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The frictional formalism'~ of non-equilibrium
thermodynamics provides a theoretical basis for
various transport processes in solution and
porous media.®® A main feature of the theory is
the Onsager reciprocity law, postulating the
symmetry of the matrix of the friction coefficients
(fij)- The symmetry relations are usually intro-
duced on a postulatory basis. Onsager’s original
proof of the relations'®!! is not applicable to
continuous media, since the fluxes are not in
general derivable from the thermodynamic state
variables.'? Although the relations imply that the
frictional forced between any two components
are equal and opposite in direction, and thus
comply to Newton’s third law, the argument
suffers from the weakness that the forces in
question have been pre-averaged and thus are
not concerned with forces between individual
particles. In the present note it is shown that the
reciprocal relations are directly related to the
conditions of mechanical equilibrium and to the
degrees of freedom of the system.

The relations are proved for isothermal diffu-
sion in a solution of n independent components,
although the same arguments apply to transport
processes in porous media. In diffusion the
following balance-of-force equation holds for the
i:th component

i}ﬁlcj(ui_uj)=xi 1
pn

where f; (i,j=1,.. n) are the friction coefficients
between the components specified by the index-
es, u; is the average velocity, ¢; is the concentra-
tion and X; is the generalized force. The latter is
of the form

X;=—v;gradp —grad y;+F; @

where v; is the partial molar volume, p; is the
isobaric chemical potential, F; the external force
per mole of component i and p is the hydrostatic
pressure.

0302-4377/84 $2.50
© 1984 Acta Chemica Scandinavica

Short Communications 335

Multiplying eqns. (1) and (2) by c¢; and sum-
ming over all components we obtain

Z f:icicj(ui_uj)=_z cv; grad p

if i

=Y cigrad pi+Y ciF; 3)
i i

By definition

ZC,'V,‘= 1 (4)
and
J i=CiU; (5)

where J; is the flux of component i. Also,
according to Gibbs-Duhem equation

Z‘,ci grad ;=0 ‘ (6)

Inserting these relations into eqn. (3) we obtain

zﬂic)""'—zﬂici"ir-zciﬁ —grad )4 (7)
ij ij i

The condition for mechanical equiblibium is

ZC,F,- —grad p=0 8)

Inserting this into eqn. (7) and rearranging the
left side (by changing the dummy indexes of the
second sum) we have at mechanical equilibrium

L (y=fiedi=0 ©)

Obviously mechanical equilibrium is a necessary
condition for the reciprocal relations to hold.

To show that it is also a sufficient condition we
make the substitution

Fy=fi (10)
and rewrite eqn. (9) in the form
L Fic) =0 (11)

i=1j=1

For nonvanishing coefficients this equation con-
stitutes a permanent constraint on the diffusive
fluxes J; (note that here the condition of mecha-
nical equilibrium is essential; if the right side of
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eqn. (11) does not vanish it is a function of the
external forces and the equation is merely
another version of the phenomenological equa-
tions). However, the only admissible constraint
in diffusion is concerned with the volume flux,
which normally vanishes in the laboratory-fixed
coordinate system

n
J,=YviJi=0 (12)

i=1
The two constraints cannot be equal, however, as
they transform differently when the coordinate
system is changed. Transforming to a coordinate
system moving with the constant velocity —u in
the original laboratory-fixed coordinate system,
we obtain the new fluxes

J,-'=c,-(u+u,-)=],~+uc,- (13)
Thus, eqn. (12) transforms to
, n , n
]v'——ZV,'J,' =u2c,~v,-=u (14)
i=1 i=1

On the other hand eqn. (11), being defined in
terms of relative velocities only, remains un-
changed in the transformation

S CLF ) =uTF =0 1)
L

i=1j=

Therefore, the constraint represented by eqn.
(11) must vanish, which implies that the coeffi-
cients in eqn. (11) all vanish

n
Y Fici=0;i=1,...n
=1

(16)

However, eqn. (4) represents the only possible
constraint on the concentrations. As eqn. (16) is
homogeneous, whereas eqn. (4) is inhomogene-
ous, they cannot represent the same constraint
[putting the first n-1 concentrations equal to zero
yields ¢,=1/v, according to eqn. (4) and c,=0
according to egn. (16)]. Thus, the constraints
represented by eqn. (16) must vanish, which
implies F;=0, or
f;"= jis i,j=1, ..n (17)
The present proof is purely phenomenological
and demonstrates that the Onsager reciprocal
relations are necessary for the conservation of the
degrees of freedom of the system. The condition
of mechanical equilibrium is here equivalent to
the requirement that the fluxes and forces should
be derived from the expression for entropy

production, since only at mechanical equilibrium
is all work dissipated in the system. Thus, at
mechanical equilibrium

Y XJ=¢=Toc (18)
i=1

where ¢ is the dissipation function and o the
entropy source strength. The dissipation function
can be expressed in a compact form in terms of
the relative velocities. From egns. (1), (5), and
(18) we obtain (by changing the dummy indexes
and using the symmetry of f;)

¢=Zfiﬂ—‘x€j(ui2“uiuj) =
ij
il nycuff(lé —uu)
ij

+2 i (U — i) ]=
i

Dficeiu—w)®

ij

(19)

This equation demonstrates the positive definite
character of the dissipation function. It also
shows that the friction coefficients are completely
determined in terms of the relative velocities of
the components. In the frictional formalism only
the coefficients f; are arbitrary, as they make no
contributions to eqn. (1). We may therefore
define f;=0 (i=1,...n). Note that with this con-
vention the matrix of the friction coefficients is in
general non-singular, which is easily verified
when the number of components is small.
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