⁴³Ca NMR Relaxation Times and Quadrupole Coupling Constants for Some Small Calcium Complexes

TORBJÖRN DRAKENBERG

Div. of Physical Chemistry 2, Chemical Center, University of Lund, Box 740, S-220 07 Lund 7, Sweden

The ⁴³Ca spin-lattice relaxation times have been measured for the calcium complexes with EDTA, EGTA and a cyclic ligand. The ⁴³Ca quadrupole coupling constant was calculated for each complex, using correlation times calculated from ¹³C relaxation times. An increase in the quadrupole coupling constant by a factor of four is found on going from the Ca-EDTA to the Ca-EGTA complex. This is interpreted as being due to differences in the symmetry of the complexes.

 43 Ca NMR studies have up to recently been very scarce $^{1-3}$ although the calcium ion is recognised to be of importance in many physiological processes. The calcium ion with a spin $I \neq 0$, 43 Ca (I = 7/2) has a very low natural abudance (0.14%) and also a sensitivity that is less than for e.g. 13 C. This explains the lack of interest shown in the past. However, very recently a few studies have appeared in which enriched 43 Ca was used to study calcium − protein interaction. $^{8-12}$ It has even been possible to observe the 43 Ca NMR signal from calcium strongly bound to some small proteins. 13

The interpretation of 43 Ca NMR data is somewhat hampered by the lack of knowledge about the 43 Ca NMR relaxation time, T_1 , for various systems. Therefore a study of the spin-lattice relaxation time of 43 Ca bound to various small ligands has been initiated. The following complexes for which the metal exchange is slow on the NMR time scale have been studied: Ca-EDTA (EDTA-ethylenedi-

aminetetraaceticacid), CA-EGTA [EGTA-ethylene-glycol-bis(β -ethylamine)-N,N'-tetraacetic acid], Ca-

EXPERIMENTAL

Ligand I was a gift from Prof. J. Dale (Ref. 15) and EDTA and EGTA were obtained from Merck and Sigma, respectively.

The 43 Ca NMR studies were carried out at 17.16 MHz with a home made spectrometer with a magnetic field of 6T using horizontally arranged 17 mm O.D. samples. All samples were made up from 43 Ca enriched (60 % Oak Ridge Natl. Lab., USA) calcium perchlorate in water solutions. The calcium concentration varied from 0.5 to 4 mM and the ligand concentration was 2-4 mM. The 43 Ca T_1 measurements were made using the inversion recovery method, using 10 000 pulse sequences with a 180° pulse length of 36 μ s and a delay between the sequences of at least 3 times T_1 .

 13 C NMR measurements were made on a Varian XL-100 spectrometer using ca. 40 mM concentration of complexes with natural abudance calcium in 12 mm O.D. NMR tubes. The T_1 measurements were made using the fast inversion recovery method 16 with 10 000 pulse sequences, a 180° pulse width of 180 μ s, and a delay between the sequences of 0.5 s. All T_1 values were obtained from a nonlinear least squares fit to the experimental data, using three adjustable parameters. The given uncertainties are three times the standard deviation.

RESULTS

⁴³Ca NMR spectra from solutions of one of the ligands (EDTA,EGTA or ligand I) and an excess of Ca²⁺ showed two signals, when a sufficiently

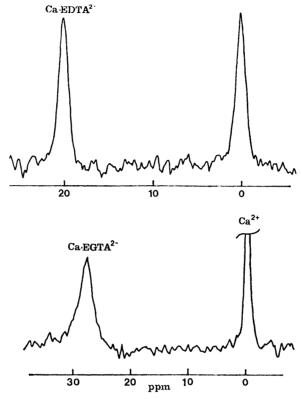


Fig. 1. ⁴³Ca NMR spectrum at 17.16 MHz from a solution containing 2mM ⁴³Ca and 1 mM of either EGTA or EDTA. 10⁴ 70° pulses, with a 1 s repetition time, were accumulated for each spectrum.

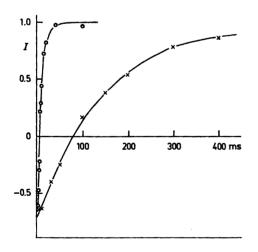


Fig. 2. The ⁴³Ca signal intensity as a function of the delay time in the inversion recovery experiment. $I = I_0(1 - k \exp(-\tau/T_1))$ The solid curves are the calculated best fit. ×, Ca-EDTA; O, Ca-EGTA.

high pH (8, 10 and 10 for EDTA, EGTA and ligand I, respectively) was used. Even at elevated temperature no broadening of the signals could be detected, showing that the exchange between free and complexed calcium ions is very slow (Fig. 1). For solutions with total calcium and ligand concentrations of 4 mM the spin lattice relaxation time was measured using the inversion recovery method. (Fig. 2) The resulting relaxation times, as well as the chemical shifts, are given in Table 1.

In order to obtain the correlation times of the various complexes, the carbon-13 spin lattice relaxation times for all the carbons, except the carbonyles, were measured for solutions that had a complex concentration of 40 mM. The large difference in concentration between the 43 Ca and 13 C solutions was a compromise due to the high cost of 43 Ca and the sensitivity of 13 C, however a doubling of the concentration for the 13 C experiment had no significant effect on the 13 C T_1 's. The correlation times, τ_c , was calculated from

Ligand	$\delta^b\!(\mathrm{ppm})$	T ₁ (ms)	$\chi^a(MHz)$
EGTA	27.9	7.1 ± 1.4	2.1
EDTA	20.0	150 ± 10	0.5
I	4.7	22 ± 7	1.4

Table 1. Chemical shifts and relaxation times of ⁴³Ca in some complexes.

^a Quadrupole coupling constants defined as $\chi = \frac{e^2 qQ}{h} \left(1 + \frac{\eta}{3}\right)^{\frac{1}{2}}$. ^b Chemical shift from 1 mM Ca(ClO₄)₂ in H₂O, positive to higher frequency.

$$1/T_1 = \gamma_{\rm H}^2 \gamma_{\rm C}^2 \hbar^2 r^{-6} \tau_{\rm c}$$

where $\gamma_{\rm H}$ and $\gamma_{\rm C}$ are the gyromagnetic ratio for protons and carbon-13, respectively, \hbar is Planck's constant and r the proton—carbon bond distance (1.09 Å). The measured relaxation times and the calculated correlation times are summarized in Table 2.

The correlation times calculated from the 13 C T_1 data and the 43 Ca relaxation times were used to calculate the quadrupole coupling constant, χ , for 43 Ca in the various complexes from

$$1/T_1 = \frac{2\pi^2}{49} \cdot \chi^2 \tau_c$$

where T_1 is the ⁴³Ca spin lattice relaxation time,

$$\chi = \frac{e^2 qQ}{h} \cdot \left(1 + \frac{\eta^2}{3}\right)^{\frac{1}{2}}$$

(the quadrupole coupling constant), and the other parameters are as defined above.

DISCUSSION

Very little is known about the effect of various ligands on the chemical shift of ⁴³Ca. In contrast to the effect of a carboxyl group on the ¹¹³Cd chemical shift, which is upfield, Robertson *et al.*⁶

Table 2. Carbon-13 relaxation times (mean values) and correlation times for some Ca-complexes.

Ligand	T_1 (s)	$\tau_{c}(s)$
EGTA	0.29 ± 0.05	8.0×10^{-11}
EDTA	0.4 ± 0.05	5.8×10^{-11}
I	0.42 ± 0.1	5.6×10^{-11}

have reported a downfield shift of 2 ppm due to complexation with Z-D-Gla-D-Gla-OMe. This, however, also contradicts the results reported by Lutz et al., who found an upfield shift for both formate and lactate solutions.²

The chemical shifts of 43 Ca in the complexes studied in the present work (Table 1) are in agreement with the accepted effect of a nitrogen ligand on the 113 Cd chemical shift. 13 However, as expected the 43 Ca shifts are smaller than the 113 Cd shifts. These 43 Ca shifts are so small that they will probably not be very important, especially not in studies of protein—metal interactions, because the linewidth of the signals from protein bound 43 Ca are of the order of 10^3 Hz (~ 60 ppm at our field). 13

As can be seen from Table 1 there is a significant variation in the 43 Ca relaxation rate in the various complexes. The 43 Ca relaxation can safely be assumed to be totally dominated by the quadrupolar relaxation. Reasonable estimates of the relaxation rate due to other mechanisms result in rates that are at least a factor of 100 slower than the observed ones. Therefore the differences in the relaxation rates among the complexes can be explained by either a difference in the quadrupole coupling constant, χ , and/or a difference in the correlation time, τ_c .

The ¹³C relaxation rates show clearly that the overall correlation times sensed by the carbon nuclei are very similar for all three complexes (Table 2), ruling out this as a possible explanation for the observed variation in the ⁴³Ca relaxation rate. However, there could still exist a local mobility in the Ca-EDTA complex which would not be sensed by the carbons, but would strongly affect the calcium nucleus. There is some evidence that the Ca-EDTA complex in water solution is a mixture of two forms, ¹⁷⁻²² where the metal is either penta- or hexa-coordinated to the EDTA ligand, as illustrated by Scheme 1.

Scheme 1.

In the penta coordinated complex the sixth site on the metal is occupied by a water molecule. It could well be anticipated that the water exchange might be fast without affecting the carbon correlation time. Such a water exchange could be coupled to a nitrogen inversion, which for the Pb-EDTA complex has been shown to be fast on the NMR time scale.23 Very recently Harada et al.22 used an ultrasonic absorption method to measure the water exchange rate in the alkaline earth complexes with EDTA. They found a rate constant, $k_{\rm f}$, of 3.6×10^7 s⁻¹ for the Ca EDTA complex. Since this exchange is much slower than the inverse of the rotation correlation time of the complex the effective symmetry brought about by the water exchange cannot be the cause of the difference between the relaxation behaviour of ⁴³Ca in Ca-EDTA and Ca-EGTA.

Consequently, we must assume that the observed longer relaxation time for ⁴³Ca in the Ca-EDTA complex, as compared to the other two complexes, is caused by an effective symmetry in the Ca-EDTA complex, resulting in a field gradient that is smaller than for the other complexes. It is not unreasonable to assume that small changes in the geometry of the complex might have a pronounced effect on the field gradient. Maybe it is even so that this is the type of variation one should expect.

Acknowledgements. The author thanks Prof. S. Forsén for helpful discussions, Prof. J. Dale for the kind gift of ligand I and Dr. R. E. Carter for linguistic criticism. This work was financed by the Swedish Natural Sciences Research Council.

REFERENCES

- 1. Bryant, R. G. J. Am. Chem. Soc. 91 (1969) 1870.
- Lutz, O., Schwenk, A. and Uhl, A. Z. Naturforch. A 30 (1975) 1122.
- 3. Lindman, B., Forsén, S. and Lilja, H. *Chem. Scr.* 11 (1977) 91.
- 4. Wasserman, R. H., Corradino, R. A., Carifoli, E., Kretsinger, R. H., MacLennan, D. A. and

- Siegel, F. L., Eds., Calcium Binding Proteins and Calcium Function, North-Holland, New York 1977.
- Lindman, B. and Forsén, S. In Harris and Mann, Eds., NMR and the Periodic Table, Academic, New York 1979.
- Robertson, P., Jr., Hiskey, R. G. and Koehler, K. A. J. Biol. Chem. 253 (1978) 5880.
- Farmer, R. M. and Popov, A. I. Inorg. Nucl. Chem. Lett. 17 (1981) 51.
- Parello, J., Lilja, H., Cavé, A. and Lindman, B. FEBS Lett. 87 (1978) 191.
- Reimarsson, P., Parello, J., Drakenberg, T., Gustavsson, H. and Lindman, B. FEBS Lett. 108 (1979) 439.
- March, H. C., Robertsen, P., Jr., Scott, M. E., Koehler, K. A. and Hiskey, R. G. J. Biol. Chem. 254 (1979) 4628.
- Andersson, T., Drakenberg, T., Forsén, S., Wieloch, R. and Lindström, M. FEBS Lett. 123 (1981) 115.
- 12. Andersson, T., Drakenberg, T., Forsén, S. and Thulin, E. FEBS Lett. 125 (1981) 39.
- Andersson, T., Swärd, M., Drakenberg, T. and Forsén, S. J. Am. Chem. Soc. In press.
- Forsén, S., Thulin, E. and Lilja, H. FEBS Lett. 104 (1979) 123.
- Amble, E. and Dale, J. Acta Chem. Scand. B 33 (1979) 698.
- 16. Levy, G. C., Ed., Topics in Carbon-13 NMR Spectroscopy, Wiley, New York 1974, Vol. 1.
- Bhat, T. R. and Krishnamurthy, M. J. Inorg. Nucl. Chem. 25 (1963) 1147.
- Brunetti, A. P., Nancollas, G. H. and Smith, P. N. J. Am. Chem. Soc. 91 (1969) 4680.
- Wilkins, R. G. and Yelin, R. E. J. Am. Chem. Soc. 92 (1970) 1191.
- Higgins, W. E. C. and Samuel, B. J. Chem. Soc. A (1980) 1579.
- Grant, M. W., Dodgen, H. W. and Hunt, J. P. J. Am. Chem. Soc. 93 (1971) 6828.
- Harada, S., Funaki, Y. and Yasunga, T. J. Am. Chem. Soc. 102 (1980 136.
- Day, R. J. and Reilley, C. H. Inorg. Chem. 36 (1964) 1073.

Received April 23, 1981.