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Multivariate Data Analysis of Substituent Descriptors
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A matrix containing seven often used substituent
descriptors (Hammett sigmas etc.) for twenty-eight
substituents is studied by multivariate statistical
analysis.

The results show: (a) Strong grouping of the sub-
stituents into four separate classes; alkyls, donors,
acceptors and halogens. (b) Separate models for the
classes are superiour for describing the intra class
structures compared to a whole set model. (c) A
high collinearity between some of the descriptors.

As discussed, the found grouping and the
collinearity can be limiting factors in the use of
multiple regression in quantitative structure-activity
and structure-reactivity studies.

In some of our previous work we investigated the
application of multivariate statistics in physical
organic chemistry. Substituent effects’ ~¢ in linear
free energy relationships (LFERs), has been an
area where statistical tools have shown to be
valuable.”~® Thus, a principal component (PC)
model with one component (A=1 in eqn. (1)
below) has the same form as a simple linear regres-
sion equation (M =1 in eqn. (7) below) and as the
Hammett equation.’® Hence a PC model has been
used to derive a unified substituent scale for iso-
lated benzene systems, independently of a single
reference reaction.?

The main difference between the linear regression
and the PC analysis lies in the assumptions about the
substituent parameters. In the former analysis, the
values of the independent variable(s) x; (the substit-
uent constants) are assumed to be exactly known
and 100 9, relevant to the description of the data
set under examination.!! In the latter approach no
assumption about the relevance of the variables
x; is required, since this relevance is obtained from
the statistical analysis.
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The two philosophies diverge even more when
the number of explanatory variables is increased,
as, for instance, in the multiple regression analysis
(MRA) of dual or multiple parameter equations [see
eqn. (7)]. To get statistically sound results, the
application of MRA requires that the x variables
are independent and fairly non-collinear of each
other. However collinearity can be tested for. In
contrast, PC analysis is insensitive to collinearities
and in fact uses them to estimate the components 6,
In other words in MRA one first needs to define
“fundamental” effects. Thereafter one tries to inter-
pret the results in terms of the definitions previously
agreed. With PC analysis no such definitions are
required. The results are usually interpreted just
in terms of the components needed to model the
data set. They can also be related to the effects
currently believed to be measured by the variables
used in the input.

A further statistical problem with MRA is the
heavy dependence of the results upon the number
of observations in relation to the number of
independent variables. As discussed by Topliss and
Edwards !? this problem also arises when variables
are selected or screened from a larger ensemble.
Thus when the number of screened independent
variables exceeds the number of observations, the
risk for spurious correlations is serious. For example,
with 5 independent variables and 10 observations,
the probability for chance correlation, P,, (r2 > 0.8) is
0.05. If the number of screened variables is increased
to 10, then P,=0.30. This problem is amplified if
the independent and independent variables are
grouped in the same way. If we have, say, twenty
observations grouped in five classes the chance
correlation approaches the case with five observa-
tions. We note (see Ref. 12) that with five observa-
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tions and five variables P,=0.30, but with twenty
observations and five variables the chance correla-
tion is negligible.

We have previously pointed out the problem of
grouping for the substituent constants measuring
the inductive and mesomeric effects. In the two-
dimensional space defined by ¢ and oy the points for
some twenty-four of the most common substituents
are located in such a way that ca. 50 9 of the points
lie within a narrow area, and the others are spread
out in various directions.>*® Owing to this situa-
tion, it follows that a certain number of appro-
priate substituents has to be used in MRA to obtain
significant results.!3

In order to investigate whether the same situation
also applies to the case with an increased number
of variables (substituent scales), we were tempted to
make a PC analysis of a matrix containing some of
the mostly used descriptors of substituents. In this
report we describe the result obtained by applying
the PC model to a data set formed by values of
seven variables %, o0 %, Q!4 6" or o7'%,
E$8, 7'6, and molar refractivity (MR)'® for twenty-
eight common substituents. Thus the variables
used are measures of various electronic, steric
and polarizability effects.

METHODS

The PC method is presented in detail in Refs. 1,
2,7,17 and 18. Therefore, we will limit the presenta-
tion to a brief summary. For an introduction to
multiple regression see Ref. 19.

Principal components analysis

The descriptor matrix Y contains the elements y;,
where index i is used for the descriptors (variables)
and index k for the substituents (objects). From this
data matrix the number of cross-terms, 4, and then
the parameters a;, 8;, and 6,, in eqn. (1) are estimated
by minimizing the squared residuals &;.

A

V=%t Y Bialu+ e (1)

a=1

In this model «; and f;, are constants, which only
are dependent on the descriptors and 6, are the
substituent dependent parameters. The deviations
from the model are expressed by the residuals &.

Before applying any statistical analysis, the
descriptor values were auto-scaled. This means
that the variables are given the same variance (fixed
to unity). With this scaling all variables are given
the same importance in the PC analysis.

First a model with A =0 is fitted to the data, which
means that each descriptor is given as its mean value
o;. Then the «; value for each variable is subtracted
from the matrix elements y,, thus giving the residuals
of dimension zero. If these residuals now contain
systematic information, the f;,0, term is estimated.
Whether the residuals contain information or not
is determined by cross-validation [for the details
see Ref. (18)]. Then new residuals are calculated by
subtracting the term f,6,. If the new residuals
contain systematic information additional 80, terms
are then estimated one after the other, until the
residuals just contain noise.

After a model has been determined with
autoscaling, it can be refined by a reweighting of the
variables, in this case by multiplying each variable
with its modelling power ¥, defined in eqn. (2).

¥i=(1-5/S) 9]

Here s; and S;y are the residual standard deviations
for variable i with A4 significant components and
with 4=0, respectively. This means that variables
for which the 6 terms contain no or little informa-
tion, will have modelling powers close to zero.
Thus with this type of reweighting, such variables
are given small weights.

Once a class model is determined, a data vector
¥ip of a substituent p can be fitted to the class param-
eters by MRA as in eqn. (3). The class model is
characterized by the o; and f;, parameters estimated
from a data set with M variables and N substituents.

A
Yip— %= Z tapoak +eip ' (3)
a=1

How well the data vector for the substituents fits
the model is expressed by the residual standard
deviation s, in eqn. (4). By comparing the size of

M
s.,=[ > e?,,/(M—A)]"Z @
i=1

sz with S [eqn. (5)], with the F-test in eqn. (6), we
can decide if a substituent data vector belongs to a
certain class or not. S, is the total residual standard
deviation for a class with A significant components.
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Multiple regression analysis

In the multiple regression model (7) a data vector
¥, (the dependent variable) is fitted to a fixed number
of M independent variables x; The model

M
W=Cot Y CiXuctex ]
i=1

is characterized by the regression coefficients c,
and ¢; (i=1— M). For example, in structure-activity
or structure-reactivity studies, y, is a vector consist-
ing of activities or reactivities for a set of similar
compounds modified by changing substituents. The
independent variables are then a set of substituent
descriptors like those analyzed in this paper. Note
that once a PC model is determined, the new 0,
substituent descriptors can be used in eqn. (7) as
independent variables instead of x;. The advantage
is that usually A € M and that the 8, parameters are
orthogonal to each other thus avoiding collinearity
problems.

RESULTS AND DISCUSSION

. The application of a PC model to the whole data
set shows that only two components are significant
according to the cross-validation. Ca. 82 9; of the
total variance is described by the two components
model. For the the optimized model, the parameters
specific for the variables («; and f;,) are given in
Table 1 and the parameters specific for the substit-
uents (0,) are given in Table 2. In Fig. 1, the §;
parameters are plotted against f;, for each variable.
It is noteworthy that the first component contains
mainly the contributions of the electronic variables
(seen from their high absolute values of ;) and the
second component contains mainly information
from the remaining three variables (seen from their
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high absolute values of 8;,). Fig. 1 also indicates the
degree of collinearity between the variables. Vari-
ables highly correlated to each other lie either very
near each other (r=1) or in a symmetrical position
with respect to the center of the diagram (r~ —1).
In the present case, we observe that the four. elec-
tronic descriptors all lie within a small range, thus
pointing out the redundancy of the o scales for this
data set, whereas Eg contains some non-redundant
information and both = and MR fall in a third
region of the diagram. V

A plot of the values of the two components, 6,
and 8,, for each substituent, i.e. the values that each
substituent assumes along the new dimensions of
the reduced 7-dimensional space, is shown in Fig.
2. It clearly indicates that the substituents-do not
constitute a single homogeneous class, but are
strongly grouped according to their chemical nature.
Especially the first component, containing the
“electronic” variables, seems to discriminate be-
tween the classes. Four separate subsets of substit-
uents can be recognized: alkyls, halogens, acceptors
and donors. Such strong grouping into four classes
was also recognized in a multivariate analysis of 1 >C
NMR shifts of more than seventy monosubstituted
benzenes.°

We note that Hansch et al.?! have investigated
a similar data set consisting of 8 variables and 90
common substituents by an hierarchical clustering
analysis. The aim was to find substituents with
similar properties. However, the number of clusters
was determined in advance. Different analyses with
5, 10, 20 and 60 globular clusters were performed.
This explains the difference between their results
and ours. For example, in their analysis such diverse
substituents as alkyls, donors and acceptors can
be found within the same cluster. The present overall
analysis shows that most of the variance in the data
is described by a two-components model. Therefore,
the grouping (clustering) of the substituents can be
evaluated directly from Fig. 2, and no initial assump-

Table 1. Model parameters («;, 8;; and f;,) for the whole data set.

a? ad ad atl- Eg T MR
wi 2.80 223 2.03 1.06 0.537 0410 0.056
o 0.719 0.415 —-0.207 0.056 —0.789 0.117 0.676
B, —0.460 ~0.547 —0314 —0.596 0.149 0.113 0032
Biz —0.167 —0.040 0.182 0.084 —0.577 0.499 0.590

“The weights for the optimized model. The weights after autoscaling are; 4.30, 3.02, 4.06, 1.32, 1.10, 0.92 and 0.12.
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Table 2. Components for the whole set model and residual standard deviations s, for each substituent when
(i) fitted to the whole class model, (ii) to its own class model (classes; alkyls, halogens, acceptors and donors)

and (jii) to its next closest class. The residual standard deviations are denoted s,(i), s,(ii) and s,(iii).

k Subst. 61 02 Sk (i) Sy (ii) Sk (iii) F:alc.
1H 0.610 —-0.698 0.423 0.32(A) 17
2 Me 0.890 -0.122 0.248 0.063 0.37(D) 4.0
3 Et 0.879 0.140 0.199 0.017 0.36(D) 38
4i-Pr 0.879 0.515 0.164 0.061 0.37(D) 40
5 t-Bu 0.832 1.089 0.190 0.109 0.48(D) 6.8
6 CH,Ph 0.707 1179 0.334 0,020 0.52(D) 80
7 Ph 0.503 1.621 0.235 0.073 0.61(D) 11.
8 F 0225 —~0.840 0218 0.027 0.46(D) 63
9Cl —0.119 —0.364 0.218 0.045 0.39(D) 4.5
10 Br -0.175 —0.186 0.227 0.027 0.34D) 34
111 —-0.147 0.123 0.226 0.041 0.25(D) 1.8
12 CF, —1249 0.154 0276 0.30 0.48(H) 689
13 CO,Me —1.235 —0.006 0.222 0.13 0.60(H) 138
14 COPh —1.129 1.415 0.173 0.10 0.40(H) 62
15 CHO —1.479 -0.137 0.228 0.18 0.65(H) 162
16 CO,R - 1.066 0.194 0.144 0.03 0.48(H) 89
17 CO,H —-1.210 -0.108 0.287 0.18 0.62(H) 148
18 SO,NH, - 1.767 —0.491 0.324 0.27 0.78(D) 18
19 SO,Me —2.083 —0.430 0.315 0.22 0.88(D) 23
20CN —1.881 —-0451 0.103 0.11 0.72(H) 199
21 NO, —2388 —0.055 0.193 0.18 0.82(H) 258
22 OMe 1.360 —0.557 0.083 0.16 0.39(A) 18
23 0OH 1.614 —0.806 0.135 0.13 0.41(A) 120
24 OPh 1.074 1.181 0.322 0.035 0.35(A) 15
25 SMe 0.855 —-0.032 0.134 0.14 0.33(A) 13
26 NH, 2.111 -0.810 0.264 0.071 0.67(A) 53
27 NMe, 2.374 —-0.230 0.216 0.071 0.84(A) 83
28 NHAc 0.954 ~0.147 0.367 0.21 0.51(A) 3

*Components for the whole set model. ® F-Test according to eqn. (6) testing if a substituent data vector belongs to its
next closest class. Fy, o5 =29, 3.0 and 2.6 when a data vector is fitted to the alkyl, halogen or donor class models,
respectively. “Next closest class given within parentheses A =alkyls, H=halogens and D=donors.
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Fig. 1. A plot of B;, against §,, for the whole set
analysis.

tion about the shape of the clusters has to be made.

Another investigation similar to the present
one is that of Nieuwdorp et al.22 In this paper factor
analysis was applied to a data set consisting of
17 substituents and 76 reactions series, representing
a wide span of reaction types. For each of the
substituents three parameters were estimated from
a model similar to eqn. (1) with A=3. By plotting
the three estimated constants for the substituents
against each other, we find the same strong grouping
of the substituents as in the present work.

If the four substituent classes are described by
separate PC models, by pooling the variances??
with 4=0 reported in Table 3, we see that 73 9,
of the total variance is described. The same scaling
is retained as in the overall analysis to enable a
comparison. Thus the conclusion is that 73 9,
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! 2 6

Fig. 2. Plot of the first against the second component for the whole data set model. Numbers identifying
substituents as in Table 2; @, acceptors; W, donors; A, alkyls; x, halogens.

of the total variance in the data consists of interclass
variance while 27 %, of the variance is due to intra-
class variance. Since the overall analysis with 2
components explains 82 9 of the total variance, the
overall analysis mainly explains the interclass
variation in data and only a minor part of the
intraclass behaviour, see Fig. 3.

The high significance of the grouping is also con-
firmed by an analysis of variance.?* Thus, the
description of the data-set (— H is not included) is
significantly better (P<0.01) by the present four
models with A=0, than by an overall model with
A=0.

The intraclass structures are better described by
separate class models with A=1 in the case of the

halogens and by A=2 for the other classes. These
models describe 92 % of the variance in the whole
set data or 70 % of the pooled variance for the
separate class models with A=0 (see Fig. 3). This
shows that for the given set of substituent descriptors
separate class models are superior to a single overall
model for describing the intraclass structure.

In addition, the separate class models can be
further refined by using the same weighting strategy
as for the whole class analysis. Thus as much as
93 9, on an average of the intraclass structure is
described if the data for each class first is autoscaled
and then reweighted by multiplying each variable
with its modelling power. The variance for the
models with this weighting are given within paren-

Table 3. Residual standard deviation after model expansion for the whole set and for each subset with the
same scaling. The value within parentheses for the separate class models refer to the optimized models
with individual scaling and therefore the values in the different rows are not strictly comparable. The per-
centages of the variance with A=0, explained by models with A=1 and 4=2 are denoted V, % and V, %,

Set ne So(A=0)" S, (A4=1) S,(4=2)" V% V, %S
Whole 28 0.605 0.361 0257 64 82
Alkyls? 6 0316 0.197 0.092 61 92
(0.471) (0252) (0.091) ) (96)
Halogens® 4 0.174 0.051 92
(0.334) (0.059) o7
Acceptors* 10 0322 0255 0214 38 56
0.279) (0.194) 0.073) (52) 93)
Donors? 7 0367 0253 0.184 52 75
(0.473) 0.177) 86

“Number of substituents. ®Residual standard deviation for the PC models with 4=0(S,), A=1(S,) and 4=2(S,).
¢ Percentages of the variance with 4 =0, explained by models with A=1 [V, % =100(1-S,/S,)] and by the models with
A=2[V,%=100(1-S,/S,)]. “The substituents are for alkyls; 2—7, halogens; 8 — 11, acceptors; 13—21 and donors

22-28. For numbering see Table 2.
Acta Chem. Scand. B 37 (1983) No. 1
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100% Sg (A=0), whole set
[82% 18% 322 (A=2], whole set
by
[73% 27% SZ pool.(A=0)
interclass variance |intraclgss variance
[92°% 8of, 2 Sf pool.(A=] or2)
| 1
100%, 50% 0 50% 100%,

explained variance

not explained variance

modelfs)

Fig. 3. Illustration of the sizes of the residual variances for different models expressed as % of the residual
variance of the overall model with A=0. When the four separate classes are described by their mean values,
73%, of the total variance is described. Thus the 739 can be assigned as interclass variance. Of the 27%;
intraclass variance, the whole set model only explains 9 %, (b,) and the four separate models explain 19 % (b,).
Thus the overall model with A=2 explains ~ 339 and the four class models ~ 709 of the intraclass

variance.

theses in Table 3.

In the separate class models the contribution from
the different variables varies considerably. For
donors the “electronic” variables dominate (62,69
and ¢*/~) while for the halogens the “non-electron-
ic” variables dominate (E5, # and MR). For the
alkyls 63, 6*/~, Eg, @ and MR contribute, while
for the acceptors mainly 63,  and MR are important.
This can be seen from the f-values and modelling
powers for the different intraclass structures are not
parallel to each other and consequently they are
not parallel with the interclass behaviour.

The four subsets are well separated, as indicated
by the residual standard deviations given in Table 2,
obtained by the SIMCA’ classification method.
The standard deviations are given for each substit-
uent (i) when fitted to the overall model, (ii) to its
own class model and (iii) to its next closest class. The
residual standard deviations in case (i) and (iii)
are significantly larger (P=0.05) in all cases except
one, compared to the standard deviation in case
(#i). The exception is iodine that also fits the donor
class, seen from the F-test in Table 2.

The class separation is clearly seen in Fig. 2.
However, the figure is somewhat misleading with
respect to substituents 25 and 28 (SMe and NHAc).
These substituents are not close to the alkyls model.
Their positions in the plot are due to an artifact of
the projection of the data down on a plane.
Hydrogen was not initially assigned to any of the
classes. Indeed it does not belong to any class
according to the F-tests (see Table 2). It is also
noticable that Ph is well described by the same
model as the alkyls, even if Ph formally not is an

alkyl substituent.

To summarize the results: A strong grouping in
the substituent descriptors is found. An overall PC
model mainly explains interclass variation and little
intraclass variation. Separate models for separate
groups of substituents describe the intraclass be-
haviour much better than a single overall model.
The separate models do not parallel with their
interclass behaviour. In the overall model a high
collinearity is found between some of the descriptors.

These findings will be important in structure-
reactivity and structure-activity studies. With
respect to the first area, we note that each subset
has its own particular intraclass structure. A
general theory that is able to cope with these class
structures is not yet available. In structure-activity
studies one rarely finds suitable model systems that
are approximately linearly related to the properties
of the system under investigation. Hence several
substituent scales are used in a multiple regression
model and the problems discussed above become
serious. We also note that the present set of
descriptors is widely used in structure-activity
studies (see Ref. 16). If the present descriptors are
used as independent variables in MRA, the result
will be an unstable model which will have poor
predictive ability due to the strong collinearity
between some of the descriptors.'® We also note that
the statistical tests on the regression coefficients
in MRA assume that the objects are not grouped.
If they are grouped, the confidence intervals of the
regression coefficients will be deceptively smail
and the correlation coefficients deceptively high.

The collinearity problem could be circumvented

Acta Chem. Scand. B 37 (1983) No. 1



by using the present 6, and 6, substituent param-
eters as independent variables in MRA instead.
However, also in this case, the limitations for MRA
are present due to the grouping of the substituents.
This means that the prediction of a compound
with unknown behaviour will not be much better
than by using the mean value of the dependent
variable for the already measured compounds in
this class. However, in order to reasonably well
define separate class models, at least 4—5 substit-
uents must be present in each class. If one or more
of the separate classes not are represented in the
dependent variable and we want to make a
prediction for a compound in the missing class,
this can only be obtained if the relative position of
the classes is the same in the dependent variable
and independent variable. Whether this assumption
is valid or not remains to be investigated.

Supplementary material available. Data used, «;,
B.. and 0, for the four subclasses and classification
results, can be obtained on request from the
authors.
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