kirkwood and Poirier!! used the
BBGKY-hierarchy with third order distribution
functions expressed as products of second order
distributions (pair distributions). In this way, one
may break off the hierarchy and obtain explicit
formulae. From the late fifties, it has become
fashionable to base integral equation methods on
approximations based on the so-called direct
correlation function which is defined through the
Ornstein-Zernike equation, see Ref. 12, section
13-5. The two most important approximations
are the Percus-Yevick and the hypernetted chain
equation (PY and HNC). Both models are in
good agreement with molecular dynamics simula-
tions for hard sphere fluids without charges up to
densities amounting to 0.6 times the density of
the closest packed spheres. In comparison,
BBGKY-based formulae deviate from molecular
dynamics ‘“data” already from 0.4 times the
closest-packing density, see Ref. 12, Fig. 13-6. It
should be noticed, that the PY-approximation
leads to very simple analytical formulae for the
thermodynamical properties of uncharged hard
spheres.

Around the same time of the analytical expan-
sions of Schmitz, Rasaiah and Friedman !>
solved the PY- and HNC-equations numerically
for hard-sphere ions in a dielectric continuum
with the same dielectric constant as the ions (i.e.
the “primitive” model of electrolyte solutions).
Most of the results tabulated, are only valid for
the restricted primitive model (RPM), where the
ions have equal size. Both HNC- and PY-
calculations yield osmotic coefficients in reason-
able agreement with values calculated by Card
and Valleau'” by Monte Carlo methods. (For 1:1
electrolytes up to 2 mol/dm®, see Ref. 12, Table
15-1). HNC seemed a little “better”” than PY.

Another approach is the mean spherical
approximation (MSA) devised by Lebowitz and
Percus'® as an extension of the hard-sphere
PY-equation. Waisman and Lebowitz!® were
able to show, that the restricted, primitive model
(RPM) has thermodynamical properties, which

can be evaluated by simple, analytical formulae
bearing great resemblance to the Debye-Hiickel
expression when the MSA is used. The elec-
trostatic “shielding length” in the DH theory
(1/x) has only to be replaced by another, more
realistic, shielding length, which converges to-
wards 1/k in very dilute systems.

The message here is, that the Debye-Hiickel
theory is not at all as bad as its reputation in
statistical mechanics. Actually, as we shall see in
sections 1 and 2, the original Debye-Hiickel
equation (not only their limiting law!) with the
addition of a simple correction for excluded
volume comes, out as a limiting case from more
rigorous formalisms. We call this model the
DHEV-model. In section 3, we recast the dis-
tances of closest approach tabulated by Gug-
genheim et al.*>? for dilute 1:1, 2:1 and 1:2
electrolytes into more realistic DHEV-distances
by solving a cubic equation.

Especially, we have investigated the assump-
tion of Brgnsted concerning the “‘specific interac-
tion of ions”?*?3, which states that there should
only be excluded volume (specific interaction in
contrast to non-specific action through ionic
strength) between ions of opposite sign. This
principle is often quoted in monographs of
electrochemistry, and it was used by one of us in
two earlier papers.?#* The principle seems not
to have any basis in the statistical mechanics of
ionic solutions, although it seems to be almost
fulfilled for experimental data for dilute electro-
lyte mixtures (Ref. 26, Chap. 14). We shall see,
that the DHEV-radii are only slightly greater
with the Brensted principle than without. In
section 4, however, we investigate an ionic-
lattice/excluded volume (ILEV) model. This
model is much more sensitive to the Brgnsted
hypothesis, and to have ILEV contact distances
similar to DHEV-distances, the Brgnsted princi-
ple should not be used.

In section 5 we shall present “practical”
(semi-empirical) formulae for activities of a
number of salts at high concentrations and for
different temperatures. The formulae are similar
to the “ASPEV” (Adjusted Screened Potential/
Excluded Volume) formulae from the earlier
publications,?*? but they are simpler, and they
yield a smooth transition to the DH-expression
and the limiting law.
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1. BOGOLIUBOV EXPANSION

Bogoliubov expansion of BBGKY-hierarchy
after Schmitz. The fundamental dimensionless
quantities in the expansion made by Schmitz %10
are the following three:

Plasma parameter between ion types no. i and j

226

= i2j S0 1
Hi 4rekT x )

Dimensionless contact distance (or dimensionless
squareroot of ionic strength)

M=K Rjj @)

Bjerrum parameter

2
. Zi%i€o 3
5 4neRy;- kT @)

The inverse Debye-Hiickel screening length is
given by:

21
RTe

k=F-

4

All formulae are in SI-units. The charge number
of ion type no. i is z; (integer with sign). The
elementary charge is e,=F/N,, with F being
Faraday’s constant and N, Avogadro’s number.
The absolute permittivity of the pure solvent is ¢,
k=RIN, is Boltzmann’s constant and R;; is the
sum of the hard-sphere radii for type i and type j.
T is the absolute temperature. The ionic strength
in mol/m? is denoted by I.

The plasma parameter measures the relative
strength of the direct electrostatic interaction
between two ions to the collective interaction in
the ionic cloud. In accordance with the method of
Bogoliubov, this parameter is assumed to be
small in comparison to unity, i.e. small ionic
strengths. The Bjerrum parameter measures the
electrostatic energy at contact relative to the
kinetic energy (kT), i.e. the tendency to form ion
pairs as in the much more qualitative original
theory of Bjerrum.?’

The solvent-averaged pair potential between
two ions assumed by Schmitz has two compo-
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Fig. 1. Solvent averaged potential assumed by
Schmitz. The potential is composed by a long-
range electrostatic part and a short-range hard
sphere/square well part.

nents, see Fig. 1. The long-range or electrostatic
component is a simple Coulomb-potential:

2
72 ()= 2%,
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The short-range (sr) potential is a hard-sphere
interaction with a square-well attractive potential
of depth ¢&;. Such an attractive potential has
proved useful to explain for example negative
deviations from the limiting law for certain
quaternary ammonium halides, see Ref. 10 pp.
418—421. Also, the alkali nitrates lie too close to
the limiting law at higher concentrations than
expected from reasonable distances of contact. If
Rij; (see Fig. 1) is put equal to 2Ry, the attraction
energy depths are approximately equal to the
energy minima found for noble gases. Fur-
thermore, in the case of nitrates one observes an
increase in &, with an increase in number of
electrons in the cation. Therefore, the attractive
forces are likely to be London—van der Waals
forces.

Bogoliubov expansion to the first order in the
plasma parameters y; leads to the Debye-Hiickel
limiting law (DHLL). We shall only consider
here the corrections to DHLL from O(y?) terms,
although Schmitz also carried out corrections of
O(1). (For transport phenomena in dense gases,
a similar expansion procedure of Bogoliubov is
known to diverge beyond the first correction
terms because of the neglect of recollisions
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between molecules,”® but equilibrium phe-
nomena are probably not sensitive to such
recollisions, so the expansion may work to higher
approximations here). Unfortunately, O(u?)
limits us to 0.01 mol/dm? for 1:1 salts and 0.001
mol/dm® for 2:2 salts, but the Bjerrum para-
meters may be arbitrarily large.

In the simplest case, we have a cation 1 and an
anion 2 of the same size (RPM) and with
numerically identical charges (z;=—2z,=z2, sym-
metric electrolyte). We then have:

Ry1=Rpn=Rp=a

(contact distance) ©)
S=—8n=—¢n=b
(positive Bjerrum parameter) )

If we further assume the attractive potentials
equal, we have:

E1=En=Ep=E (8

The expression for the osmotic pressure in that
case becomes:

M=2-c,- RT{1-}u—
B (14 1)ko(b) = (b") P1ho(b)]} )

The salt concentration (mol/m®) is ¢, 7 is a
transformed attractive potential given by

T=exp(e/kT)—-1 (10)

and k, is a complicated function of the Bjerrum
parameter given by the following power series:

ko(b)=—3-3b"+
b2m

mzaz (2m)! (2m-3)

Finally, the parameter b’ in eqn. (9) is defined as
bin eqn. (7), but with Rj; in lieu of R;; in eqn. (3).

In case of simple hard spheres and b not
greater than 2 (where k,= —%—%bz) we obtain the
simple expression:

11)

II=2.¢,- RTX

2%e2 -« 47N,
L% 1-3 ) ° 3}
{1 Y4 kT 1 2lca)+cs 3¢ (12)

The last term in eqn. (12) is clearly an excluded
volume term. The other terms are identical to the
normal (extended) DH-expression for the osmo-
tic pressure of a symmetric electrolyte, when this
expression is power expanded to second order in
k-a, thus matching the excluded volume term
proportional to ¢;. (By extended DH-theory we
mean the DH theory taking into account that ions
are not point charges, but have a certain contact
distance=a).

For Bjerrum parameters greater than 2, we
have great deviations from this simple picture.
For an extreme value of b (b=15), we have
ko(b)=exp(b)/2b and the osmotic pressure be-
comes:

2 .
L—é—- k=21 cNoa® - eb/b}
24nekT

(13)

H=2-cs-RT{1—

It is obvious, that large Bjerrum parameters
(strong ion pair formation) pull in the opposite
direction of excluded volume effects, and the
Bjerrum effects are able to more than cancel the
excluded volumes. However, the requirements
b>1 and p<1 together mean, that the ionic
strength has to be extremely small. Very great
values of b are found for 2:2 and higher charged
electrolytes in solvents with low &. For 1:1, 2:1
and 1:2 electrolytes, b is mostly less than 2 in
aqueous solutions.

A general expression for the osmotic pressure
in many-ion solutions with ions of different radii
has also been derived by Schmitz (with g;=0):

EE
IIRT=2.c{1-———= —
2all= et
r 3
’3_ NOZCJ' . llJ In (Kllljl)—
)

2nN2c; {REL(L/Ryy)—B/12)} (14)
i
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The concentration (mol/m®) of ion No. i is ¢;, and
the distances (positive and negative) [; are
defined as:

2;2:€%
li'=_ ! 0 =Ri" ii 15
Y AmekT i Gi (15)

The numerical value of [ is the distance between
ion types No. i and No. j, where the electrostatic

energy is equal to kT. The function L(¢) in eqn.
(14) is a complicated function with the expansion:

L(§)=-3--1&+

8¢ 4 - (C+In 3)+K(E) (16)

KT —>— )

m=4 m'(m—3)

C=0.5772...=Euler’s constant (18)

Eqn. (14) can be rewritten in the following way:

IRT=Xc;~Apy - -2 cic;
i i
3
Vij{_zlL ln(K' . Rij)}"'%zzcicj . Vij . Eij (19)
ij
The Debye-Hiickel constant is given by:

FPvV2

~ 8aN,(RTe)" (20)

Apy

The excluded volume between one mole of ion
pairs is:

4r
vi,»=—3—1re§'j “N, (21)

Finally, we have introduced the following func-
tions of the Bjerrum parameters:

= 2
Ej=1+}- &+3- &+

3 E(C+In3+3-21n|¢;) -3 K(&) (22)
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One new feature in eqn. (19) is the appearance of
terms of order ¢?Inc. Such terms are well known
also in the Bogoliubov expansions for transport
phenomena in dense gases.?® The terms cancel
out for symmetric electrolytes with cations and
anions of the same size. The logarithmic terms
can be omitted for small Bjerrum parameters,
where O(£) and above are neglected. Neglecting
0O(¢é) and above, we obtain:

I'I/RTEZci—%ADH-I;’2 +%chicjvij (23)
i 1)

This equation has exactly the same form as the
one considered by one of us (TSS) in a previous
paper from more intuitive considerations, see
Ref. 24 eqns. (16)—(21). It was there called
Debye-Hiickel Excluded Volume model, but a
more proper name would be Limiting Law-
Excluded Volume (LLEV) model.

The problem with the LLEV-model is, that as
soon as the excluded volume is felt, there will
also be contributions to the ¢? term from the
deviations from the limiting law for the elec-
trostatic part of the osmotic pressure, or rather
from the mixed electrostatic/excluded volume
part, see eqn. (19). Neglecting those contribu-
tions, we get all too great contact distances, cf.
Ref. 24, Table 1 and Table 2.

The change in osmotic pressure is related to
the change in solvent activity by eqn. (24). (v,
partial molar volume of solvent).

RTdln a+v,dIT=0 (24)

From Gibbs-Duhem’s equation and the approx-
imation c,v,=1, we readily derive for a single
electrolyte:

V'Cs'( din y. ) E( d(ITRT) ) —y 25)
dey /¢ dc Cs

Here, y. is the mean ionic, molar activity
coefficient for the electrolyte. Thus, to find this
activity coefficient as a function of concentration
we have to derive the expression for the osmotic
pressure with respect to salt concentration, divide
by the salt concentration and integrate with
respect to salt concentration from ¢;=0 to c;. The
calculations are tedious, but from eqns. (19) and
(25) we obtain:
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In y.=—|z12,|Apu VI

afg(m,,

i=l j=1

i)

+cg ﬁ ﬁ:( Y% )vij-xi,- (26)

i=l j=1

We have introduced the stoichiometric coeffi-
cients in the salt, v; for the cation, v, for the
anion (v=v;+v,). Furthermore, we have intro-
duced:

Xi=5i—4 E=1+36+38
+3E{C+In3+3-21n|&;|} -3K(&)) (27)

Eqn. (26) may be recast into a more useful form
by expressing all Bjerrum parameters &;; in terms
of a single (positive) parameter:

b=61,>0 (28)

We obtain up to O(b*) and up to O(c,) the
formula (29) given below as Scheme 1.

Eqn. (29) has a convenient form for exhibiting
clearly the effect of various assumptions. If we
consider a general asymmetric electrolyte, but
with equal ionic radii, viz.

4r
Ry1=R;=Rxp=a and V11=V12=V22=T as'No

(30)

then the term linear in b disappears, but not the
cn(ax) term. However, the logarithmic term

WV
|212,| Aps V T+ ——2

Iny,=-—

)Cs . b3{2V121n(R12K') - (2

may be neglected, if one neglects terms of O(b°).
If we furthermore assume the electrolyte to be
symmetric, we have:

vi=wn=1,v=2; z;=~2,= (31)

Then, all the b* terms become identical to zero,
and the cIn(ax) term vanishes, too. Introducing

4. 4

2=_ﬂ‘>..2_ (32)
(4nekTa)
we obtain:
2,202

In ye=—22Apg VT +———2 . g4
8}’: PH 8nekT ¢
T" @ N, ci+O(b*) (33)

This equation could have been derived in a much
simpler way from eqns. (12) and (25). Eqn. (33)
is identical to the Debye-Hiickel Excluded
Volume expression (DHEV), since we have:
In y.(DH)= |2120|Apu - VI -

1+xa

_|2122|ADH\/—1—+|ZIZZI . ADH *Ka- \/T+O(f/z)

(34

One sees immediately, that:

212, €4 a- K
8mekT

No real electrolyte will have ionic radii, which are
exactly equal, however. Thus, even if we restrict
ourselves to O(c,) and O(b*), the DHEV expres-

|2122|ADH ka-VI= (35)

R
-z ) viIn(Ry;x)

v R v V; . ! R R
‘( ) ( = ) szm(Rzz")}”'( e )Cs {[2V12+V11+V22]+b [2V12 ( = )'Vu—(—‘lz )'szl
R22 % Ry Ry

0 [2“2*( J R o) (2 P 29)
Rll R Vo R‘%z R

+0.9629-° - [2v12 ( )2. L2 3.V,1_(_1_ )2(_12_ )3.V22]
Vi Rll V2 R22

-b? [2vulnb ( )(-Ri 3. 1n(-2 -b)-v
Vi Ry 1

Scheme 1.

B P )
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sion (33) will not be perfect, neither for symmet-
ric nor for asymmetric electrolytes, since the term
linear in b has been omitted.

For an arbitrary electrolyte, the term linear in
b in eqn. (29) is readily reformulated:

Linear term in b in eqn. (29)=
(PERY
A )RRy (36)

Thus, the linear term contributes negatively to
the O(c;) term, and it depends on the square of
the difference between the ionic radii (R;—R,).
This feature is unknown in the Debye-Hiickel
theory as usually formulated, but it might be
gained from an extended Debye-Hiickel theory,
if the Debye-Hiickel charging p-ocedure is car-
ried out in a more careful manner than usual.

As a final comment in this section, we see from
eqns. (19) and (26), that “excluded volume”
terms in the osmotic pressure are manifest as
“specific interaction” terms of order ¢, in the
formula for In y.. Obviously, there is no such
thing as the Brgnsted principle, excluding “speci-
fic interaction” between ions of like signs. All
excluded volumes (cation-cation, cation-anion,
anion-anion) should be accounted for according
to the rigorous treatment of Schmitz.

2. MEAN SPHERICAL APPROXIMATION
(MSA) MODEL

The MSA-model for general electrolyte mix-
tures has been summarized in papers of Blum et
al.®® Like other recent approaches based on the
direct correlation function, the MSA-theory
seems to neglect the problems in connection with
the Bjerrum parameters. However, in contrast to
the Bogoliubov-expansion described in section 1,
the more “modern” theories (MSA and HNC)
seem to work up well to 1 mol/dm* or more,
when compared to Monte Carlo calculations on
the “primitive model” (dielectric continuum
assumption). Especially the MSA-theory yields
very simple formulae, which bear strong resem-
blance to the DHEV-theory. We just have to
generalize the expression (4) for the DH-para-
meter (x) into another inverse shielding length
(I. In Refs. 29 and 30, it is 2I" which corre-
sponds to k, but we have made a slight reformula-
tion here.
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In the MSA-theory, the mean ionic, molar
activity coefficient for a general electrolyte is
given by:

Inys(MSA)=g(I)+2- B Nog, @37)

The electrostatic/contact-distance contribution is
given by the function:

KZI" Vizi2
)
a-¢ i 1+B-T'R;

g(N= (38)

Summations are over the ions in the salt, and v;
and R;; are stoichiometric coefficients and ionic
diameters as in section 1. The parameters a and 8
will be fixed later by comparison to Debye-
Hiickel theory. The parameter in the “specific
interaction” term of eqn. (37) is given by:¥

ﬂz:ﬂ% +§2_52) (39)
E=vi- R} )
an-l eqn. (39) we obtain:

P —1( 437r 1) ()2 v {rwlvn/v) (1)
r=Ry1/Ry, @

{rw/v,valv}=l} —!1--+3 ( L )2]-r3+
14

) o o B
@)

Especially for symmetric electrolytes (v=2,
vi=w,=1) we have:

(riy) =—116— -(5P°+3°+3r+5) (44)

On the other hand, from eqn. (26) with y;;=1, we
get “‘excluded volume” terms of the form:

Bz=— ¢ ZZ( V)( )(47:12,3,/3) (45)

This may be recast into the form:

=—;'— (4n- Ru3) ()3 - [r, wiv,valv] (46)
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We have defined:

b
R
Lo o

In general, we have
{rnlv,wlv}#[r,wiv,vlv] (48)

but the two expressions coincide for symmetric
electrolytes with the function of r given in eqn.
(44). Most probably, Ref. 29 (from which eqns.
(39) and (40) come) is slightly in error, and the
formulae (39) and (40) are only valid in the
symmetric case. Actually, only experimental
activity coefficients of 1:1 electrolytes were stud-
ied in Ref. 29. The expression (46) follows also
directly for an uncharged, ‘‘hard sphere solution”
with two types of spheres, by making the usual
analogy between the osmotic pressure and the
pressure of a mixed hard sphere gas, see Ref. 24.
This analogy is rigorously based in statistical
mechanics according to Mayer.?! In the follow-
ing, we shall take the excluded volume contribu-
tion of the MSA-theory as eqns. (46) and (47).

We now return to the g(I)-contribution to
Iny.. The generalized inverse shielding length
(I') has to be found as a solution to the following
equation:

y=lk=—Fr— \/ vlz.
/sz, T (1+B H(x-R)Y
49
Now, we define:
x=PRyx;  si=Ry/Ry (50
From eqns. (38) and (49) we obtain:
X)= 51
g(rx) b Z 1” p_— (1)
1 2
Hx)=——ox" Vizi 52
/ EVi'Ziz i (1+y-si-x)2 ( )

1

When the terms y-s;-x are small compared to
unity, the denominator in eqn. (52) can be
replaced by its McLaurm expansion from x=0.
Retaining terms up to x?, we obtain the following
quadratic equation for y as a function of x:

[38:x2—1]92=28; - x - y+1=0 (53)
ZVZ iSi
Si= —L 54
1= Evz. (54)
Sz EVZl i (55)

sz,

The two roots converge towards +1 and —1 as
x—0, and the positive root should be chosen:

. V1+(Sl—3S2)X —Slx
- 1-3S,-x2

(56)

In the “restricted primitive model”, we have
§$1=8,=1, and eqn. (57):

_ V1-2-x

o (RPM) (57)

Note, that eqn. (57) is valid for asymmetric as
well as symmetric electrolytes, if only all ionic
radii are equal.

In the RPM we have from eqn. (51):

oy 2vz?

RPM
n-c l+y-x ( ) (58)

g(%x)= -

We use that (because of electroneutrality):

lcg=4 Ev,z Mz12,| (59)

From eqns. (4), (20), (58) and (59) we obtain:
yWT

8(7,X)=—Apn ' |212) 1 (60)
We have chosen
n=8nNovaizi2 (61)

in order to conform with the usual DHLL
expression at low ionic strengths, where y=1.
From eqn. (57) we obtain:
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Y 1-2x2—x
I+ 14xV1-2x2 —4x?

The McLaurin
(Ri1=Rp=Rp;=a):

(RPM)  (62)

series is found to be

Y =1-2x+6x2=1-28- ak+6- ﬁz : ((M)2 (63)
1+yx

In the Debye-Hiickel approach we have simi-
larly:

=1—xa+(xa)? 64
1+xa ka+(xa) (64)

Thus, by choosing

p=} (65)

we have correspondence between the DHEV and
the MSA-theory up to terms of O(c,). The choice
B=1% was indeed the one made in Refs. 29 and 30.
It should be noticed, that the limiting form for
RPM [eqn. (62)] obtained from the MSA-theory
of Blum et al. is somewhat different from the
expression given originally by Waisman and
Lebowitz. However, the McLaurin series of the
two expressions are identical to the order (xa).’

3. IONIC RADII FROM DHEV I AND
DHEV II

Having now certified, that the Debye-Hiickel/
Excluded Volume theory can be proven on more
rigorous foundation than the Debye-Hiickel
theory itself (at small Bjerrum parameters and
with neglect of terms depending on differences
on ionic radii!), we can move on and see if
consistent contact distances can be calculated
from data for Iny. in sufficiently dilute solution.

Guggenheim et al.?>?! have made two-para-
meter fits to such data using the following
formula for the molal activity coefficient:

VT
14+B' 4G VT
v 'ﬁG'ms (66)

I' is the ionic strength in mol/kg solvent, and m;
the salt molality. The dashes refer to molal units
for concentrations. The ‘“‘contact distance” dg is
in units of 0.1 nm (=Angstrgm’s). The chosen
form of the “specific interaction” term corre-

Iny.=—A'pulz12,|

4v - v,
+—12_
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sponds to the Brgnsted principle of no specific
interaction between ions of like sign. In the
following, we shall name DHEV I a Debye-
Hiickel model without the Brgnsted principle and
DHEV II a DH-model with the Brgnsted princi-
ple for the excluded volumes. The former will be
the ‘“‘correct” one for statistical-mechanical
reasons, see sections 1 and 2.

In the DHEV-models, the specific interaction
term is also determined by the contact distance
(&), so we must transform the two-parameter fits
to one-parameter fits. Furthermore, expressing
activity data in molal quantities is a bad habit in
electrochemistry, which has survived from the
early (pre-Debye-Hiickelian) paper of Lewis and
Randall.* In statistical mechanics, concentration
is fundamental, not molality, since concentration
is measuring mean distance between dissolved,
interacting ions.

At the low ionic strengths considered by

Guggenheim et al. (I<0.01 mol/dm®), we may
neglect differences between molal and molar
activity coefficients, which are linked by eqn.
67):
Y+ =7+ do* (mlcy) (67)
(d,=density of pure solvent, c;=molar salt con-
centration, my=molality of salt). Thus, we write
instead of eqn. (66):

Iny.=—Apy|ziz;| vr
Y D B oo VT
4vv. Cs
+ 2L g (&) (68)
Y d,

Here, Apy is the usual Debye-Hiickel constant
(see eqn. (20), but with an additional factor
V1000, since I is in mol/dm3). Furthermore, we
have:

BDH=BI/\/d—o (69)

On the other hand, the DHEV-expression can be
written:

Iny,=—Apg|z:z |——\/_—I——+
Ve Ao B VT
Cs* {Bu : ('ﬁ—)5+2 ( Y ) Bi;+By- (ﬁ‘ )5}
v v v

(70)
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We have for the parameter &:

1 DHEVI (No Brgnsted assumption)

o= { (71)
0 DHEV II (Brgnsted assumption)

The Bj-coefficients are excluded volumes de-
fined as the vj-coefficients in eqn. (21), but in
dm*mol:

Bij= Vij * 1000 (72)

Now, we want to make the two expressions (68)
and (70) identical up to terms of order O(c).
Therefore , we Taylor-expand the Debye-Hiickel
denominator in both expressions, and further-
more we express all the B;j’s in terms of 4 and
r=Ry/Ry, [see eqn. (42)]. By identification we
obtain a cubic equation in 4 [Scheme 2, eqn.
(73) For 1:1 electrolytes at 25 °C (ADH—l 1779
mol?, Bpy=0.3291 dm” - mol- (0.1nm)™)
we have eqn. (74), for 2:1 electrolytes (CaCl,)
eqn. (75) and for 1:2 electrolytes (Na,SO,) eqn.
(76).(We have also used that d,=0.997 kg/dm®
for water at 25 °C.)
Therefore, from the tabulations of fg and B’ - dg
at 25 °C for various salts, we can calculate the
contact distance 4, if some assumption concern-
ing the ratio of ionic radii (r) is made. In the case
of ¢ DHEV II (6=0) we do not need any
assumption. We shall use here the Stokes-
Einstein assumption

r= R11/R22~|Z | (77)

2

| (rfjf {—Vj"j +%} .

(47N, - 10°7/3) - &3

where A{ is the limiting equivalent conductivity
for ion No. i. The Stokes-Einstein assumption is
not expected to be very good, but the calculated
values of 4 are not very sensitive to the choice of
the ratio . (Indeed even to the choice of 8!). For
1:1 salts, the resulting contact distances are
tabulated in Table 1, whereas calculations for 2:1
and 1:2 salts have been collected in Table 2. (The
cubic equation was solved on a HP 41C computer
by the root seeking procedure for polynomials
built into the mathematics module. In all cases,
the cubic equation had only one real root).

From the tables 1, 2 and 3, the following
conclusions can be drawn:

(1) The values of 4 (DHEV II) are only
slightly larger than ¢ (DHEV I). The greatest
deviations (0.3) are found for large values of d
and for 1:1 electrolytes. The reason for the small
deviations is the dominance of the DH-denomi-
nator term over excluded volume terms.

(2) For electrolytes with ions normally
assumed to be strongly hydrated (Li*, Na*

§2+ Ca2+ sr2+ Ba + Mn2+ FeZ+ C02+

*, Cu?*) we find 4 (DHEV I)>R12 (crystal),
where Ry, (crystal) is the sum of crystal ionic
radii.

(3) The deviations between ¢ (DHEV I) and
Ry, (crystal) are greater for doubly charged
cations and for small singly charged cations
(stronger hydration).

(4) The contact distance ¢ (DHEV I) for KCl,
KBr, KOH is approximately the same as R,
(crystal). Especially KCl seems to be an almost
perfectly symmetric electrolyte with isoelectronic
cation and anion. However, the symmetry is
destroyed, because the K-nucleus has two pro-

4vyv B'd
Aow- Bon(z1z2? - (v2)- 4= (EEJo a2 gy 20 73)
2.52- 1&3{1+45(—’s% } - $+0.388-3=2.01- f+1.179B'dg  (1:1,25 °C) (74)
r+
3 '3+4 3 ' o,
3.36-10° 1+26(—T)T < §°4+2.33-4=2.67- fs+7.07-B'dg (2:1,25°C) (75)
) 4r+1) \ , .
3.36-10° 1+2-5ET)3— < 8+2.33-4=2.67-Bc+7.07-B'-dg  (1:2,25°C) (76)
r

Scheme 2.
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Table 1. Contact distances (d) from DHEV I and DHEV 1I for 1:1 electrolytes at 25 °C in water.
(B'-dg=1 kgZ- mol? for all data).

Elec- Bo(kg/mol)? r° d (0.1nm) d (0.1nm)
trolyte 6=1, DHEV I 6=0, DHEV II
HCI 0.27 @) 3.7 4.0
HBr 0.33 ) 39 42
HI 0.36 ) 40 44
LiCl 0.22 2.0 3.5 3.8
LiBr 0.26 2.0 3.65 4.0
Lil 0.35 2.0 3.9 4.3
NaF 0.07 (11) 3.0 32
NaCl 0.15 1.55 33 3.5
NaBr 0.17 1.55 34 3.6
Nal 0.21 1.55 3.5 3.8
KF 0.13 (0.75) 3.2 34
KCl 0.10 1.05 3.15 3.3
KBr 0.11 1.05 3.2 3.4
KI 0.15 1.05 33 3.5
RbCl 0.06 1.0 3.0 3.1
RbBr 0.05 1.0 3.0 3.1
Rbl 0.04 1.0 2.9 3.1
CsCl 0.00 1.0 2.8 2.9
CsBr 0.00 1.0 2.8 29
Csl -0.01 1.0 2.7 2.8
HNO, 0.20 (1.85) 3.5 3.7
LiNO; 0.21 1.85 3.5 3.8
NaNO; 0.04 1.45 2.9 3.1
KNO; -0.11 1.0 2.3 2.4
RbNO; ~0.14 0.9 22 2.2
CsNO;, -0.15 0.9 2.1 2.2
AgNO, ~0.14 115 22 2.2
NH,C1 0.10 1.0 3.15 3.3
NH4NO; -0.10 1.0 2.4 2.4
LiOH ~021 a) 19 19
NaOH 0.06 (1) 30 31,
KOH 0.13 (1) 33 34
CsOH 0.35 1) 40 43
HCIO, 0.30 (1.75) 38 41
LiClO, 0.34 1.75 3.9 4.3
NaClO, 0.13 1.3 3.2 34
NaClO; 0.10 1.3 3.1 33
NaBrO; 0.01 1.1 2.8 2.9
KClO; -0.04 0.9 2.6 2.7
KBrO; -0.07 0.75 2.5 2.6

2 From Table 30-1 in Ref. 33, where the data of Guggenheim are supplemented by some few others. * Rounded
values. Parenthesis indicates uncertain or invalid Stokes-Einstein hypothesis or lack of conductivity data.

tons more than the Cl-nucleus. Therefore, K* is  ably, at least K* is somewhat hydrated, and d
smaller (radius 0.133 nm) than CI” (0.181 nm). (DHEV I) is too small due to attractive forces
Thus, if it is concluded that K* and CI” are not  (see later). Another candidate for a symmetric
hydrated, the two ions are dissimilar in size. This  electrolyte would be KF, since the K*-ion and
is inconsistent with the fact that they have almost ~ the F~ion have identical crystal ionic radii
identical limiting ionic conductivity. Most prob-  (0.133nm). However, the ionic conductivity of F~

Acta Chem. Scand. A 38 (1984) No. 10
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Table 2. Contact distances (d) from DHEV I and DHEV II for 2:1 and 1:2 electrolytes at 25 °C in

water. (Data from Ref. 21).

Elec- (8/3)Bs B’ dg | @ (0.1nm) d (0.1nm)
trolyte kg/mol kg? mol™ 6=1, DHEV I 6=0, DHEV 11
MgCl, 0.474 1.59 2.9 4.7 4.9
MgBr, 0.670 1.62 2.9 4.9 5.0
CaCl, 0.389 1.54 2.6 4.6 4.7
CaBr, 0.488 1.62 2.6 4.8 4.9
SrCl, 0.288 1.56 2.6 4.6 4.7
SrBr, 0.405 1.62 2.6 4.8 4.9
BaCl, 0.152 1.56 2.4 4.5 4.7
BaBr, 0.322 1.56 2.5 4.6 4.7
Mg(NO;),  0.479 1.53 2.7 4.6 4.7
Ca(NOs),  0.120 1.39 2.4 41 42
SI(NOs),  —0.099 1.39 2.4 4.0 4.1
MnCl, 0.341 1.56 (2.8) 4.6 4.7
FeCl, 0.373 1.56 (2.8) 4.6 4.7
CoCl, 0.433 1.56 2.8 4.6 4.8
Co(NOy),  0.341 1.59 2.6 47 4.8
NiCl, 0.433 1.56 (2.8) 4.6 4.8
CuCl, 0.193 1.56 2.7 4.55 4.7
Cu(NO;),  0.281 1.53 2.5 4.5 4.6
Li,SO, -0.150 1.415 1.0 4.0 4.1
Na,SO, -0.380 1.27 0.8 3.6 3.6
K,SO, ~0.200 1.07 0.55 3.1 3.1
Rb,SO, —0.341 1.33 0.5 3.7 3.8
Cs,S0, —0.260 1.33 0.5 3.8 3.8

b See below Table 1.

is considerably lower than the conductivity of K*
(5.54/7.35), so F~ is probably more hydrated than
K* due to the ability of this ion to form hydrogen
bonds. It does not seem possible to decompose
the contact distances into efficient ionic radii in
any unique way consistent with both the data for
d (DHEV I) and conductivity data, not even for
the ions with low or moderate electron numbers.
With a square-well attractive potential, it may
well be possible to find consistent hard sphere
radii and attractive potentials, but this will not be
attempted here.

(5) The value of ¢ (DHEV I) for LiNO; is
identical to the 4 (DHEV I) for LiCl (3.8). This is
well in accordance with the almost identical
conductivities for CI” and NO7;. However, the
contact distances for NaNO3;, KNO;,RbNO; and
CsNO; are less than for the corresponding
chlorides, and the deviations become worse
through the series. This is well in accordance with
earlier considerations of Kelbg (see Ref. 10, p.
424, Fig. 121), who found it necessary to intro-

duce a square-well potential for the alkali ni-
trates. The value of 7 [see eqn. (10)] correlated
well with the number of electrons in the cation.
For LiNO,, 7 was only 0.04 whereas 7=0.30 for
KNO;.

(6) The ¢ (DHEV I) for Mg(NO;),, Co(NOs),
and Ni(NO;), is almost identical to the contact
distances for the corresponding chlorides, where-
as negative deviations are found for Ca(NO;),
and Sr(NOj),. Again, this may be correlated with
the number of electrons in the cation.

(7) The contact distance for NH,Cl is identical
to the contact distance for KCl (3.15) in accord-
ance with conductivity data. However, 4 (DHEV
I, NH,NO,)< ¢(DHEV I, NH,Cl) although the
conductivities are almost identical.

(8) The contact distances for LiOH, NaOH,
KOH and CsOH follow roughly the sum of
crystal radii (assuming a radius for OH™ equal to
O"). A plausible explanation is, that when OH~
approaches for example a hydrated Li*-ion, then
it exchanges a proton with the bound water

Acta Chem. Scand. A 38 (1984) No. 10
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Table 3. Comparison between sum of crystal ionic radii (from Ref. 34) and contact distances from

DHEYV theory.
Elec- Number of Rys(crystal) 4(DHEV 1)
trolyte electrons (0.1 nm) (0.1 nm)
cation anion
LiCl 2 18 2.5 3.5
LiBr 2 36 2.6 3.65
Lil 2 54 29 3.9
NaF 10 10 23 3.0
NaCl 10 18 2.8 3.3
NaBr 10 36 2.9 3.4
Nal 10 54 3.2 3.5
KF 18 10 2.7 3.2
KCl 18 18 3.1 3.1
KBr 18 36 33 3.2
KI 18 54 3.5 33
RbCl 36 18 3.3 3.0
RbBr 36 36 3.4 3.0
RbI 36 54 3.7 2.9
CsCl 54 18 3.5 2.8
CsBr 54 36 3.6 2.8
Csl 54 54 3.9 2.7
LiOH 2 8 2.4 1.9
NaOH 10 8 2.7 3.0
KOH 18 8 3.1 33
CsOH 54 8 3.4 4.0
MgCl, 10 18 2.5 4.7
MgBr, 10 36 2.6 49
CaCl, 18 18 2.8 4.6
CaBr, 18 36 2.9 4.8
SrCl, 36 18 2.9 4.6
SrBr, 36 36 31 4.8
BaCl, 54 18 3.15 4.55
BaBr, 54 36 33 4.6
MnCl, 23 18 2.6 4.6
FeCl, 24 18 2.55 4.6
CoCl, 25 18 2.5 4.6
NiCl, 26 18 2.5 4.6
CuCl, 27 18 2.5 4.55

% Under the assumption that the crystal ionic radius of OH" is identical to the radius of O™.

molecules. Therefore, the hydration shell will not
be a “barrier” for OH".

(29) The divalent cations M2g2+, Ca’*, Sr**,
Ba?*, Mn?*, Fe?*, Co?*, Ni’*, and Cu?* all
seem to have the same size (with hydration),
namely R;;=0.46 nm, when opposed to CI,
although the crystal ionic radii vary somewhat
(from 0.25 to 0.32 nm). Their conductivities are
also quite similar (below 20 % deviations).

(10) The contact distances found for the Rb-
and Cs-halogenides are less than the sum of

Acta Chem. Scand. A 38 (1984) No. 10

crystal ionic radii. This points to significant
attractive forces. Those deviations increase from
Rb* to Cs* and from CI" to I, so they correlate
with number of electrons in cation and anion. In
conclusion the attractive forces between ions
become of significance from an (18/18) electron
distribution (KCl). Attractive forces are due to
ion-induced dipole forces, and the polarisability
of the electrons in the higher shells increases
substantially. To a minor extent, attractive forces
may also arise from London- van der Waal’s
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forces, which correlate directly with the number
of electrons.

It seems that the simple hard sphere additivity
is somewhat destroyed by the attractive forces. It
should be noticed, however, that attractive forces
might not be the only scapegoat. In the DHEV 1
theory, we have taken all excluded volumes into
account, but the DH-denominator summarizes
only in a crude way all the other terms in for
example eqn. (29). Perhaps, the most serious
omission is the linear term in the Bjerrum-
parameter dependent on the square of the
difference between the ionic radii. The more
detailed comparison between experimental data
and the Schmitz theory or MSA-theory will be
postponed to a future paper, which will deal also
with activity coefficients in mixtures of electro-
lytes. Here, we shall be content with the state-
ment, that the DHEV I theory yields contact
distances with a certain, although not perfect,
consistency.

4. IONIC RADII FROMILEV I AND ILEV II

Already in 1918, Ghosch* proposed a model
for strong electrolytes in solution based on the
assumption that the ions in the solution in
time-average will be placed as the ions in a crystal
lattice “pumped up” with solvent. The theory
leads to a dependence of Iny. on the cube root of
the concentration instead of the square root
dependence of the DH-theory. Therefore, the
Ghosch theory is incorrect as a limiting law. On
the other hand, it has often been pointed out,
that the cube root law is followed over a much
broader concentration range than the DH limit-
ing law. However, false extrapolations to zero
concentrations is the inevitable consequence.
(This leads to somewhat wrong pH values in the
buffers standardized by S.P.L. Sgrensen). The
lattice theory was proposed independently and
simultaneously by Bjerrum ¢ and later general-
ized by Ghosch.”” In 1939, Prigogine * investi-
gated the transition from the random ionic cloud
structure at low concentrations to the more
lattice-like structure at higher concentrations
introducing a “degree of order”. Various mod-
ifications of the lattice theory have been prop-
osed by Frank and Thompson,*® Desnoyers and
Conway,*, Glueckauf*! and Bahe.** Recently,
these approaches have been reviewed by Pytko-

wicz and Johnson,”® who propose still other
modifications.

In the present paper, we shall just show that a
lattice theory supplemented with excluded
volume terms fits well with the experiments from
moderate dilution up to 3—4 mol/dm? for a
number of 1:1 and 2:1 electrolytes (halogenides),
and the radii (contact distances) obtained from
the theory are not far from the DHEV-radii.

The electrostatic energy per mol of a crystal
lattice is given by:*

E;{—_-—-|zl-zzi-ezo'M‘No/(“'ﬂ‘s'ro) (78)

M is the Madelung constant for the given type of
crystal lattice, and 7, is the shortest distance (in
meters) between two oppositely charged ions in
the lattice. The idea is to use a similar expression
for solutions with r, being the average distance
between neighbouring ions of opposite charge.
For 1:1 electrolytes we assume a NaCl lattice
(Fig. 2) although the Cs-halogenides are known
to crystallize in a CsCl-lattice. The Madelung
constants are only slightly different for the two
types of lattices (1.748 and 1.763). For the 2:1
electrolytes we assume a Fluorite (CaF,) type of
lattice (Fig. 3). The Madelung constant for this
lattice is 2.519.

If we consider n mol of electrolyte, we have
v-n-N, ions, and if we have x ions in the unit
cell, the volume occupied by the n mol is
1000+ v-n-N,-P/x dm?, with / being the edge
length in meters of the (cubic) unit cell. Thus, we
have

¢;=x/(1000- v- N, - P) (79)

For 1:1 electrolytes we have v=2 and also x=1
and /=r,=distance between nearest neighbours

+ -

G IR 4
[

Fig. 2. Geometry used for calculation of elec-
trostatic free energy in solutions of 1:1 electro-
lytes: The NaCl lattice. Madelung constant 1.748.
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Fig. 3. Geometry of CaF, lattice used for
solutions of 2:1 electrolytes. Madelung constant
2.519.

of opposite charge (see Fig. 2). For 2:1 electro-
lytes we have v=3, x=12 and I=4-r,/V'3 (see
Fig. 3 and notice that the diagonal in the unit cell
is equal to 4r,). Using those relations in connec-
tion with eqns. (78) and (79) we obtain:

_€2-10-25-Nj

-M(1:1) -3V,
Bl e 0 dad (50)
_M SM(2:1) -3V,
4r-¢- 32

For the electrostatic contribution to the mean
ionic activity we have

Ed=v-RT-Iny$ (81)
since ES can be interpreted as an excess molar
free energy. Using eqns. (80) and (81) and

inserting values at 25°C and the mentioned
Madelung constants we finally obtain

3
Iny, +A, ﬁ:

SF
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Inyg=-AL-*V (82)
with the lattice constants given by:

0.664 (1:1, 25 °C)
A= (83)
1.472 (2:1, 25 °C)

It should be remarked that the values in eqn. (83)
correspond to £=6.954-10° C-V!'-m™! for
pure water at 25 °C. However, in principle eqn.
(80) is valid at any absolute permittivity (with &
assumed uniform), so it is relatively easy to
correct for the decrease in dielectric constant
with the increase in salt concentration in the
lattice model.

The Ionic Lattice/Excluded Volume (ILEV)
model is expressed through the following equa-
tion:

lnyt=kL—AL TV cs+BL *Cg (84)

The empirical constant k; corrects for the devia-
tion from the DH limiting law at low concentra-
tions. In ILEV 1, all excluded volumes are
incorporated in the Bj-coefficient, whereas the
Brgnsted principle is used in ILEV II. The
semiempirical formula (84) fits the empirical data
very well from moderately dilute to quite concen-
trated solutions (below 0.1 to 2—3 mol/dm® or
even more), see the plots for Li- and Ca-
halogenides given in Figs. 4 and S.

An equation similar to (84), but without By,
was derived by Frank and Thomson.*® The

Cs

n

10 2.0

3.0 ‘ 4‘.0 (m°|/dm3 )

Fig. 4. ILEV plot for Li-halogenides in water at 25 °C.
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L e W P Il

3.0 Cs
(mol/dnf)

Fig. 5. ILEV plot for Ca-halogenides in water at
25 °C.

equation reached by Bahe is eqn. (84) without
ki. Bahe*? considered the interaction between
the gradient in dielectric constant near an ion
immersed in water and the electric field around
another ion. Those interactions lead to repulsive
forces between the ions according to Bahe.
Bahe’s model is criticized by Pytkowicz and

3
Iny,+0.8872VC,

i

1.5
1.0

0.5

Johnson,* which authors instead propose an
equation similar to (84) but on a molality basis
(and with Iny.). They introduce other dielectric
explanations for the By -coefficients. It seems not
to have occurred to any authors that the B-
coefficient might be simply an excluded volume
term. Furthermore, Pytkowicz and Johnson add
to the general confusion in deviating in their
Aj -values from the ones given here, thus deviat-
ing from the original method of Ghosch and
Bjerrum. In our opinion their A -values, based
on a superfluous differentiation of E,&' with
respect to concentration (Ref. 43 p. 234), are
false. For 1:1 electrolytes they obtain A; =0.887
instead of 0.664. Attempts to plot Iny. —0.887 -
V¢, against ¢, lead to great deviations from
linearity, see Fig. 6.

The same data for In y. as used in Refs. 24 and
25 were used, but eqn. (67) was used for the
transformation to Iny, instead of the slightly
incorrect formula used in Refs. 24 and 25. The
values of k and By for a number of electrolytes
are listed in Table 4 together with the concentra-
tion range, where eqn. (84) can be used with a
precision corresponding to +0.02 (mostly
below+0.01) on Iny.. The calculated contact
distances for ILEV I and ILEV II are also listed.
In contrast to the DHEV ‘contact distances,
ILEV I and ILEV II distances differ consider-
ably. ILEV I contact distances come closest to
the DHEV distances, although they are some-
what larger. For the light cations (e.g.
H* Li*,Mg**), the values of 4 (ILEV I) are

(mol/dm’)

Fig. 6. Deviations of ILEV plots from linearity using A; =0.887 (Pytkowicz and Johnson) instead of

0.664 (this work).
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Table 4. ILEV parameters and contact distances for various electrolytes in water at 25 °C.

Elec- k. B, Certified 4(ILEV I)® 4(ILEV 1I)
trolyte dm®mol conc. range? 6=1 6=0
mol/dm? 0.1 nm 0.1 nm
HCl 0.039 0.437 0.01-3.7 4.2 5.6
HBr 0.044 0.520 0.01-2.5 4.5 5.9
HI 0.056 0.620 0.1-2.3 4.7 6.3
LiCl 0.025 0.388 0.01-3.7 4.0 5.4
LiBr 0.038 0.440 0.1-2.8 42 5.6
Lil 0.070 0.542 0.1-2.5 4.5 6.0
NaCl 0.040 0.220 0.01-3.7 3.4 4.4
NaBr 0.034 0.283 0.2-3.6 3.8 4.8
Nal 0.043 0.355 0.1-3.1 4.0 5.2
KCl 0.034 0.155 0.05-3.5 3.1 4.0
KBr 0.035 0.177 0.05-3.5 33 4.1
KI 0.043 0.223 0.1-3.7 3.5 4.5
RbCl 0.013 0.144 0.2—-4.2 3.1 3.9
RbBr 0.014 0.140 0.3-4.1 3.0 3.8
RbI -0.007 0.163 0.2-3.9 32 4.0
MgCl, -0.052 1.004 0.1-1.5 53 6.7
MgBr, —-0.052 1.260 0.1-1.5 5.8 7.2
Mgl, -0.018 1.452 0.1-13 6.0 7.6
CaCl, -0.062 0.892 0.1-2.0 5.2 6.4
CaBr, —0.055 1.075 0.1-1.7 5.5 6.8
Cal, -0.033 1.293 0.1-1.7 59 7.3
SrCl, -0.057 0.808 0.1-2.2 5.0 6.2
SrBr, -0.049 0.963 0.1-1.8 53 6.6
Srl, —0.030 1.212 0.1-1.5 5.7 7.1
BaCl, -0.052 0.648 0.1-1.7 4.7 5.8
BaBr, -0.054 0.848 0.1-1.8 5.1 6.3
Bal, —0.049 1.189 0.1-1.7 5.7 7.1
4 £0.02 (mostly +0.01) on Iny.. ? Values of r as in Tables 1 and 2.

about 0.5 units (i.e. 0.05 nm) larger than &
(DHEV 1I). For the more heavy cations the
correspondence is quite close. This means, that
the problems in comparing with Ri,(cryst) are
not resolved by the ILEV model. On the other
hand, it is comforting to obtain almost identical
“effective” contact distances from two widely
different models covering widely different con-
centration ranges.

If we use B(DHEV 1) instead of By in eqn.
(84), one may calculate an “effective” value of
A as a function of concentration. From the ratio
Aj (infinite dilution)/A; (eff) it is possible to
estimate the ratio between the “‘effective” dielec-
tric constant and the dielectric constant for the
pure solvent. This has been done for NaCl in
water at 25 °C.

The calculated effective dielectric constant
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fluctuates wildly at higher concentrations, and it
seems rather greater than the dielectric constant
of pure water than less. Therefore, it is not
possible to point towards dielectric constant
decrease with increasing concentration as the
reason for the deviation between the values of
B(ILEV I) and the values of B(DHEV 1I).

On the other hand, the decrease of the
dielectric constant has repeatedly been quoted by
electrochemists as a factor influencing electrolyte
activities, since Hiickel connected the dielectric
constant decrease with the ‘“B-terms” (pro-
portional to ¢,) in the expression for Iny. (see
Ref. 45 § 6). For NaCl solutions in water, the
macroscopic dielectric constant depends approx-
imately linearly with concentration:*®

&(solution)/g(water)=1-0.1185 - ¢, (85)
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Fig. 7. Effective values of excluded volume taking into account dielectric constant decrease with
increasing salt concentration. NaCl in water at 25 °C.

From eqn. (85), an Ay (eff) may be calculated,
and from eqn. (84) and the experimental values
of Iny. we may calculate “‘effective’ values of By
as a function of ¢;. This approach yields much
more consistent results, see Fig. 7. However, we
are now left with the problem of explaining the
great increase in the “excluded volume” with
concentration.

One plausible explanation would be the follow-
ing: From the theory of Schmitz we know, that
for small plasma parameters (high dilution), the
“effective” excluded volumes may well be larger
than the hard sphere excluded volumes, when the
Bjerrum parameters are not small compared to
unity, see eqns. (19) and (22). Although the
validity of the Schmitz theory is not warranted at
higher concentrations, the theory may well de-
scribe the tendency with respect to the Bjerrum
parameter in a correct manner. Now, at higher
salt concentrations there will exist a competition
between CI” and the hydrate water around Na.”
Some bound water molecules may exchange with
ClI". We have therefore a smaller contact distance
for some of the ion pairs. This distance is
approximately Ryp(cryst)=0.28 nm. According to
the original theory of Bjerrum (see Ref. 10 p.
302), two ions are regarded as ‘“bound” for
contact distances smaller than around 0.35 nm,
and then we cannot assume small Bjerrum
parameter. We therefore have the paradox, that
the “effective” excluded volumes may increase
with concentration, because the hard sphere
excluded volumes decrease with concentration!
However, in view of all the uncertainties given,
we cannot push the calculations further at this

point. We shall just finish this section by pointing
out, that in the DHEV theory the compensating
effect of larger Bjerrum parameters is to a certain
extent taken care of by the DH-denominator,
which is equivalent to the quadratic term in the
Bjerrum parameter. This denominator is lacking
in the ILEV theory. The success of the latter
theory to describe data over an extended range of
concentrations may well be due to the simul-
taneous neglect of Bjerrum effects and decrease
of dielectric constant.

Very recently, Ruff and co-workers **-2 have
proposed a more refined lattice theory than that
of Bahe.*? They use Booth’s theory>*** for the
dependence of the “microscopic” dielectric con-
stant on the electric field strength in calculating
the average permittivity in the lattice. However,
the ions are always taken as point charges, and
the dielectric lowering due to the presence of
“ionic volumes” with lower dielectric constant
than water is not taken into account in the
averaging. The authors claim to fit activity
coefficients without any adjustable parameters. It
should be mentioned, however, that Booth’s
equation is not generally agreed upon, and it
seems unrealistic to omit excluded volumes. The
fit to activity data for 1:1, 2:1 and 1:2 electrolytes
is actually very bad, see Ref. 49, Figs. 12 and 13.
The theory has some merits, however, in giving
an explanation for Harned’s rule for mixed
electrolytes,® in discussing the lattice/Debye-
Hiickel transition at low ionic strengths>! and in
yielding realistic, oscillating charge densities
around ions.’> The theory also points out the
importance of “solvation forces” between ions as

Acta Chem. Scand. A 38 (1984) No. 10



stabilizing forces opposing ion pair formation and
crystallization. This seems to be an important
step towards a more realistic description, in
which water is not only treated as a “dielectric
continuum” without structure! A detailed
account of the theory of Ruff is outside the scope
of the present paper, however.

5. ACTIVITIES FROM ASPEV FORMULAE
AT VARYING TEMPERATURES

In two previous papers>*? it was noticed that

Iny, for alkali- and earth alkali halogenides
exhibited a parabolic dependence on V'T at least
from the activity coefficient minimum to some-
what above the pseudo-ideal point, where higher
virial coefficients come in (or where the salt
precipitates). The B-I term was linked to the
excluded volume between anion and cation
assuming the Brgnsted principle to be valid.

However, the terms describing the transition
towards the parabola for the lower salt concen-
trations were somewhat unfortunately selected,
since there was no smooth transition to the
DHLL. In the meantime this has been remedied,
and new fittings on the experimental data have
been made. We shall maintain the name ASPEV
(=Adjusted Screened Potential Excluded
Volume) since the basic idea is, that the effective
potentials at the position of an ion is screened by
the presence of counterions, so that the elec-
trostatic interaction decreases with increasing
concentration (This is brought out more quantita-
tively in the MSA theory, where the shielding
length I'"! is larger than the DH shielding length
x1). The word “adjusted” is taken to mean just
the empirical fitting to experimental data, which
is made necessary by the confusing amount of
possible effects at higher salt concentrations:
Dielectric constant lowering and gradients near
ions, various attractive potentials between ions,
hydration layer penetration of counterions and
corresponding increase in Bjerrum parameters,
more realistic repulsion potentials than the hard
sphere potential and the effect of the structure of
the water itself.

The new fittings have been performed also for
temperatures different from 25 °C for some few
electrolytes. The modified ASPEV formulae
have recently been published, but only in
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Danish.*” For the mean molar activity coefficient
we write:

Iny.=—A*VT +B*1 (86)

A*=Ain+{|2122]Apa—A'nin} - exp(—aV'T)
87

Apn 6057 3 (in dm*?mol?) (88)

T(&,/78.54)
Temperature dependence of relative permittivity
of pure water:

&

L =1-4.579-10°3(t-25)+11.9 - 10°5(t~25)
78.54 (-=25) (-=25)
'+28-10°%(t-25)> (tin°C) (89)

Terms connected with excluded volume:

Br=n. 4znN,

“R},-107 (dm*mol)  (Ryin A)
(90)

1 1
n= {4/9 ((2:1)) ©1)

B*=n-2.52-102-R},
(B* in dm’mol™, Ry, in A) 92)

A*in=0.73-8-107*-¢ (¢ in °C)
@=0.64-(1-4-1071) - Ry (Ryzin A) }(1=1) (93)

A*min=1.28; g=0.40-R12 (2:1)
(ain dm’mol 2, only 25 °C) (94)

The ASPEYV contact distances are listed in Table
5 for all combinations of (H,Li,Na,K,
Rb,Cs,Mg,Ca,Sr,Ba) with (Cl,Br,I) at 25 °C.
The maximum errors are somewhat larger than
for the ILEV expression, but the ASPEV formu-
lae contain only one adjustable parameter (R;5),
whereas ILEV has two (ky and Bp). Further-
more, ASPEV passes smoothly over into DHLL
in contrast to ILEV [replace the exponential in
eqn. (87) by unity and omit B* in eqn. (86)]. It
can even be shown, that the ASPEV formula is
equivalent to the DHEV II (Brgnsted assump-
tion is used for simplicity) at moderate dilution.
The &Qonential in eqn. (87) is replaced by
1-aV'T and the V'T and I terms are compared
with the corresponding terms in the expansion of
the DHEV II expression. We obtain:
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Table 5. Contact distances from the ASPEV theory in water at 25 °C for some 1:1 and 2:1 electrolytes

(Ry2 in units of 0.1 nm).

cr Br I Erroron In y.
H* 5.98 6.28 6.62 less than + 0.02 for 1:1
Li* 5.73 6.00 6.41 electrolytes up to
Na* 5.09 5.33 5.68 2 mol/dm?. (For salts which
K* 4.72 4.84 5.13 do not precipitate, the
Rb* 4.55 4.55 4,57 formulae may be used at
Cs* 4.20 4.20 4.20 greater conc. with somewhat
greater uncertainty.)
Mg?t 7.94 8.37 8.70 less than + 0.05 up to
Cat* 7.70 8.05 8.40 1.33 mol/dm® (I=4 mol/dm?)
Sr?t 7.60 7.90 8.30 for 2:1 electrolytes.
Ba%* 7.40 7.70 8.24 (£0.2 up to 5 mol/dm?)

The values of R, correspond to best fits to the same experimental data as quoted in Refs. 24 and 25.
Transformation from y. to y. by means of eqn. (67) and formulae for c/m, in Ref. 26, App. A.

B*=B(DHEV II) (95)
a=__M_ (96)
_ A*min
|2125|Apn

(The denominator in the DH-equation being
1+Bpy-d- V'1). Eqn. (96) explains the pro-
portionality between a and Ry; (corresponds to d)
found in eqns. (93) and (94). However, d-values
calculated from (96) and the above-mentioned
eqns. are considerably larger than the DHEV II
values, and the fit is not so precise in the dilute
region as that of DHEV II (or the Guggenheim
fits).

On Fig. 8, the ASPEV contact distances are
shown as functions of temperature for
HCI,HBr,NaCl,NaBr,KCl and KBr in aqueous
solution. Data for In y. as functions of tempera-
ture were found in Ref. 26, Appendix A, where
formulae for c¢/my at different temperatures were
also found for the conversion to Iny; vs the
square-root of the molar ionic strength (KBr was
quite safely interpolated, however). Every point
in Fig. 8 corresponds to a best fit to a whole table
of Inys vs. V' T. Some of the data (HBr and
KCl) deviate somewhat from other data at 25 °C,
so the uncertainty on the radii is greater than
apparent from the curves.

The ASPEV distances are somewhat greater
than the ILEV II distances. For example,

R2(ASPEV)=5.08 A for NaCl at 25 °C corre-
sponding to B(ASPEV)=0.33 dm’/mol. The
value of Rio(ILEV II) is 4.4 A corresponding to

6.5 T T T T T
" H;\ o(Table5)
i )
\,
3 c\ko e ]
HCI o
6.0 c g \ =
% .
L N -
LINAN
[ LN
Oy
< *%\
= N AN
@
e 55 -1
<
~N
o« T~
> NaBr
Jn-g‘n‘DﬂB
50 »° TP~ .
o' \n
i -~“A\‘ \D
~,_ uNaci 1
| a(Table 5) Sa
L ,.A"“'A-A.‘-A-A-A" ~~a Ker
45 “Kkel
L A 1 P | " i " 1 I 1 N
(/] 20 40 60 80 100 o
C

Fig. 8. ASPEV contact distances as a function of
temperature for HC!, HBr, NaCl, NaBr, KCl and
KBr in water.
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B(ILEV)=0.22 dm*mol. The B-values may be
compared without any regard to the validity of
the Brgnsted principle. Notice, that B(ASPEV)
falls in the middle of the range of B(ILEV)
calculated for NaCl from the macroscopic dielec-
tric lowering (Fig. 7).

If we assume that R;,(ASPEV) is approximate-
ly proportional to the real contact distances, Fig.
8 indicates the existence of a maximum in the
contact distance around 30 °C, which is more
pronounced for the sodium than for the potas-
sium salts. The contact distances of HCl and HBr
decrease monotonously with increasing tempera-
ture following the decrease in dielectric constant
with increasing temperature (Fig. 9).

In an early, but quite comprehensive paper on
the structure of water and ionic solutions, Bernal
and Fowler*® have compiled arguments for the
point of view, that water contains clusters of
“quartz-like” structures (some ‘“‘ice-tridymite-
like” structures below 4 °C) and a fraction of
dipoles free to rotate. The decrease in dielectric
constant with increasing temperature is described
by a Langevin-equation with a Clausius-Mosotti
equation for the “inner” electric field. The
fraction of freely orientable water dipoles varies
from 0.22 at 273 K to 0.28 at 350 K, so in a certain
sense the ‘“‘quartz-like” structures “melt” and the
increase in free dipoles compensates somewhat
for the decrease in dielectric constant due to
increasing thermal disorder (Langevin effect).

The proton may well be accomodated into the
quartz-like clusters, and the relative great contact
distances found with all models for the proton

T v v T T Ll T M T
11 Pure H,0 ]
2
1.0} 1
b4
w 09 -
~
~
w
081 b
0.7} b
L N i N 1 A 1 i Il A !
o 20 40 60 80 100 °c

Fig. 9. Decrease in dielectric constant with
increasing temperature for pure water according
to formula (89).
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halogenides can be a reflection of the size of the
quartz-like  clusters. The decrease of
R1,(ASPEV) for HCl and HBr with increasing
temperature should then reflect the “melting” of
the “quartz-like” structures. On the other hand,
the smaller alkali metal cations cannot be encom-
passed into the quartz-like structures. They have
to make their own structure, binding water
dipoles with electrostatic interactions. The elec-
trostatic forces increase with decreasing dielectric
constant of the solvent. Therefore, in the begin-
ning R,,(ASPEV) and the hydration layer thick-
ness of the cation increases with increasing
temperature. At higher temperatures, however,
the hydration layer will also ‘“‘melt” and
R15(ASPEV) will decrease with temperature. We
suggest this as a tentative explanation of the
behaviour shown in Fig. 8. It should be evident
from Fig. 8, that Na* has a thicker hydration
layer than K*, so R1;(ASPEV) is more sensitive
to temperature for Na* than for K*.
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