Letter Nitration of Polycyclic Aromatic Hydrocarbons with Dinitrogen Tetroxide. A Simple and Selective Synthesis of Mononitro Derivatives ## **FINN RADNER** Organic Chemistry 3, Chemical Center, University of Lund, Box 740, S-220 07 Lund, Sweden Polycyclic aromatic hydrocarbons (PAH:s) are generally nitrated with HNO₃ in acetic acid or acetic anhydride. ¹ Yields are normally good, but work-up procedures are often tedious and polynitration is sometimes encountered. ^{1,2} A few reports on the reaction between PAH:s and nitrogen oxides have appeared, ^{3,4} most recently 9-nitrophenanthrene being detected in the complex reaction mixture from the UV-irradation of a solution of N₂O₄ and phenanthrene in CCl₄. ^{3c} The exposure of some PAH:s to gaseous NO₂/N₂O₄ led to the formation of nitro PAH:s, some of which have been discussed in relation to the carcinogenic effects of automobile exhaust and tobacco smoke. ^{4,5} In this letter we present our initial studies on the reaction between some PAH:s and N₂O₄ in Cl₂Cl₂ solution. The reaction is very clean and rapid and provides, under mild Table 1. Nitration of polycyclic aromatic hydrocarbons with dinitrogen tetroxide. | PAH | Catalytic amount of CH ₃ SO ₃ H added | Reaction time/h | Yield ^a /% | Isomer distribution 6/% | | | |--------------|---|-----------------|------------------------------------|-------------------------|-------------|--| | Perylene | No | | 95 ^b | 3-nitro | 99.2
0.8 | | | Pyrene | No | 0.5 | 97 ^b | Î- | 100 | | | Anthracene | No | 1 | $>90^{c,d}$ | 9-
6- | 100
97 | | | Chrysene | No | 24 | >90° | other
mononitro | 3 | | | Naphtalene | No | 48 | 59° | 1-
2- | 96
4 | | | | | | | 2- | 90 | | | Fluorene | No
Yes | 24
2 | >90°
92° | 2-
3-
4- | 1
9 | | | Fluoranthene | No | 24 | 75 ° | 4-
3- | 63 | | | | Yes | 0.4 | 90 ° | 8- | 27 | | | | | | | other
mononitro | 10 | | | Binaphtyl | No
Yes | 24
1 | >90°
89° | 4- | 100 | | | Triphenylene | No
Yes | 120
2 | 50 ^c
92 ^b | 1-
2- | 22
78 | | ^a Yield based on PAH; identity and purity confirmed by MS ^e and GLC. ^f b Isolated yield. ^c Determined by GLC. ^d 5–7 % of 9,10-anthraquinone was also formed. ^e Finnegan 4021 spectrometer operating at 70 eV. ^f HP 5380A gas chromatograph equipped with an HP 18850A integrator. 0.5 m×1.8 mm glass-lined column; 5 % OV 1701 on Chromosorb W. ^{0302-4369/83 \$2.50} ^{© 1983} Acta Chemica Scandinavica Table 2. Isomer distribution in the nitration of some PAH:s with HNO₃ in acetic anhydride and with N₂O₄ in CH₂Cl₂. | PAH | Fluorene | | | Trip | Triphenylene | | Chrysene | | Fluoranthene | | |--|----------|----|---------|----------|--------------|----------|----------------|----------|--------------|----------------| | Isomers | 2- | 3- | 4- | 1- | 2- | 6- | other
mono- | 3- | 8- | other
mono- | | Conditions for nitration | | | | | nitro | | | nitro | | | | HNO ₃ /Ac ₂ O ^a | 69 | 2 | 29 | 54 ° | 46 | 90 | 10 | 44 | 27 | 29 | | HNO ₃ /Ac ₂ O ^b
N ₂ O ₄ /CH ₂ Cl ₂ | 71
90 | 1 | 28
9 | 55
22 | 45
78 | 89
97 | 11
3 | 45
63 | 26
27 | 29
10 | ^aFluorene: 0°C;^{7a} triphenylene: 60°C;^{7b} chrysene: 0°C;^{7c} fluoranthene: 25°C.^{7d} ^b0°C, this work. ^cA value of 50:50±5% has also been reported.^{7e} conditions, almost quantitative yields of mononitrated PAH:s after a simple work-up procedure that minimizes handling of these hazardous compounds. We have earlier reported 6 that the reaction between N₂O₄ and naphthalene in CH₃CN or CH₂Cl₂ yields mononitronaphthalenes with a 1/2 ratio of 25 and that the reaction is acid catalyzed. During the continuation of these studies with more reactive substrates we found that perylene was very rapidly nitrated by N₂O₄ in nearly quantitative yield in the absence of any acid catalyst. We therefore decided to extend our studies to some other PAH:s (Table 1), and found that pyrene and anthracene were also rapidly nitrated without added acid while the other compounds in the study required longer reaction times and/or acid catalysis. The reaction shows high positional selectivity (Table 2), and in the case of triphenylene nitration takes place predominantly at the less hindered but less reactive 2-position (as does sulfonation, acylation and bromination), while nitration with HNO₃ in acetic anhydride gives a small excess of 1-nitro-triphenylene. The Mechanistic studies on the reaction are in progress. Experimental. Materials. The PAH:s used were of highest commercial quality available and used without further purification. Dichloromethane (Merck zur Rückstandsanalyse) was dried and stored over 3 Å molecular sieves. Solutions of N₂O₄ were made up as described previously. ^{6a} Nitrations with N_2O_4 . The PAH (2.5 mmol) in 125 ml CH₂Cl₂ and 2.7 mmol of N_2O_4 in 25 ml CH₂Cl₂ were mixed and allowed to stand at room temperature for the appropriate time. In some cases 0.5 mmol CH₃SO₃H was added. Most of the solvent was evaporated and 1 g of silica gel 60 (Merck, 230-400 mesh) was added. After completed evaporation the yellowish powder was placed on top of a column packed with silica gel and eluted with CCl₄ (containing up to 10 % CH₂Cl₂). Order of elution: Triphenylene, 1-, 2-; fluorene, 3-, 4-, 2-; perylene, 1-, 3-; fluoranthene, 1-, 7-, 3-, 8-; naphthalene, 1-, 2-; Nitrations with HNO₃/Ac₂O. To the PAH (5 mmol) in 5 ml Ac₂O at 0 °C was added 0.33 ml of concentrated HNO₃ in 1.67 ml Ac₂O over 30 min. After another 30 min of stirring the reaction mixture was poured onto ice/CH₂Cl₂ and the organic layer washed with water and analyzed by GLC. Acknowledgement. Grants from the Swedish Natural Science Research Council are gratefully acknowledged. - Seidenfaden, W. and Pawellek, D. Houben-Weyl, Methoden der Organischen Chemie, Thieme, Stuttgart 1971, Bd X/I, p. 488. - Ristagno, C. V. and Shine, H. J. J. Am. Chem. Soc. 93 (1971) 1811; Looker, J. J. J. Org. Chem. 37 (1972) 3377. - a. Monti, L., Martello, V. and Valente, F. Gazz. Chim. Ital. 66 (1936) 31; b. Cantrell, T. S. and Shechter, H. J. Org. Chem. 33 (1968) 114; c. Barlas, H., Parlar, H., Kotias, D. and Korte, F. Z. Naturforsch. B 37 (1982) 486. - Pitts, J. N., Jr., Cauvenberghe, K. A. V., Grosjean, D., Schmid, J. P., Fitz, D. R., Belser, W. L., Jr., Knudson, G. B. and Hynds, P. M. Science 202 (1978) 515; Tokiwa, H., Nakagawa, R., Morita, M. and Ohnishi, Y. Mutat. Res. 85 (1981) 195; Schuetzle, D., Rlley, T. L., Prater, T. J., Harvey, T. M. and Hunt, D. F. Anal. Chem. 54 (1982) 265. - Tokiwa, H., Nakagawa, R. and Ohnishi, Y. Mutat. Res. 91 (1981) 321; Ho, C. H., Clark, B. R., Guerin, M. R., Barkenbus, B. D., - Rao, T. K. and Elper, J. L. Mutat. Res. 85 (1981) 335; Oghaki, H., Matsukura, N., Morino, K., Kawachi, T., Morita, K., Tokiwa, H. and Hirota, T. Cancer Lett. 15 (1982) 1. - a. Eberson, L., Jönsson, L. and Radner, F. Acta Chem. Scand. B 34 (1978) 749; b. Eberson, L. and Radner, F. Acta Chem. Scand. B 34 (1980) 481. - a. Dewar, M. S. J. and Urch, D. S. J. Chem. Soc. (1958) 3079; b. Barker, C. C., Emmerson, R. G. and Periam, J. D. J. Chem. Soc. (1955) 4482; c. Dewar, M. S. J., Mole, T., Urch, D. S. and Warford, E. W. T. J. Chem. Soc. (1956) 3572; d. Streitwieser, A., Jr. and Fahey, R. C. J. Org. Chem. 27 (1962) 2352; e. Bavin, P. M. G. and Dewar, M. S. J. J. Chem. Soc. (1956) 154. Received October 15, 1982.