The Structure of the Stereoisomeric 3-Amino-2,4-diphenyl-2-butenenitriles

SVEND TREPPENAHL,* PALLE JAKOBSEN * and CARSTEN BERG b

* Department of Chemistry, University of Copenhagen, Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark and b Prom's Kemiske Fabrik, DK-4771 Kalvehave, Denmark

The β-amino- (I) or β-iminonitrile (2) formed by base-catalyzed dimerization of phenylacetone-nitrile 2 has been a subject for structure considerations several times in the literature. In older literature 1,2 the compound was always named β-iminonitrile although the structure was believed to be β-iminonitrile because hydrogenation gave a diamino compound. 2 Later, 3 on basis of UV investigations, the structure of a crystalline modification was determined as the amino compound and that of an oily form was believed to be the imino tautomer with the former predominating in solution.

\[
\begin{align*}
\text{NH}_2 \text{CN} & \quad \text{C}_6\text{H}_5\text{CH}_2 - \overset{\text{C}}{_} - \overset{\text{C}}{\text{C}_6\text{H}_5} \\
\text{C}_6\text{H}_5\text{CH}_2 - \overset{\text{C}}{\text{C}_6\text{H}_5} & = \overset{\text{C}}{_} \quad \overset{\text{C}}{_}
\end{align*}
\]

Since then the structures of the isomers have not been investigated specifically and the compounds are generally believed to be 3-amino-2,4-diphenyl-2-butenenitrile I. 4 The presence of two isomers with identical constitution formula has never been noticed.

The question regarding the two isomers came up because the dimer after purification by distillation 1 could be separated into two fractions by recrystallization, an oily and a crystalline fraction. The two fractions gave identical elemental analyses and hydrogenation products. 2

We have found that the dimer when analyzed on an HPLC Partisil 10 ODS column with acetonitrile–water as eluent gave two close but discrete peaks indicating the presence of two compounds in the ratio 2:1. Each isomer gave the same isomer distribution when analyzed on HPLC, indicating the isomerization to be very fast in that solvent. In chloroform, however, the isomerization was fairly slow so each isomer could be studied. The IR spectra of the two isomers recorded in CHCl₃ were almost identical. There were some small differences in band intensities. The most prominent differences were two absorptions at 1285 and 1270 cm⁻¹ in the crystalline form missing in the oily modification. These dissimilarities can be ascribed to small differences in the carbon skeleton. Stretching vibrations at 3500 and 3400 cm⁻¹ indicate that both isomers are amino compounds I. The C≡N stretch vibration at 2195 cm⁻¹ is strong and indicates the nitrile is conjugated. No imino stretching vibration expected around 1660–1680 cm⁻¹ was seen.

The 1H NMR spectra of the two isomers also showed that only the amino form I was present in CDCl₃. The chemical shift value for the amino group was 4.81 ppm (2H). No CH signal from an imino form 2 was seen around 4.87 ppm, where the CH resonance for 3-oxo-2,4-diphenylbutenitrile is found. The CH could, however, be covered by the amino signal but demasking with D₂O did not show any CH signal.

Since the IR and NMR spectroscopic evidence shows that both isomers are amino forms the two compounds must be Z/E isomers.

\[
\begin{align*}
\text{C}_6\text{H}_5\text{CH}_2 & \quad \text{C}_6\text{H}_5 \\
\text{H}_2\text{N} & \quad \overset{\text{C}}{\text{C}_6\text{H}_5} \quad \text{CN} \\
\text{E} & \quad \text{C}_6\text{H}_5 \\
\text{H}_2\text{N} & \quad \overset{\text{C}}{\text{C}_6\text{H}_5} \quad \text{CN}
\end{align*}
\]

The rotation is less hindered than the rotation around the normal CC double bond because the electron-donating and electron-attracting substituents attached to each end of the double bond is stabilizing the dipolar transition state for the rotation.

The significance of these resonance forms is stressed by the great diamagnetic shift for the 13C NMR chemical shift for C-2 which is found at 81.1 ppm. The C-2 chemical shift for butenedinitrile is found at 120 ppm. 9

The 1H NMR spectra of the two isomers are almost identical except for the chemical shifts of
Experimental. The experimental equipment was reported earlier.\(^6\) Melting points are uncorrected, IR spectra were recorded on a Perkin Elmer model 298 grating spectrophotograph. 3-Amino-2,4-diphenyl-2-butenenitrile was prepared in accordance with the previously published method,\(^2\) and purified by vacuum distillation. The two isomers were separated by recrystallization from ethanol.

3-Amino-2,4-diphenyl-2Z-butenenitrile. M.p. 103–108 °C. Anal. C\(_{15}\)H\(_{14}\)N\(_2\): C, H, N. \(^1\)H NMR (CDCl\(_3\)): δ 3.65 (2 H, s), 4.75 (2 H, broad), 7.05–7.45 (10 H, m). \(^13\)C NMR (CDCl\(_3\)): δ 158.1, 135.8, 133.7, 129.4, 129.2, 128.9, 128.7, 127.3, 126.8, 120.3, 81.0, 37.1. IR (CHCl\(_3\), cm\(^{-1}\)): 3500 (m), 3400 (m), 3000 (m), 2195 (s), 1625 (s), 1580 (s), 1495 (m), 1285 (m), 1270 (m).

3-Amino-2,4-diphenyl-2E-butenenitrile. B.p. 190–195 °C/0.5 mmHg. Anal. C\(_{15}\)H\(_{14}\)N\(_2\): C, H, N. \(^1\)H NMR (CDCl\(_3\)): δ 3.60 (0.3 H, s), 3.83 (1.7 H, s), 4.76 (2 H, broad), 7.05–7.45 (10 H, m). \(^13\)C NMR (CDCl\(_3\)): δ 158.3, 157.0, 135.9, 133.3, 129.4, 129.2, 128.6, 128.8, 128.5, 127.3, 127.1, 126.9, 122.1, 120.3, 81.1, 40.3, 37.0. IR (CHCl\(_3\), cm\(^{-1}\)): 3500 (m), 3400 (m), 3000 (m), 2195 (s), 1625 (s), 1580 (m), 1495 (m).

Received April 15, 1983.