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A Very Simple One-Variable Flip-flop Model of the

Belousov-Zhabotinskii Reaction
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On the basis of the socalled “Oregonator” model
by Field and Noyes for the oscillating Belousov-
Zhabotinskii reaction, a very simple one-variable
model is proposed with virtually the same be-
haviour as the three-variable Oregonator model.
The present model is inspired by the classical
treatment of relaxation-oscillations by van der
Pol.

The model involves quasi-stationarity assump-
tions for the intermediary compound HBrO, and
for Br~. Bromide is stationary except at two
critical concentrations, where the concentration
“flips” and “flops” almost instantaneously be-
tween two separate branches of the stationarity
curve for Br. The limit cycle then involves a
rapid movement in the phase plane along an
“A-branch” triggered by a pulse of HBrO,
followed by a slow restoring movement along a
“B-branch”. The time spent on the two branches
can be calculated simply as two integrals (chro-
nomals) in dimensionless units(6, and 6g). The
sum 64+ 6y is equal to the dimensionless period
of the limit cycle (6,). The period of the limit
cycle in real time is determined exclusively by the
inverse rate constant ks of the fifth reaction in the
Oregonator-model: The oxydative decarboxyla-
tion reaction between Ce** and bromomalonic
acid. :

Experimentally, the influence of bromate con-
centration and temperature on the period and on
the fraction of time spent on the A-branch (low
bromide concentration) in the full cycle has been
studied. Together with the experimental findings
of Field, Koros and Noyes and the theoretical
results of the present study we conclude from this
that the value for parameter g=2k;k4/k,k; should
be in the interval 2.5-1072—7.6-1072.

The inverse period of the relaxation-oscilla-
tions has a simple Arrhenius dependence on the
absolute temperature which is also explained by
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the model. The activation energy for the oscilla-
tions is composed by the activation energy of ks
and a term proportional to the activation energy
of the g-parameter.

When chemical reactions occur outside the quite
narrow range of applicability of the reciprocity
relations of Onsager, numerous instabilities lead-
ing to spatial and/or temporal structures may
occur induced by nonlinearities in the reaction
system.! One of such possibilities is the appear-
ance of limit cycles first discussed by Poincaré 100
years ago.” In 1958, Belousov reported on
oscillations in the ratio of Ce** to Ce** ions
during the cerium ion catalyzed oxidation of citric
acid by bromate in aqueous sulfuric acid
solution.? The study was some years later taken
up by Zhabotinskii et al.*7 who elucidated the
mechanism and showed that citric acid could be
replaced by malonic acid or by another organic
material with an active methylenic hydrogen and
that Ce**/Ce®* could be replaced with other
redox couples as Mn**/Mn?* or ferroin/ferriin
indicator. It was also shown that spatial struc-
tures could appear in unstirred solution in the
form of propagating chemical waves. Hence-
forth, the reaction system was called the Be-
lousov-Zhabotinskii (BZ) system.

Further elucidation of the mechanism was
made by Degn,® Kasperek and Bruice ° and
Busse.!” However, it was the very careful ex-
perimental study and data collection of Field,
Koros and Noyes ! in 1972 which enabled Field
and Noyes 2 from the University of Oregon to
propose their socalled “Oregonator” model of
the BZ-oscillator, a name chosen to match with
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Br +HOBr+H* — Br,+H,0 (R1)
Br +HBrO,+H* — 2HOBr (R2)
Br +BrO;+2H* — HBrO,+HOBr (R3)
2HBrO, — HOBr+BrO;+H* (R4)
BrO3+HBrO,+H* — 2BrO, +H,0 (RS)
Ce**+BrO, +H" — Ce4++H20+HBrO§ (R6)
4Ce** +BrM+HOBr+H,0 — 2Br +4Ce’* +3CO,+6H* (R7)
=(R10)+(R11)
Br,+M — BrM+Br +H* (R8)
6Ce** +M+2H,0 — 6Ce**+HCOOH+2CO,+6H™* (R99)
4Ce** +BrM+2H,0 — 4Ce3* +HCOOH+2CO,+5H™ +Br- (R10)
HOBr+HCOOH — Br +CO,+H,0+H"* (R11)

Scheme 1. The 11 most important reactions in the BZ-reaction system. M=malonic acid;

BrM=bromomalonic acid.

the well known “Brusselator” of the Brussels
school of thermodynamics. The “Oregonator” is
basically a five-reaction/three-variable model
representing the oscillations very well. There-
fore, in the light of the fact that there are at least
10 important reactions occurring simultaneously
(see Scheme 1), the Oregonator constitutes a
tremendous simplification and intellectual effort.
However, the model is still not simple to explain
pedagogically, and simulations have to be done
by computer.

It has often been pointed out that the saw-
tooth oscillations of the BZ-system are very like
the relaxation-oscillations of the well known
bistable multivibrators in electronics. Some time
ago, I therefore started to speculate on the
possibility of treating the BZ-system in analogy
with the paradigm of relaxation-oscillations, i.e.
the harmonic oscillator with negative and non-
linear friction introduced by van der Pol in 1920
to describe relaxation-oscillations in electron
tube oscillators, see Minorsky.!* The present
paper will show that it is indeed possible to give a
very similar description of the BZ-reaction.
Actually, the solution of the three-variable Ore-
gonator system can be reduced — without any
significant loss of precision — to the solution of a
simple, one-variable kinetic equation along two
quasi-stationarity branches with virtually instan-
taneous “jumps” from one branch to the other at
critical positions on the two branches. The two
branches are branches of a certain “H-curve”,
which has also a middle, unstable branch. The
jumps occur at the maximum and the minimum
of the H-curve, in precise analogy with the
situation for the van der Pol oscillator.

THE OREGONATOR

The five reactions selected from the list in
Scheme 1, which were considered by Field and
Noyes to be the important “bottlenecks” in the
reaction scheme, are the following:

A+y X x4p N
k;

X+Y 53 2p @)
ks

A+X B ax+2z 3)

x Xpia @)

Z is) fy Q)

The meaning of the symbols is given by eqns. (6):

A=Br0O;3, P=HOBr, X=HBI0,,
Y=Br, Z=Ce** 6)

It has been used that the ratio of ceri to
cero-ions is always very small. Account has
therefore only to be taken of the ceri-ions. In the
following, the reaction labels (R1)~(R11) refer
to Scheme 1. Concentrations of H* and H,0
have everywhere been built into the rate con-
stants, since the reaction medium is about 1
mol/dm? with respect to sulfuric acid, which is a
much larger concentration than all the other
concentrations.

By reaction (1) — which is identical to (R3) —
the intermediate compounds HBrO, and HOBr
are formed by reaction between Br~ and BrOj.
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HBrO, is reacting further through reaction (2)
with Br to form two moles of HOBr. Reaction
(2) is identical to (R2). Reaction (3) is an
autocatalytic reaction for formation of HBrO,. It
is equivalent with the reaction (R5)+2(R6)=(G)
shown below. (R5) is the rate determining step.

2Ce** +BrO;+HBrO,+3H" —
2Ce**+H,0+2HBrO, (G)

Reaction (4) is a sink for HBrO, which is
equivalent to (R4). The last reaction (5) is a kind
of pooled reaction representing the oxydation of
organic matter by Ce** (formed in the autocat-
alytic reaction) and release of Br~ from bromo-
malonic acid (BrM). BrM is formed through Br,
in reactions (R1) and (R8). In the original
Oregonator model, reaction (5) was assumed to
be a mixture of (R9) and (R10). The stoichiome-
tric factor f for Br~ release would then vary
between 0 (pure R9) and 1/4 (pure R10). The
problem is, however, that f has to be between
0.25 and 1.206 in order to have possibility of
oscillations in the Oregonator, see Murray.'*
(Note that we have followed the definition of f
given in the book of Murray rather than the
definition in the original Oregonator-model).
Also, Bornmann et al.' failed to detect formic
acid among the reaction products which should
be the case if (R9) or (R10) was followed. In
order to remedy this mismatch, Noyes and Jwo ¢
postulated the reaction (R11) between HCOOH
and HOBr. When (R10) is followed by (R11)
with (R10) as the rate determining step, the
kinetics is as given in reaction (5) and the net
reaction is as (R7) where f=0.5. It has been
assumed that the concentration of BrM is virtual-
ly constaant over a cycle, so that [BrM] can be
built into k5.

The more detailled kinetics of the oxidation of
BrM by Ce** were elucidated by Jwo and
Noyes.!” They found the following dependence
of ks on [BrM]:

k5 = k05 . [BIM]/(KM+[BTM])
(kos = 0.015s7") (7

where kys is a catalytic constant and Ky a
“Michaelis-Menten” constant. The kinetics were
really found to be first order with respect to
Ce**. The value of Ky is dependent on the
reaction time in an unexplained way. Before a
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certain “break point” Ky is 0.107 mol/dm® and
after Ky is 0.033 mol/dm>. The “break point”
seems to occur after a time of the order of
magnitude of 10 min, so it is hardly reached with
the normal oscillations of the BZ reaction of
order of magnitude 1 min. We therefore con-
clude, that ks is varying between the value given
in eqn. (8) for very low [BrM] to the value given
in eqn. (9) for high values of {BrM], where the
catalyst is saturated.

ks = 0.140 [BrM] s!, [BrM]<0.1 mol/dm®  (8)
ks = 0.015s7!, [BrM]>0.1 mol/dm? 9)

In normal experimental cases for the BZ
reaction, the condition given in eqn. (8) prevails.
The activation energy found for kos/Ky was the
value given in eqn. (10) (before the “break
point”):

EZ = 54.5+2.0 kJ/mol (10)

We have been quite critical with ks here, since
the present model will show that the period of the
oscillations is largely determined by the rate
constant ks.

NONDIMENSIONALIZATION AND QUASI-
STATIONARITY APPROXIMATION

Assuming that only X, Y and Z vary during a
cycle, we obtain from the reactions (1)—(5) a set
of three coupled differential equations in X, Y
and Z:

dX/dt=(k;,A)- Y—kp X-Y+(k3A)- X2k X* (11)
dY/dt=—(k,A)-Y—ky X-Y+f-ksZ (12)
(13)

Here, ¢ is real time and X, Y and Z are the molar
concentrations of X, Y and Z, where the square
brackets have been left out for brevity. We can
simplify the equations by introducing dimension-
less concentrations:

dZ/dt=2(k;A)-X—ks-Z

x = (ko/kiA)-X (14)

n = (ko/k3A) Y (15)
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§ = {kaksl(k;A)*}-Z (16)
Now, equations (11) to (13) transform to:

edx/dr=x+n—x-1—qx? a7)
dn/dr=(2flq)-{—n—x-n (18)
(p/q)dg/dr=x—(1/g)-§ (19)

We have also introduced a dimensionless time
given by (20) and three dimensionless parameters
given by (21):

T= kAt (20)

€ = ki/ks~2-107*, p = k,Alks~3.1-10%,
q = 2kyky/kyk3~8.4-107° (21)

The values given for ¢, p and g are approximate
values valid at 25 °C, see Refs. 12 and 14.
Since £<1 the approximation suggests itself to
take the left hand side of eqn. (17) to be zero.
This amounts to a quasi-stationarity approxima-
tion for HBrO,, and the approximation has been
discussed under the name “stiffly coupled appro-
ximation” by Field and Noyes.!? In this manner
we obtain a system of only two equations which
we shall reformulate as eqns. (22) and (23):

dn/dr=(2flq)-{{—[H(n)/2f]} (22)
d¢/dr=(1/p)-{U(n) -} (23)

We have introduced two functions of n which
become of crucial importance, U(n) and H(n),
defined by eqns. (24) and (25):

U(n) = H1-n+V(I-n)*+4qn) (24)
H(n) = [g+Un)] - n (25)

We have further a supplementary stationarity
condition for x:

x = Un)q (26)

(The positive sign has to be chosen in the solution
of the quadratic equation in order to obtain a
positive x).

We shall further simplify eqn. (22) by taking
2f=1, since f=0.5 seems to be a quite realistic

stoichiometric factor.'® The functions U(n) and
H(n) can now be seen to play the role of
nullclines separating upward and downward mo-
tion or motion to the right and to the left of a
phase point in the (7,{) phase plane. Indeed, we
have:

dgdr20 for (SU(n) (27)
dn/dt20 for (ZH(n) (2f=1) (28)

Stationary points in the phase plane have to be
intersections in the positive quadrant between
the U and the H-curves.

A second stationarity approximation may be
introduced. Since g<1 and p>1, the n-variable
will equilibrate itself very rapidly according to
eqn. (22) in comparison to the {-variable. We
would therefore tend to have eqn. (29) satisfied
whenever possible (we shall see that it is not
always possible and then we have the “jumps”):

(=H(n) (2f=1) (29)

The problem is then reduced to a one-variable
problem, since the phase point just “slides” along
the H-curve. It is now important to study the
properties of the U and the H-curves, their
intersection points and the stability of the in-
tersection points. This will be the topic of the two
next sections.

PROPERTIES OF THE U AND H
FUNCTIONS

Fig. 1 exhibits some of the properties of the U
and H functions for a g-value less than unity, but
not much less. The U function decreases monoto-
nously, but A has a maximum. In the case of Fig.
1, this maximum is positioned at a higher n-value
than the intersection point. It is easy to see that
the intersection point in that case is a stable
stationary point since phase points in all direc-
tions around the intersection point will move
towards that point due to the relative position of
the nullclines. Basically, the slope of the H curve
has to be negative in the intersection point in
order to obtain instability, see the discussion in
the next section.

The expression for U may be reformulated as
eqn. (30):
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Fig. 1. Phase plane with the U-nulicline between
upwards and downwards motion and the H-
nullcline between motion to the right and to the
left. The H-curve is also the curve of quasi-
stationarity for Br-. The dimensionless bromide
concentration is 7 and the dimensionless Ce**
concentration {. The intersection between the U-
and H-curve is a stationary point. The stationary
point is stable here, since the U- and H-curves
cross at lower n than n,,, corresponding to the
maximum in the H-curve. For ¢<1 this will not
be the case.

U(n)=51-n) -[1+sign(1—n) -
Vi+agn/(1-ny’] (30)
If the condition (31) is satisfied, the square root

can be Taylor-expanded, so that we obtain eqn.
(32):

4gn/(1-n)’<1 (31)
U(m)=Y1-n) - [1+sign(1-7) -
{1+[2gn/(1-n)*]}] (32)

We therefore have two approximate equations
for U, eqn. (33) for n<1 and eqn. (34) for n>1:

Um=(1-n) - 1+{gn/(1-n)*}|=1-n (n<1)
(33)

Um=qn/(n-1) (n>1) (34)

Condition (31) will be satisfied for any g with n
close enough to zero, so the initial slope of the
U-curve will be —(1—¢). If g<1, condition (31)
will be satisfied for all n<1 except for n-values
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very close to 1, and in that case U will be 1-7 in
the interval n€[0|1-5], where & is a small
quantity. On the other hand, condition (31) will
also be satisfied for any ¢ and n>1. In that case,
approximation (34) is valid, and U—q for
N>+,

For the function H(7n) we obtain under the
same condition (31) the eqns. (35) and (36) for
n<1 and n>1, respectively:

H o vg-l1-{al1-n)}In
[1<1, cond. (31)] (35)

o= {@n-1/(-D)q
[n>1, cond. (31)] (36)

From eqn. (35) we see that the limiting slope for
n—0, and any g for the H-function is 1+q. For
very small g-values H will be approximately
equal to (1-n)-7n in the interval n€[0/1-4] and
the maximum in H will fall at 7,,,=0.5 with
H,,,x=0.25. From eqn. (36) we see that the
limiting value of H for very large 7 and any ¢ will
be H=2q-n. The approximation (36) is also valid
for all n>1 when q is very small, except for
n-values very close to 1. The function in eqn. (36)
has extrema at n=1x(V 2/2), but only the plus
sign yields an 7 in the correct range. The
extremum is here a minimum. In summary we
have for g<1:

Mmax=0.5; Hpmax=0.25 (g<1) 37

Mmin=1+V 2/2=1.7071;

Hpin=Q2¢/V2)QA+V2R)1+V2)=
5.828¢q (g<1) (38)

Thus, for very small g (which is the case for the
Oregonator), the maximum and the position of
the minimum of the H-curve do not depend on
the precise value of g. Only H;, depends
proportionally on q.

The points of intersection between H/2f and U
are stationary points. Their n-values will be
designated by n,. The problem of finding roots of
H(no)2f=U(n,) can be recast into the problem
of finding roots in eqn. (39):

U(no)=g(1o)=(q/2f)- no/[1-(no/2f)] (39)
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(The relation (25) between U and H has been
used). The function g(n,) grows up from 0 at
No=0 to +o at n,=2f. From 2f+§ to +x, g
grows from — to —q. Therefore, there can only
be one intersection point between H/2f and U,
and there will always be one which is positioned
at n,<2f. For f=0.5, the stationary point will
always be positioned for n,<1. For very small
values of g, and n<l we have U=1-7n and
H=(1-n)-n. Uis 0.5 at 7y, with H,,,=0.25 and
it is seen that H will continue to be less than U
when 7 is growing towards 1. Therefore, the root
N, has to be positioned extremely close to 1,
where the approximation breaks down.

LINEAR STABILITY OF STATIONARY
POINT

The first step in the investigation of the
stability of a stationary point will always be to
investigate the linear stability of small perturba-
tions from that point. We express the two
variables as in eqn. (40) where § signifies a small
deviation:

n=no+0n (=(o+8 (40)

(8o=U(no)=H(n,)/2f). Introducing eqn. (40) into
eqns. (22) and (23) throwing away all second and
higher order terms in the perturbation, we obtain
the linearised equations written in matrix form in
eqn. (41):

[5"1] _ [ —(Hy/q) (2flg) 511) 1)
ot Ujp —1p) 6

U, and H; are the derivates of the U and H
functions with respect to 7 taken at n=n,. The
stability and the oscillatory behaviour in the
region of validity of the linearisation is deter-
mined by the nature of the eigenvalues to the
coefficient matrix of eqn. (41). The two eigenva-
lues are given by eqn. (42):

A=Y—(Hyq+1p) +
V(Hi/q—1/p)*+(8flqp)Uy] (42)

The quadratic equation to which the eigenvalues
n eqn. (42) are solutions is given by eqn. (43):

P+ay-d+a, =0 (43)

The coefficients a, and a, are given in eqn. (44):

a, = (1/q)-(Ho+qlp)

a = (lg'p)-(Hy~2fUs) (44)
Using the Hurwitz stability criterion,'® we find
the conditions for having the real parts of A=0
(marginal stability or instability) as given in the
conditions (45) and (46):

ay=0 (unstable node) (45)
a;=0 (unstable focus) (46)

The condition (45) corresponds to an unstable
node (no oscillations) and (46) to an unstable
focus (oscillations, complex eigenvalues). The
stability behaviour according to eqn. (43) is
summed up in Fig. 2.

Examining first the conditions (45) and using
that

H' = q+U+U' q 47)
we transform condition (45) to the form (48):

U,+q
2f_no

This is clearly impossible, since U;, is negative
whereas the right hand side of (48) is positive
since it was demonstrated in the previous section
that 2f—n, is always positive. Thus, the instabil-
ity will always break out oscillatory, and condi-
tion (46) is the important one. Therefore, we
have condition (49):

r >
U,z

(48)

H, < —qlp (49)

The intersection point between the H-curve
and the U-curve has to be positioned at 7,>Nax,
where H, is negative, in order to have linear
instability. With g¢/p<1, the critical slope
Hi=—q/p will be close to zero. Therefore, the
separation between stability and instability will
be made by the value gua.x With coincidence
between 7, and 7, in the limit p— . One finds
the value ¢max=7.62:102, For q>qp,y it is not
possible to have any oscillations with the present
model.

The final point to be discussed in the frame-
work of linear stability theory is the angular
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Fig. 2. Stability-instability diagram corresponding to the characteristic equation (43).

frequency (w) for the marginally stable focus, i.e.
a,=0 or H,=—g/p. According to the bifurcation
theorem of Hopf,'® there will exist a limit cycle
(stable or unstable) with the period 27/e when we
diminish the slope Hj, slightly below the critical
value given by —g/p. This value is the only
estimate for the period of the real limit cycle
which we are able to extract from linear theory.

Inserting A==iw in eqn. (43) we obtain a;=0
and eqn. (50):

-V H e (50)
qp
Using the relation (47) we have:
H,=2f-Uy=q+U,+(1-2f) U, (51)

For 2f=1 we therefore have for the Hopf angular

frequency:
NV T

+U,
(DHopf = vq
No"q'P No'q°P

(52)

From eqn. (39) and eqn. (52) we obtain for the
dimensionless Hopf-period:
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rHopfzznlwﬂopf=2 TV P(l - Uo) (53)

Passing to real time through eqn. (20) we have:

tropr=21/k, A)Vp - VI=1, (54)

Using eqn. (21) for the parameter p we obtain:

tuopt=21V 1= 1o/ Vki-ksA (55)

For comparison with experiments we write for
the inverse period:

_Vkiks
2aV1—-1n,
The value of 1-17, depends solely on the value

assumed for q. The rate constant k; has a value
given in eqn. (57):1%

1/ tHopf = \/A_ (56)

ki=2.1 s1-dm>mol™? (25 °C) (57
The rate constant ks was given by the relation
(7). 1t is independent of the bromate concentra-
tion (A) if either a) the concentration of BrM is
much greater than 0.1 mol/dm? or b) if BtM is
only slightly dependent on BrOj3, so that ks in

eqn. (56) may be replaced by ks (mean).
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We shall indeed find a dependence of the
experimental inverse period on the bromate
concentration of the form (58):
1/t, = constant - [BrO3]*3 (58)

A more detailled comparison with ex-
perimental facts will be carried out in the final
section. Here, I shall just warn the reader not to
take the comparison between f, (experimental)
and fyeps too seriously. The experimentally
observed relaxation-oscillations (“saw tooth”
oscillations) are indeed far from the uniformly
rotating Hopf cycle near the critical point.
Therefore, the experimental conditions are prob-
ably too supercritical for the Hopf estimate to be
more than an order of magnitude calculation. A
better approximation to the period of the relaxa-
tion-oscillations will be derived in the next
secticn.

THE CHRONOMALS OF THE RELAXA-
TION-OSCILLATION

For the value ¢g=8.4-10"° given in eqn. (21),
the H-curve has been drawn, see Fig. 3. The
U-curve is also drawn, and they have an intersec-
tion point extremely close to n=1 as inferred also
from the previous section. The slopes U, and H|,
are extremely large and negative. Actually, it is
necessary to plot the (n,{) phase plane in
logarithmic units as shown on Fig. 3. The
intersection point will be unstable, but because of
the enormous difference in magnitude of the rate
of the two processes (22) and (23), the H-curve
will be followed as far as possible according to
eqn. (29). Then, the phase point will move up or
down on the unstable C-branch of the H-curve
according to the sign of the initial perturbation
from stationary point O. Let us assume that it
moves up. When H,,,, is reached, the phase point

Iof,oz; log,,N
-4 -3 -2 -1 +1 +2 +3 +4
0 —t —— " : iu0
= 1
t log,oU—" \ F
. 0,3863\ =ﬁ
-0.6021f-—c e o2 ©a 03863, > ~_©:0/7

-4f

-1

RTINS BTN SR W

14

1
[
W

-4

TN W AN

-4.310 4

eB=8.8069

N

+1 +2 +3 +4

Fig. 3. Phase plane plot of relaxation oscillations for a very low value of q. The phase point is jumping
back and forth between the A- and the B-branch of the H-curve at the two extrema. The C-branch
with the stationary point (O) is unstable. The time consumed at some points along the A- and

B-branches is indicated.
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should still move upwards, since we are still
below the U-nullcline (cf. conditions (27)). Thus,
we have to leave the H-curve in the upwards
direction. As soon as this happens, the very fast
process (22) sets in, and a very rapid motion of
the phase point in the n-direction starts. During
the “jump”, the “slow” ({-variable does not
change its value significantly. When we hit the
B-branch we are above the U-nullcline, and we
therefore move slowly downwards along the
B-branch of the H-curve. When H,y;, is reached,
the story repeats itself and we jump to the
A-branch of the H-curve, where we move slowly
upwards until Hy,,, is reached. We are now in the
relaxation-oscillation limit cycle and we never
again follow the unstable branch C of the
H-curve.

The situation here may be described as a
non-equilibrium phase transition: The quasi-sta-
tionary curve for the Br~ concentration is fol-
lowed smoothly up to an upper critical Br~
concentration (“superheating”). Another branch
is followed smoothly down to a lower critical Br~
concentration (“supercooling”).

The problem is now reduced solely to find the
motion along the A and the B-branch of the
H-curve, which is an almost trivial one parameter
problem. In such cases, the concentration vari-
able can be separated from the time variable.
Then, the time consumption on each branch or
the so called chronomal (a word introduced in
connection with steady state kinetics by J. A.
Christiansen ?°) can be calculated by analytic or
numerical integration.

Thus, using eqn. (23) in connection with the
inverse of eqn. (29) and introducing a new
dimensionless time be eqn. (59), we obtain
immediately eqn. (60) for the chronomal:

0 = tlp=kst (59)
H dx
o= J (60)

- Cinitial U[H—l(x)]—x

The inverse function n=H"({) is not unique. In
eqn. (60) it has to be chosen for the appropriate
branch (A or B) of the H-curve. For the
numerical integration to be more feasible, it is
better to integrate in terms of log;ox:

log10¢
0=

10g10¢ initial

F(u) du (61)
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F(u) = 1n 10 - [(1/10%) U(H“l(lO"))--l]"1 (62)

Since g<1 we can use U=1—17 on branch A and
H=(1-n)'n from which follows eqns. (63) and
64):

na = HA'(Ca)=3 - (1~ VI-4L,) (63)
UHR(Ca))=3+3V1-40,
On the B-branch we can use the approximation
(36) to which corresponds the inverse function

(65):

ne=Hz'((s)=(1/4q)[({s+q)+
V(Cs+9)"—84%s] (65)

(64)

and we can use eqn. (34) as an approximation for
U. However, we actually used the full expression
for U in the numerical integration.

The numerical integrations were performed by
a HP-41C microprocessor using a standard Simp-
son rule routine.?! The precision of the chrono-
mal values was checked by varying the step
length. The results are given in Table 1. Some of
the @-values are also indicated on the phase plane
plot, Fig. 2. For branch A, iitiat=Hmin=5.828g
and (gnai=Hmax=0.25. For branch B, the values
are in inverse order.

The time spent on branch A for g=8.4-10° is
0,=0.3863. In comparison, the time spent on
branch B for the same g is 5=8.8069. Therefore,
we shall call branch A the “fast branch” and
branch B the “slow branch”. The total period of
the relaxation-oscillations is given by eqn. (66):

Table 1. Time consumption on A- and B-Branch
of H-curve for g=8.4-1075.

logio¢ Branch A Branch B
0 0
—4.31016 0 8.8069="0p
—4.00 5.1050-10°3 7.9216
-3.50 2.6737-107* 6.7004
-3.00 9.5204-107* 5.5300
-2.50 3.1234-10° 4.3728
-2.00 1.0053-10°3 3.2197
-1.50 3.2631-1072 2.0678
—1.00 1.1208-107! 0.9163
-0.70 - 0.2255
—0.60206 3.8626-107'=0, 0
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0, = 0,+605=9.1932 (66)

When g becomes even lower, Hp,;, will be lower
and both 0, and 6g will increase somewhat.
Thus, the number corresponding to the dimen-
sionless period will be greater than 9.1932 for
smaller g and smaller for greater ¢ than 8.4-1075.
This,we have to remember when we want to
discuss temperature dependence of the period of
the BZ-reaction.

Fig. 4 shows the dimensionless concentration
as a function of dimensionless time for the species
Ce**, Br- and HBrO,. The concentrations are in
logarithmic units and the curve form will be
representative for the form of experimental
curves of electromotive force of Pt and Br~
electrodes against a reference electrode (Nernst
equation). The curves are remarkably similar to
the experimental ones — though not in all details.
They seem to be identical to the curves obtained
by simulations on the full three-variable
Oregonator.'? It is interesting that even the sharp
pulses of HBrO, seem to be well reproduced in
spite of the fact that we used the quasi-stationary
approximation for that species.

The mechanism of the pulses seems to be the
following: Br™ is slowly consumed by reaction
(1). Hereby, HBrO, is produced. This triggers
the autocatalytic production of more HBrO,
through process (3). At the same time Ce** is
produced and Br~ consumption is rapidly in-

4 a=84-10° -
-2 -2
-3 4 -3
-4 Iog‘oga-loq‘ch 1 -4
+4 1+ 4
+3 +3
+2 +2
+1 +1
(o} - o]
4l la log 1) ~ log,, [Br ] 1
-2 -2
-3 -3
-4 -4
+5 A loﬂ‘o(%) =log, x~l0g o [ero,] H *5
0 B . 0
o 1 2 3 4 e5 6 7 8 9 10

Fig. 4. The dimensionless concentrations of
Ce**, Br and HBrO, as a function of dimension-
less time for g=8.4-10"% corresponding to the
phase plane plot in Fig. 3.

creased due to the reaction between Br  and
HBrO; in process (2). All this happens during the
very short pulse of HBrO, (branch A) which
terminates due to reaction (4). The Br~ concen-
tration is then restored by reaction (5) and the
play starts all over again at the upper critical Br-
concentration, where Br~ consumption again
becomes dominating by reaction (1).

COMPARISON WITH EXPERIMENTAL
DATA

The main purpose of the paper has been to
demonstrate, that the simplified flip-flop model
of the BZ-system yields results almost identical to
the solutions to the full Oregonator-model.
Another question is whether the Oregonator
itself is a sensible model, and if it is, whether the
values of the parameters used in the Oregonator
are correct. Since the present model represents a
much more simple picture of the situation than
the Oregonator-model, one might hope that the
parameters (especially the g-parameter) could be
judged with greater reliability.

First, it should be noticed that the rate constant
of the fifth Oregonator reaction according to our
model should be directly evaluable from the real
time consumption for a period (t,):

ks = 6,1, (67)

0, is a number depending only on the parameter
q. The smaller the value of g the lower is Hp;,
(see eqn. (38)). Therefore, the chronomal in-
tegration paths are longer and 6, increases. Fig. 5
shows that there is a linear relation between the
dimensionless period and log;oq. Integrations
have only been performed up to g=1072 since
some of the approximations used for the inverse
H-function do not work well at high g-values.
However, the extrapolated linear part of the
curve is probably a good approximation anyway.
The intersection point for 6,=0 corresponds well
to the value gpa=7.62-10"? at which the max-
imum of the H-curve coincides with the intersec-
tion point between the U-curve and the H-curve.
According to the linear stability analysis, this is
the highest value g can have for oscillations to
occur. Just below gpax, the flip-flop model will
still be valid if only p>q. Fig. 5 also shows that
the time consumption on the A-branch with low
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Fig. 5. The dimensionless period and the dimen-
sionless time consumption on the A-branch as a
function of the dimensionless parameter g. No
oscillations are p0351ble above Gmax=7.62-1072
where the maximum in the H-curve and the
intersection between the H-curve and the U-
curve coincide.

bromide concentration is approximately constant
for very low g-values but decreases with increas-
ing g, when ¢n.x is approached. The fraction
04/6, increases drastically when @Gpax s
approached, see Table 2.

Some experimental findings are listed in Table
3. FKN refers to values estimated from Figs. 1—6
in the paper of Field, Koros and Noyes.!! The
other values have been determined for this
paper, since it was found important to elucidate
the influence of BrOj3 and the temperature on the
period #,. In the FKN-paper no measures were
apparently taken to thermostat the reaction
vessel and only two bromate concentrations were
used. The experimental conditions for the pre-
sent measurements differ from the ones in the

Table 2. Relative duration of period with low Br~
to total period.

q 6p 6a/6,

1076 11.322 0.0341
8.4-10°¢ 9.193 0.0420
10 6.716 0.0575
107 4.404 0.0864
1072 2.004 0.1619
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FKN-paper only with regard to the thermostating
and the following (insignificant) details: Here,
Ce(S0O4),-4H,0 was used as a catalyst (Ferak,
Berlin,  analytical grade) instead of
Ce(NH,),(NO;)s. The ratio Ce**/Ce®* was mon-
itored with a Pt-electrode instead of a tungsten
electrode. The Br™ concentration was monitored
by a third-order Ag/Ag,S/AgBr electrode.?
Finally, the reference electrode was a Hg/HgSO,
electrode with saturated K,SO, as salt bridge.

It is evident from Table 3, that the ratio 75/t is
closer to 0.5 than the value 0.04 found theoreti-
cally for g=8.4-107°, which is the g-value chosen
in the Oregonator.'>!* According to Fig. 5, the
real g-value should therefore be in the region
between 1072 and gpa,=7.62-1072. The evidence
from calculated values of ks points in the same
direction. In Table 3, ks has been calculated from
eqn. (67) using 6,=9.19 and 1, respectively. The
former values (correspondmg to g=8.4-107%) are
far too high, since the maximum value for ks at
25 °C should be 0.015 s! at saturating concentra-
tions of BrM, see eqn. (9). For @,=1 (corres-
ponding to q around 2.5-1072), the values of ks
are much better, although a few are too high.
Therefore, g can be localized in the region
between 2.5-102 and 7.6:107 by means of two
independent criteria. If p can still be assumed to
be of order of magnitude 10?, the flip-flop model
is still a reasonable approximation, though not as
exact as before. Indeed, the “vertical” sections of
the log ¢ vs. time curves are found not to be
completely vertical in the experiments. In other
words, the “jumps” take some time.

In the experiments performed here, the inverse
period was found to increase approximately as
the square root of the bromate concentration, see
Fig. 6. From the FKN-data, a dependence on the
malonic acid concentration as [M] to the power
0.69 could be inferred. The “activation energy”
(EF) for 1/t, was found to be practically indepen-
dent on the level of bromate concentration, see
Fig. 7, and equal to 8.8-10°-R. Assuming E; to
be also independent of [M] (which is not proven
by the present data), we may summarize the
empirical findings in the formula (68):

1/t, = k[BrO3]**3-[M]*%-exp[8.8-10°
(1/298.16—1/T7)] (68)

Eqn. (68) is valid for [Ce]=0.001 mol/dm?. From
the data in Table 3, we can see that the influence
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Fig. 6. Dependence of the inverse period found
in experiments on bromate concentration.

of [Ce] is very small. Increasing [Ce] from 0.0001
to 0.0050 mol/dm® (50 fold), the inverse period
decreases only 25 % (from 2 s! to 1.5 s°%). The
values of k differ somewhat for the FKN experi-
ments and the present experiments:

oo [0345T (FKN)
0.20 s (TSS)

The higher value found by FKN might be due
to the exothermicity of the BZ-reaction and the
apparent lack of thermostating in the FKN-
investigation.

(69)

1
0s, ()

-2 [8r0;]=0.060 moldm?

0.080
0.100& 0.133

1 Y L
3.25 330 3.35 340 345 3,50
T-'x1000(K™")

[}
[2)

Fig. 7. Temperature dependence of inverse
period at various levels of initial bromate concen-
trations. [BrOjz]: 0.020, 0.040, 0.060, 0.080,
0.100, 0.133, 0.167 mol/dm®.
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The dependence of 1/£, on the bromate and the
malonic acid concentration might well reflect the
dependence of ks on the concentration of bromo-
malonic acid, see eqn. (7), indicating that we are
somewhere in the transition region between the
first and the zeroth order region of the Ce-
catalyst in reaction (5).

In the section concerning the linear stability
analysis it was mentioned, that the Hopf-estimate
was able to produce an expression for 1/tyqp
proportional to the square root of the bromate
concentration, see eqn. (56). Since the constant
in eqn. (58) is found to be 1.2-107 (see Fig. 6),
we should have:

Vky-ks(mean)/2nVI—1,) =1.2-1072 (70)

In Table 4, 1-n, and values of k;-ks(mean)
calculated from eqn. (70) are listed for various
values of q. Taking the value of k; from eqn.
(57), we can calculate approximate values of
ks(mean). Those values are all much lower than
the maximum value of ks. Therefore, a mean
value of the concentration of bromomalonic acid
can be estimated from eqn. (8) for all values of g.
We are not able to say something about the
correct value of g by this method. However, the
bromomalonic acid concentration appears to be
unrealistically low for g=8.4-107°. For g=qmax,
we still have [BrM] much less than [BrO3] and
[M]. If our conclusion from before (that we are in
the transition region between first and zeroth
order region for the Ce-catalyst) is correct, then
the real values of [BrM] must be greater than the
values in Table 4. Thus, if those greater values
are used in eqn. (56) to calculate ks, the values of
Vtyopr Will be greater than the experimental
values 1/t,. Most probably, the Hopf-periods will
therefore be considerably shorter than the real
periods of the relaxation-oscillations. Relaxation-
oscillation is a highly nonlinear phenomenon, so
it is no surprise that the (almost) linear Hopf limit
cycle is a bad approximation. Nevertheless, the
square root dependence on [BrO3] of 1/tyeps as
well as 1/¢, (exp) seems quite remarkable.

Finally, it is understandable that we obtain a
straight line Arrhenius plot for the logarithm of
the inverse period against 1/T. Differentiating
eqn. (67) we obtain:

EZ/R=~d In(1/t,)/d(UT) =
EZ/R—(d In6yd In g)-EZ/R 71)
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Table 4. Comparison between experimental data and the period of the Hopf limit cycle.

q 1-7, k,-ks(mean) ¢ ks(mean) ® [BrM]mean €

s‘]2 dm?® mol™! s mol/dm’
8.4-107° 2.05-1073 1.16-1073 5.53-10°° 3.95-107
107 2.23-10°3 1.27-10°° 6.05-107° 4.32-10°°
107 7.05-107 4.00-10°3 1.905-105 1.36-107*
1073 2.21-1072 1.26-10°* 5.98-10°° 4.27-10™*
102 6.83-1072 3.88-10* 1.85-10* 1.32-10°3
2.5-1072 0.1057 6.00-107 2.86-10°* 2.04-10°
5-1072 0.1461 8.29-107* 3.95-107* 2.82:10°3
7.62:1072 0.1771 1.007-107* 4.80-107 3.43-107 (<0.1)
(Fmax)

“ Calculated from eqn. (56) with fy,r=1,, (experimental), i.e. eqn. (70). b Assuming the value k;=2.1s"' dm?

mol~!. ¢ Calculated from eqn. (8).

We have used the following definition:

EZ/R=-d In ¢/d(1/T) (72)
The value of dlInfy/dIng can be obtained
straightaway from Fig. 4:
dIn 6y/d In g= —2.33 (73)
With Ef/R=8.8-10° and EJ/R=6.6-10° (see eqn.
(10)), we therefore calculate the activation ener-
gy for g:

EJIR = 9.4-10° (74)
The activation energy for g is about an order of
magnitude smaller than the activation energy for
reaction (5) and it is positive. Both of those
features are physically possible, since g is equal
to 2k ky/krk; (see eqn. (21)). The activation
energy for q is therefore given as eqn. (75):
El = Ef+E7—(E7+E%) (75)

Since E;e is a difference between the sum of
two activation energies and the sum of two other
activation energies, it should be small and it
might be positive. The relations (74) and (75)
should be tested by independent experiments in
the future. For the present, we cannot push the
comparison between the simple flip-flop version
of the Oregonator and the real experiments any
further. However, a considerable amount of
clarification seems to have come with the inves-
tigation performed in this paper.

After the performance of the present calcula-
tions I have become aware, that J. J. Tyson 224
has made quite similar approximations to the
relaxation-oscillations of the Oregonator (see
especially Ref. 23 pp. 54—62). Tyson mostly
stresses the importance of f (called A in his
treatment). The parameter q is treated as a very
small parameter and only the first terms in the
power expansions in g of the various expressions
are retained. However, it is hinted that g should
perhaps be higher than ~107°. A value g~4-107
is mentioned on p. 61. This value is based on
comparison with the experimental value of the
upper critical Br -concentration. I would not
trust the absolute amplitudes of the bromide
electrode so much. As already mentioned by
Field, Koros and Noyes,!! this electrode is in fact
part of the time outside of its thermodynamic
range of stability (too low Br -concentration).

Tyson also suggests, that p should rather be ~2
than ~300. For such a p-value there are signifi-
cant deviations from simple flip-flop behaviour
(Ref. 23, p. 64). However, the suggested value of
p is estimated from the slope of the experimental
logyo[Br] vs. time curve for the B-branch. In the
experiments reported here, this curve is not a
straight line and any estimation of p is very
uncertain.

In a very recent paper by Edelson and
Thomas,? a sensitivity analysis of the Oregona-
tor has been performed. Those authors found
that ks was of prime importance for the period
time in complete agreement with the quasi-
analytical results found in the present paper.
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