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Linear Free Energy Relationships. Local Empirical Rules — Or

Fundamental Laws of Chemistry?

MICHAEL SJOSTROM and SVANTE WOLD

Research Group for Chemometrics, Institute of Chemistry, Ume& University, S-901 87 Umed, Sweden

Two fundamentally different interpretations of
linear free energy relationships (LFERs) and the
causes of the breakdowns of one-term LFERs to
more complex ones have been forwarded: (a) The
classical interpretation of LFERs expressing
combinations of “fundamental” effects or (b) an
interpretation where LFERs are looked at as
empirical models of similarity.

In this review we argue against the classical
interpretation (a). Instead we provide support for
the second alternative (b) where LFERs are seen as
locally. valid linearizations of complicated
relationships. The major argument is that the latter
interpretation is scientifically preferable since it
results in better predictions of new experimental
facts. This is illustrated with data from organic
reactivity and solvent effect studies.

In organic chemistry it is easy to make small
modifications in a studied process. For example, a
reaction can be investigated in different solvents, at
different temperatures, pressures etc., or it can be
modified by changing a substituent on a reactant.
Similarly, other “properties” of compounds such as
NMR spectra are often studied by slightly
modifying the compounds or their environment.
In the late nineteenth and early twentieth
centuries, examples were found where data
measured on series of reactions involving
compounds perturbated in the same way showed
approximate linear relationships to each other.
Historically, the earliest example is the relationship
between the narcotic effect of a series of drugs and
their partition coefficient.! The first really chemical
example was the Bronsted relation? between the
catalytic power and the acid/base strength of a series
of compounds. In 1935 numerous approximate
relations had been reported between pairs of
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processes modified in the same way. The relations
then best investigated were those of rate and/or
equilibrium data of series of meta- and para-
substituted benzene derivatives.?

Based on these findings, Hammett formulated a
relation for the reactivity of substituted benzene
derivatives *° which originally took the form shown
in eqn. (1).
Y =Yot POy (1)
Here y, is the logarithmic rate or equilibrium
constant of the substituted benzene derivative (index
k for substituent) and y, that of the unsubstituted
derivative. This relation, later called the Hammett
equation, quantifies the effect of the substituents by
constants ¢ and the sensitivity of the reaction to the
substituents by another constant p. The latter is
specific of the reaction and reaction conditions. The
substituent parameter scale was originally defined
from substituted benzoic acids in water asin eqn. (2).
o, =log K, /K, @
Eqn. (1) is not an exact model but is preferably
written as a statistical model with deviations,
residuals (g), as in eqn. (3).
Vi =%+ pi0y + &y A3)
Here the residuals ¢ describe the non-modelled part
of the data y,. They are due to errors of
measurement and imperfections in the model. The
latter are, as in all models, an unavoidable
consequence of the fact that models are
simplifications of a complicated reality. In fortunate
cases the models describe 90 — 99 9 of the variability
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Fig. 1. Series of measurements on chemical phenomena perturbated in the same way often show an
approximate linear relation to each other. This indicates that model (3) gives a good description of the
measurements. (a) A substituent scale, denoted ¢°, has been estimated from these and a large number of
other reaction series of meta and para substituted benzene derivatives. Data from Refs. 10— 12. (b) Another
substituent scale, o, can be estimated from measurements on these and similar aliphatic systems. Data from

Refs. 13 and 14.

(standard deviation) of the data in a series. One
unresolved question is how much of the data
variability the model is expected to describe in ideal
and “average” practical cases. Noticable is also that
in contrast to model (1), model (3) assumes that the
data of the unsubsrituted benzene derivative contain
model and measurement errors. This means that in
eqn. (3) we have o;=y,,—¢, if 6=0 for the
unsubstituted benzene derivative.

Quantitative models like the Hammett equation
are usually called linear free energy relationships
(LFERs) since they describe linear relationships
between logarithms of rate and/or equilibrium
constants. However, quantitative models like (3) are
not restricted to describe differences in free energies,
but can describe any type of measurements on a

process if certain assumptions are fulfilled. We shall
therefore use the name extrathermodynamic
relationships (ETRs) henceforth. The requirements
for the applicability of ETRs will be discussed in a
subsequent section. For exhaustive reviews dealing
with ETRs, see Refs. 6, 7 and 8a. In Figs. 1a—c some
examples are given of series of measurements that
each is well described by a one-term ETR.

When the model errors become larger, see Figs.
2a—c for examples, one usually wants to decrease
their size the either limiting the domain of the model
or by inclusion of more terms. The latter leads to the
multiple terms ETRs (eqn. (5)) of which the dual
substituent parameter (DSP) model is the simplest
case, eqn. (4).
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(c) In the same way as substituent effects can be quantified by substituent scales, solvent effects can be
quantified by empirical solvent scales, for example estimated from the solvatochromic shift from these and
other indicators. (O, non hydrogen bonding (NHB) solvents and [J, hydrogen bond acceptor (HBA)
solvents). The solvents are; 1, hexane; 2, cyclohexane; 3, dibutyl ether; 4, carbon tetrachloride; 5, diethyl ether;
6,dioxane; 7, trichloroethylene; 8, ethyl acetate; 9, tetrahydrofuran; 10, anisole; 11, triethyl phosphate; 12, 1,2-
dichloroethane; 13, dichloromethane; 14, N,N-dimethylacetamide; 15, pyridine; 16, N,N-
dimethylformamide; 17, hexamethylphosphoramide; 18, y-butyrolactone; 19, N-methylpyrrolidone; 20,
dimethylsulfoxide; 21, ethyl chloroacetate; 22, N,N-dimethylbenzylamine. Data from Ref. 15.

Vik = %+ POy + Pia 0 + 85 “) These two interpretations are historically
coupled to the possibilities to statistically relate
model (5) to measured data. Before the age of
Yiw =+ ; PiaTak + Eix ) computers, the only way open was to derive the
" parameters from a standard series where a single
component model, as eqn. (3), was adequate and
thereafter interpret deviations from the single
Two fundamentally different interpretations of  component model in terms of a second component.
ETRs and the causes of the breakdowns of one- The Yukawa-Tsuno extension of the Hammett
terms ETRs to more complex ones have been  equation provides a good example of this approach
forwarded: (a) The classical interpretation as ETRs  as discussed below.

A

Different interpretations of ETRs

expressing combinations of “fundamental” effects With computers and statistical data analytic
or (b) an interpretation where ETRs are looked at  methods of multivariate data — principal
as empirical models of similarity (EMS). components (PC) and factor analysis — model (5)
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Fig. 2. Examples of breakdowns of simple ETRs. (a) For reactions with an electron deficient reaction center,
like in solvolysis of substituted t-cumyl chlorides, the para donor substituents deviate strongly when plotted
against the o scale. Data from Refs. 9, 16 and 17. (b) Aliphatic and aromatic substituent constants are poorly
correlated to each other. Thus substituent constants from aliphatic systems are not applicable to aromatic
reactivity. For the deviating donor substituents, @, a resonance scale ¢ is defined which is considered to

can be related directly to a matrix (table) of
measured data (possibly transformed to logarithms
and thereafter perhaps scaled). The data analysis
immediately provides information about the
adequate number of product terms, A4, in eqn. (5)
needed to give the model optimal predictive
properties. Moreover, the “substituent scales” g,, (a
=1,2,..., A) are obtained directly from the data
analysis together with the “sensitivity parameters”,
the loadings *p,. Reaction series (i) and/or
substituents (k) which show appreciable deviations
from the model — outliers — are pointed out by the
analysis. Measures of fit between model and data

*The statistical term loading refers to the fact that the
parameters g, are calculated as linear combination of the
variables y,,.. The “weight” or loading p;, expresses the
influence of variable i in this linear combination.

are obtained in the usual way as residual standard
deviations (RSD).

The mathematics of fitting PC and factor models
to a matrix of chemical data is well described
elsewhere '® =23 and we shall not repeat the details
here. We just note that today with these data
analysis methods we are in a situation where we
objectively can judge the adequacy of an ETR of a
given complexity on a given data set; judge
objectively without making assumptions about a
single term model fitting part of the data set. The
data set used for the evaluation of the ETR can be
part of, or the whole data set used to calculate the
model parameters. Alternatively, the evaluation set
can be a different data set on which one then tests the
“transferability” of the model.
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operate together with the inductive effect. Similarly other resonance scales oy, o , o5 , are defined to deal
with other types of deviations, see for example eqn. (11). Data from Refs. 9 and 13.

(c) In this plot one of the indicators (N-methyl-4-nitroaniline) has hydrogen bond donor (HBD)
properties, in contrast to the indicators in Fig. 1c. Solvents with HBA properties ((J) deviate from the
approximate linear behaviour of the NHB (O) solvents. Data from Ref. 15.

Classical interpretation

The traditional interpretation is that a one-term
ETR expresses the influence of a “fundamental
effect” which is universally present in chemical
reactions (at least organic ones*). Deviations from
this ETR are interpreted as due to new “effects” in
addition to the old effect. This interpretation of ETRs
predominates in the literature and we will here just
give some typical examples.

Reactivity models. The Hammett equation, eqn. (3)
above, is a single term ETR describing a single
“effect” influencing “normal” aromatic reactions.
The interpretation of this “effect” varies, see for
instance Refs. 18 and 24. In many reaction series, the

*We note that ETRs are increasingly used also in
inorganic chemistry, see for instance Ref. 8b.
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points corresponding to para donor substituents
deviate from the simple one-term model. In the
Yukawa-Tsuno relation,2®> eqn. (6), a new
substituent scale is introduced to deal with the
deviating para donors in reaction series with an
electron deficient reaction center, see Fig. 2a.

log ky/ko = p(c® +rAcy )

The substituent constants Asy were defined as the
difference between the ¢ and the ¢° scales, where
the 6™ scale was defined from the solvolysis of ¢-
cumyl chlorides in acetone — water (90 %). Thus for
the para donors we can interpret this equation as ifa
o0 “effect” is present with the same sensitivity, p-
value, as for the para acceptors and meta
substituents. Then for the para donors, an additional
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resonance effect is considered to operate in parallel
with the g°-effect.

With the universal applicability of “effects” it
follows that the classical “inductive effect” can be
defined by data measured on aliphatic systems as
well as by data measured on aromatic systems.
However, poor correlations are found between the
inductive effect defined from aliphatic systems, and
aromatic substituent constants like o3, and o9 (or
Gy a; , 6, ), see Fig. 2b. The poor correlations are
usually interpreted as due to the influence of a
mesomeric (resonance) effect in the benzene system
which operates in addition to the inductive effect
(oy). Furthermore, it is assumed that the blend of
the mesomeric and inductive effects is different in
the meta and para positions. Thus it has been
proposed that the inductive effect directly can be
extracted from o, and g, constants by finding the
best choice of constants a —d in eqns. (7) and (8).2°

0, = ao,+boy (7N
O =cCoy+dog (8)

Usually, however a and ¢ are taken to be
unity 2’ 73° due to the assumed structural
similarities between the bicyclo[2.2.2]octane-
carboxylic acids, used to anchor the o, scale, and
the benzene system. The resonance scale is then
calculated from eqn. (7) with b equal to unity and d
estimated to 0.33.

Inductive g;-constants have also been calculated
directly from '°F NMR shifts of meta and para
substituted fluorobenzenes,?°:*! as in eqns. (9) and
(10).

oy = —8,/1.1+0.084 )
069=(6,—5,)/29.5 (10)

Ehrenson et al.** have proposed that together
with a supposedly universal inductive effect, a
mesomeric substituent effect () is operating with
“limited generality” as in eqn. (11). Ehrenson et al.
propose four different mesomeric scales for
different types of reactions.

log k/ky = pio;+ prog (11)
The choice of mesomeric scale y is dependent on

the reaction type, these scales being calculated
from a two-term model with an “inductive scale”

fixed at previously defined values.

The approach by Swain and Lupton 32 is another
effort to define separate effects by the analysis of
different data sets conforming to one-term ETRs.
In this approach, any substituent constant ¢ from
a one-term ETR is supposed to consist of a field
effect (F) and a resonance effect (R) as in eqn. (12).
The field effect F was calculated from o, and
g, according to eqn. (13).

oc=fF+rR (12)
F=ao,+bo, (13)

The constants ¢ and b were estimated from ¢
values defined by data measured on the rigid
bicyclo[2.2.2]Joctanecarboxylic acids. By setting R

¢’ =ao,,+bo, (14)

equal to zero for —N(CH,); in eqn. (15) x was
estimated at 0.56. The resonance term R for the
other substituents were then calculated from eqn.
(15).

o, =aF+R (15)

Solvent effect models. Kamlet et al.>* have found
that a one-term ETR well can describe the
solvatochromic shifts of non-hydrogen bond donor
(non-HBD) indicators, see Fig. 1c. Hence, the effect
of the solvents is quantified by a one-term ETR,
eqn. (16), with the solvent scale denoted by m*.

Vik = Vio ST + & (16)

This one-term ETR no longer holds if hydrogen
bond donor (HBD) indicators are considered, since
hydrogen bond acceptor (HBA) solvents, like
acetone, show strong deviations from a one-term
ETR, see Fig. 2c. The one-term ETR is then
extended to a two-term ETR, eqn. (17). The new
solvent scale, f,, describes the deviating HBA
solvents, while the sensitivity, s;, is kept at the same
value as in eqn. (17) for the non-hydrogen bonding
(NHB) solvents.3*

Vi = Vio 57 +b, B + & (17)

Eqn. (16) is sometimes further extended with a
third solvent scale. This (eqn. (18)) is introduced to

Vi = Vio + ST + a0, (18)
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deal with solvents with hydrogen bond donor and
acceptor (HBA — D) properties, like ROH solvents,
in combination with indicators with HBA
properties.333¢ A general equation [eqn. (19)] is
Vi = Vio + 5, + b, By + aon (19)
also formulated, to deal with all three types of
interactions.?3

ETRs as empirical models of simi-
larity (EMS)

In the second interpretation of ETRs, which goes
back to Polanyi diagrams 3”7 of chemical kinetics,
and has been refined by Leffler and Grundwald,>®
Palm3° and most recently by Wold and
Sjostrom,'84% ETRs are interpreted as approx-
imate models with local validity only. According
to this interpretation one model is formulated for
the reactions of substituted benzene derivatives,
another model for open chain aliphatic reactions,
possibly a third for the reaction of alicyclic
compounds, a fourth for naphthalenes and so on.
For solvent effects one model applies for non-HBD
indicators, a second for HBD indicators. By
statistical analysis one can investigate how far a
given model can be applied: one might, for instance,
find that indeed the same model applies to aliphatic
and alicyclic reactivity. The important point of this
second interpretation is that a given ETR is not
necessarily universally valid. The substituent scales
cannot for certain be used for all types of reactions,
they might not map universal “effects”. This
philosophy rests on the data analytical possibilities
given by principal components (PC) and factor
analysis. By means of these methods one can
indeed objectively judge the applicability of a given
ETRs, as shown below.

It is noted that each of the ETRs examples above
is consistent also with this second interpretation.
According to Popper, the discrimination between
these two views must therefore be based on an
evaluation of the practicality, i.e., quantitative
performance, of models derived from either view.

Summary of introduction

In this presentation we will discuss the
differences and empirical evidences for and against
the two lines of interpretation. The choice between
the two interpretations is in our view strongly
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connected with the reasons for using ETRs in
particular applications. Those who use ETRs for
the retrospective rationalization of chemical
reactivity are likely to favour the first line of
interpretation. Those who are more interested in
the use of ETRs as a practical tool of prediction and
classification, might prefer the second. In the long
run we believe that the interpretation which leads
to the most correct predictions will also be the
more scientifically correct. With Feyerabend 4! we
note, however, that the choice between the
conflicting scientific models is at least partly based
on irrational arguments.

LFERS AS LOCALLY VALID LINEARIZA-
TIONS OF COMPLICATED FUNCTIONAL
RELATIONS

We shall here argue that mathematical models
having the form of eqn. (5) arbitrarily well can
approximate data measured on ensembles of similar
processes (objects, samples, systems). With
processes we here mean chemical reactions or
equilibria.

The argument is based on identifying the
measured data with a continuous function in two
vector variables followed by a differentiation of the
function and a grouping of the terms in the resulting
Taylor expansion. Mathematically the arguments
are trivial, but the consequences are profound. Eqn.
(5) can be used to describe any data observed on a
class of similar “objects” regardless of whether the
objects are chemical reactions, complicated
chemical samples or biological individuals and
regardless of whether the data are kinetic,
thermodynamic, spectroscopic, or express product
distributions or concentrations of constituents in
the objects. A corollary of the mathematical
derivation below is that any variable measured on
an ensemble of sufficiently similar objects is
correlated to any other variable measured on the
same objects; the correlations being better the closer
the similarity between the objects. Together, these
consequences are important for the philosophy of
chemistry; it is always possible to construct
empirical models valid locally for similar objects or
processes, but the relation between the variables
measured on similar objects have no more
fundamental meaning than being indicators of
similarity.

Now the derivation. We consider an ensemble
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(S;,) of similar chemical systems obtained by slightly
modifying (perturbing) the system S, in two distinct
ways, for instance modifying the reaction center (i)
and the substituent (k). We now make one
measurement y on each modified system. We
describe formally these measurements as a function
F plus small “errors of measurements” ¢, eqn. (19).

Yie = Flzix)+ (19)

The function F is constructed in such way that all
changes in the measurements y induced by the first
modification i, let’s say reaction center, are
described as caused by changes of a vector variable
Z in F. Analogously, all changes in y induced by the
second modification k, say change of substituent, are
described as caused by changes of another vector
variable X. Though the function F may be very
complicated and the vector variables Z and X may
contain many elements, this formalism is in
accordance with physical and chemical theory. Thus
quantum theory represents any observable y as a
solution of an operator equation, which makes y
have function like behaviour. Classical thermody-
namics is based on continuity properties of
observables, i.e., a function-like behaviour.

We note that although the influences of the two
modifications are separated in different vector
variables this description includes all types of
interaction between the two modifications. In simple
cases such interactions might be described by simple

Elements
of X

>y

XJ/-\,--

cross terms zx; in more complicated cases by more
involved functional relationships between elements
in vector variables.

In chemical language the two vector variables
contain as elements microscopic (non-observed) 42
variables such as changes in charge distribution,
dipole interactions, solvation, orbital energies, etc.,
that we like to use to “explain” the variation of a
measurement y between one reaction and another
or one compound and another. The crucial point of
this derivation is that we need not “know” these
microscopic variables; it is sufficient to postulate the
existance of such variables and that they have
certain continuity properties.

Let us now study the behaviour of function F in a
small area Z+AZ, X+AX. In particular, we
consider the case when the perturbation due to the
second modification AX is very small. In such case
all elements in X vary linearly with respect to each
other and the elements in AX, Ax, can all be
described as multiples of a single variable ¢ (Fig. 3).
Thus eqn. (19) reduces to eqn. (20).

Vi = F(Z,1)+ & (20)

Let us now Taylor expand this function around
the point (Z,t,). The indices p and r denote the
elements in the vector variable Z.

F(ZH)=Foo+ Y FAz,+ Fi+ LY Fr Az, Az, +
r pr
Y F.Az At + F,At* + cubic terms and higher  (21)

/

Coordinate
v of change L

A x

Fig. 3. When the change in At in the coordinate ¢ is sufficiently small, the elements in the vector X vary

linearly with each other.
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This can be rearranged to eqn. (22) where R(3) and
R'(3) denote the remainder with cubic and higher
terms.

F(Z#)=Fqo+ ZF;AZ, + gz " Az Az +
At[1+(1 /F',)ZF;;AZ,]F L+

AP[L+(1/F)Y FrbaFi -

AP[Y FubzJFi/F,+R()=

Foo+ zr:F ‘Az, + ZZP:F Az Az, +

[1+(1/F ()Z:F WAz J[FAt+F ;;Atzj +R(3)=

A2)+g(Z)h(t)+ R'(3) (22)
Identifying Z with i and ¢ with k we get the one-term
ETR [eqn. (3)] where now ¢, includes the remainder
R'(3).

Since R'(3) can be made arbitrarily small by
making AZ and At sufficiently small, this proves that
a one-term ETRs, eqn. (3), describes any data
observed on sufficiently similar processes or objects.

One important point concerns the size of g(Z) in
eqn. (22); i.e., p in eqn. (3). In the way the parameters
scales p and ¢ are defined, F’ is set constant (the
same “o” scale is used in all reaction series, the
“sensitivity” is expressed by “p”). Hence a large p-
value corresponds to a large Y F,Az,. This term also
appears in R'(3). Hence one would expect this to be
larger for large p-values than for small p-values.
Indeed this was found by Sjostrom and Wold;>*”
see further section “Behaviour of LFERs in
practice”.

We can now continue the derivation by splitting
R'(3) into terms containing only AZ, times other
terms containing only At and in the same way show
that eqn. (4) with A =2 is a general similarity model
of cubic approximation power and so on. This was
done in Ref. 40 and we will not tire the chemically
minded reader with these mathematical arguments.
We just note that eqn. (5) has the same
approximation properties for tables (matrices) of
data Y=(y,,) as polynomials have for bivariate data
(V%) Provided that the objects k are in some way
“similar”, the model can approximate data
measured on the objects. The greater the
dissimilarity between the objects k, the more terms
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are needed in the model to reach a given
approximation power. We note also that a special
use of eqn. (4) is the quaratic model of eqn. (23). This
is the first “breakdown” of the one term model (3) as
the diversity increases between the objects in the
“class”.

Yik =&+ Py + Pi20% + €y (23)

In conclusion, the present derivation predicts the
following behaviour of ETRs. In particular, points 4
and 6 are in contrast to the classical ETRs
interpretation. They provide criteria which can be
tested on chemical data.

1. For a given class of similar processes of objects
modified in two ways, eqn. (5) can approximate data
measured on the objects.

2. The simplest model corresponding to the
closest similarity between the objects is the one-term
ETR, eqn. (3). When the diversity increases slightly,
a quadratic model (23) is applicable; i.e. curvature is
an indication of moderate breakdown of the one-
term ETR.

3. For sufficiently similar processes or objects,
any measured variable i is linearly correlated to
any other measured variable j.

4, The greater the diversity between the objects
and/or processes, the more terms are needed in the
similarity model. For a given model the fit gets
worse when the diversity increases.

5. If the diversity between the objects is too large,
the model collapses; i.e. the o,,-values contain little
or no predictive information.

6. The loading p, should be related to the residual
RSD for processes within a class.

DATA ANALYSIS AND CRITERIA FOR
GOODNESS OF FIT BETWEEN MODEL AND
DATA

When relating a model like eqn. (5) to a data set
we have two different situations.

A. Fitting model (5) to a matrix (table) of measured
data Y. The data may be unscaled or scaled to unit
variance for each series in the case the variability in
the series differs appreciably. The analysis involves
two problems.

(1) The estimation of the adequate number of
product terms, components, A. This is done by
cross-validation 3 (CV) in the following sequential
procedure. We start with the model with 4=0 and
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evaluate the significance of the first component (4
=1)in the following way: Part of the data — matrix
elements selected in a pseudo-random fashion —
are kept out of the data matrix and the one
component model fitted to the remaining
incomplete data matrix. The resulting parameters
pu and g, are then used to calculate “predicted”
values for the kept out matrix elements. The sum of
the squared differences between the predicted
values and the actually observed values for the kept
out elements is formed. This sum is called PRESS
(prediction sums of squares). Then the data matrix is
restored. Other elements are then kept out, the
model parameters estimated, predictions calculated
for the kept out elements and the squared
differences between prediction and observed values
for kept out elements are added to the previous
PRESS. The process is repeated until each element
in the data matrix has been kept out once and only
once. The PRESS now measures the prediction
error of the one component model. If PRESS is
smaller than the residual sum of squares (RSS) for
the zero component model (corrected for the
number of degrees of freedom) the one component
model is significant. One then fits the one
component model to the complete data matrix,
forms the residuals and proceeds with the testing of
the next component. This is done in the same way
but now one tests whether the residuals can be
modelled with a one-component model or not.
Finally one arrives at a component which is non-
significant and the CV procedure stops.

The CV procedure rests on two properties of the
PC model.

(i) The components are orthogonal to each other
and can therefore be “peeled off” and thereby
evaluated one after another.

(ii) The one component PC model can be
estimated also for incomplete data matrices.

The CV procedure thus gives information about
which number of components, 4, gives model (5) the
best predictive properties. We note that the CV
‘procedure usually leads to fewer components than
other evaluation procedures:*® the predictive
performance is harder on a model than the degree of
retrospective fit.

(2) Calculations of parameters «;, p;, and a,,.
Once the adequate number of components, A, has
been determined by the CV procedure, the
determination of the values of the «;, o, and p,, (a
=12, .,4:i=1,2., M and k=1, 2, .., N) which
give the model the best fit to the data in the least

squares sense is numerical routine accomplished
with any statistical standard package. This analysis
also gives values of the reisudals & which can be used
to evaluate the fit of the series (i) or a “substituent”
(k).

We note that the parameter vectors (a,,) are
orthogonal to each other. Hence, if one wishes to
relate the resulting o,,-values (in case A>1) to a
preconceived scale, say s,, this is done by “rotation”
of the different g,,-vectors. The coefficients in this
rotated combination is simplest determined by
linear regression.

B. Evaluating the fit of a given o,,-scale to one
reaction series (i). The data analytic problem now is
one of multiple regression ** since the o,,-scales are
fixed. Only the parameters o; and p,, are estimated.
To have a criterion of the goodness of fit which is
easy to use and which corresponds to the predictive
properties of the model we also here use the cross
validation criterion. This is now done by keeping
aside part of the observations (say every third value),
fitting the model to the remaining data. We obtain
from the resulting o, and p,, values and the
predetermined a,, values predicted values for the
kept out observations. The sums of squared
differences between these predictions and the actual
values of the kept out points are formed (PRESS).
Then another part of the observations is kept out
and so on until each point has been kept out once.
The resuiting PRESS is then a measure of predictive
performance of the model on the given series. Below
we refer to this method as the CMREG method
(cross-validated multiple regression). The squared
root of PRESS divided by n (n observations in the
reaction series) can then be compared with the
standard deviation around the mean (SDM) of the
data in the series. The percent of unexplained
standard deviation in the data for a series when
fitted to a given o, scale is then obtained by
multiplying (PRESS/n)!/2/SDM with 100, which we
will refer to as % UNEX SDM.

BEHAVIOUR OF ETRs IN PRACTICE

Hammett equation

The most prominent example at present of a
large body of data that well can be described by a
simple similarity model as eqn. (3), is the rate and
equilibrium constants of meta and para substituted
aromatic systems. Thus this type of data is well
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suited to study the behaviour of chemical data in
general, and to study the breakdown of simple
ETRs.

In the Hammett equation meta and para
substituents arg treated as separate objects in the
same model. In our view, this is rationalized most
easily if we see a substituent, or any other discrete
part of the molecule corresponding to the subscript
k,in terms of a core and a shell, as in Scheme 1.In the

—_——

7 X N\ N
/ K \ / P
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N 7/ \ /

z,-/ \2’7 -

Scheme 1.

core, any number of variables may operate in any
complex way, despite a regular behaviour outside
the shell. In the case of the Hammett equation, we
observe the “effects” of the substituent X-Ph in the
reaction part. Since a one-component ETR is valid,
the “effects” evidently can be approximated by a
change of a single variable ¢; the reaction center lies
outside the shell.

An extensive statistical analysis has been done on
a large body of data that follows the Hammett
equation (~60 substituents and ~ 60 reactions).’
Thus the body of data was described by model (3).
Some features in the behaviour of the data have been
found that can be taken as clear indicators in favour
of the EMS interpretation.

Model errors. In a plot of the residual standard
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Fig. 4. The residual standard deviation (RSD) is
found to be a function of p in the statistical analysis
of the Hammett equation. The error of
measurements should not show a dependence of p.

deviation RSD for each series against their p-values
a linear relation is seen (Fig. 4). The enhanced RSD
values cannot be due to increasing errors of
measurements since the given error of measure-
ments is much smaller and show no dependence on
p.Hence, we interprete the increase of RSD with p as
increasing model errors. This is expected as a
consequence of the EMS approach as discussed
above.

Curvature. If the variation of the elements in Z or
in X is large over the experimental width, terms

Table 1. Some examples of reaction series showing a significant curvature (P=0.05) to the ¢° scale.

Linear model

Curved model

. y=a+bc°)+e y=a +b(6%)+c(c°)? +e
Series ¢
a b RSD a’ b’ c RSD F*
1 —0.048 1.64 0.10 0.051 —2.40 1.05 0.05 2717
2 —3.69 —2.26 0.18 —3.59 —3.66 1.94 0.06 47.6
3 —0.068 —4.42 0.17 0.024 —543 1.46 0.13 6.7

4 The reaction series are; 1, solvolysis of benzyl chlorides, 50 %, EtOH; data from Ref. 45 (substituents: —H, m-CH,, m-Cl,
m-CF 3, m-F, m-NO,, p-NO,, m-OCH,, 34-di-CH;, 3,5-di-CH,, 3,5-di-OCH,); 2, solvolysis of benzyl tosylates, 56 %,
acetone; data from Refs. 46 and 47 (substituents: —H, m-CH,, m-F, m-Cl, m-Br, m-I, p-NO,); 3, cleavage of
aryltrigermanates, H,0, CH;COOH; data from Ref. 48 (substituents: —H, m-CH;, m-F, m-Cl, m-Br, m-CF;, p-CF,, p-
CO,CH,, m-COOH, m-NO,, p-NO,, m-OCH;). ® With this F-test the residual variance (RSD?) of the linear model is
compared with the residual variance (RSD?) of the curved model. In all the cases the linear models give significantly larger

(P=0.05) residual variances compared to the curved model.
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from R(3) must also be considered. As earlier shown
R(3)=g(ZW*(X) + R(4). If R(4) is small, this term is
included in the residuals, but a moderate curvature
is expected when the width of the substituent effects
increases (p is large for a series) or if the variations in
the elements in Z is large, as for a reaction series
with moderately changing reaction mechanism. In
Table 1 we give some examples of reaction series
that show curvature when fitted to the earlier
mentioned ¢° scale. For the solvolysis of benzyl
tosylates Hammond et al.*°-° have investigated the
mechanism thoroughly by changing temperature,
solvent composition and by adding anions such as
C1~ and NO; to the solvolysis medium. The results
from these investigations support a systematic
variation in a single mechanism. This is consistent
with the EMS interpretation of this curvature.

ANALYSIS OF SUBSTITUENT EFFECTS IN
ALIPHATIC AND AROMATIC REACTIVITY

With the approaches that are reviewed in the
introduction [eqns. (7)—(10) and (12)—(15)] it is
possible to extract substituent constants from
aromatic reactivity that are quite similar to aliphatic
substituent constants. These findings have formed
the basis for the assumption of the existence of a

universal inductive effect, present in aliphatic as well
as aromatic reactivity. Thus it should be possible to
extract this universal inductive effect from aliphatic
as well as from aromatic reactivity. To investigate if
this is possible we have collected five series of
data (see Table 2) that can be considered as aliphatic
series since the substituents are attached to sp3
hybridized carbons. Eleven substituents were chosen
for which measurements were available for all series.

A PC-CV analysis showed that a one-
component model was adequate to describe the
systematic variation within the data set. To
determine the predictive ability among the series, we
delected series 1 and extracted a one-component
model from the remaining four series. The resulting
substituent parameter scale was then used to predict
the measurements of the deleted series with the
approach described above as the CMREG method.

The standard deviation of the prediction errors
PRESS of series 1, can now be compared with the
standard deviation around the mean of the data in
the series denoted % UNEX SDM. As seen in Table
2, 139 of the standard deviation in series I is
unexplained by the substituent scale from series 2
—35. The same scheme is then followed to predict
each of the series 2 — 5. The mean values of % UNEX
SDM, denoted MEAN % UNEX SDM, for series 1
—5 is 129 as long as substituent scales from

Table 2. Prediction ability of aliphatic and aromatic substituent scales, S(IA) and S(IIA), respectively,
expressed as % UNEX SDM (see text), tested on pK in water of 5 series of aliphatic compounds.

. S(IA)® SA)¢
Series
A=1 A=1 A=2 A=3 A=4 A=5

1 13 59 19 20 23 26

2 9 63 19 19 21 20

3 9 57 17 20 21 20

4 12 64 17 18 24 32

5 16 54 17 13 16 21
SPRESS ¢ 0.63 14.1 1.18 1.30 1.87 1.79
F=SPRESS/0.63 ¢ 224 1.87 2.06 2.96 2.84

The series are: 1, a-X-2-methylpyridinium ions (data, Ref. 14): 2, a-X-3-methylpyridinium ions (data, Ref. 14): 3, «-X-4-
methylpyridinium ions (data Ref. 14). 4, 4-X-quinuclidines (data, Ref. 51): 5, X-acetic acids (Ref. 13). The substituents —X
are in all cases: —H, —CH;, —Ph, —CN, —Ac, ~CO,CH,, —NHAc, —OCH,, —SCH,, —SO,CH,, —Cl. *The
substituent scales used for prediction were calculated from four series among series I — 5 and thus the predicted series was
not used in the derivation of the S(IA)-values used for psrediction. ¢ S(IIA), where calculated from o3, a3, F, R, af F "R,

op F"NMR Data from Refs. 9,27, 31 and 52.¢ SPRESS = )" PRESS, i.e. the sum of the squared prediction errors for series

—5. ¢ With this F-test, SPRESS of the aromatic substiiuént scales, used to predict the aliphatic series, is compared with
SPRESS of the aliphatic substituent scales (=0.63). The F-values in italics are significant on the 959 level. Thus, overall
the aromatic substituent constants give significantly worse prediction of pK of aliphatic compounds compared to
substituent scales from aliphatic series.
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Fig. 5. Mean percentage of unexplained standard
deviation (MEAN %UNEX SDM) in data of
different substituent scales when applied to pK of
five series of aliphatic compounds. X : Substituent
scales from aliphatic systems. O: Substituent scales
from aromatic systems. Broken line indicates the
estimated errors of measurements in relation to the
mean of SDM of the series used.

aliphatic data is used for prediction, see Table 2 and
Fig. 5.

From the classical point of view, aromatic
substituent scales should contain the same universal
inductive effect. To investigate this we have
extracted the systematic information from a data set
where for each substituent the aromatic substituent
scales 03, a3, F, R agF ~"MR, g0 F~NMR are given.
With this organization of the data matrix, we now
investigate the complexity of the interaction
between the substituent and aromatic moiety, see
Scheme 2.

A 5-component model was needed to describe the
systematic part in the data according to CV. The
predictive properties of the five substituent scales
were investigated with the CMREG approach in the
same way as the substituent scales from aliphatic
data. In this case a linear combination of the two or
three first components gave the best prediction of
the aliphatic series, see Table 2 and Fig. 5 for the
results. The results clearly show that aromatic
reactivity contain predictive information of the
behaviour of aliphatic systems. However, evenif one
of the series is somewhat better predicted with
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aromatic substituent constants, the overall
prediction ability of the aromatic substituent scales
was significantly worse compared to the aliphatic
substituent scales. This is shown by the F test* in
Table 2 where the variances of the overall prediction
errors, SPRESS, with the two types of substituent
scales are compared.

We also note the gaps between the predictive
errors and the errors of measurements (see Fig. 4).
These gaps can, if we accept the EMS approach be
explained as the existance of model errors and thus a
consequence of the approximate nature of the
models applied. The gaps and the overall worse
prediction of aliphatic reactivity using scales from
aromatic reactivity are difficult to explain from the
classical point of view.

Summary of aliphatic—aromatic
substituent analysis

1. An aliphatic data set containing 5 series, 11
substituents was well described by a one-
component model. On an average, models from
aliphatic data predicted 88% of the SDM in
aliphatic data.

2. A data matrix consisting of the values of 6
aromatic substituent scales for the same 11
substituents needed a 5-component model. The best
combination of these scales had a predictive ability
of 829% of the SDM of the aliphatic data set,
significantly less than the 889, of the scales
extracted from the aliphatic data set.

ANALYSIS OF SOLVENT EFFECTS

In analogy to the analysis of aliphatic and
aromatic data, we have investigated the behaviour
of solvatochromic shift of indicators. From the
excellent data of Kamlet et al. it has been possible to
form a complete data set consisting of
solvatochromic shifts of 16 indicators in 15 solvents
of hydrogen bond acceptor (HBA) type.

The indicators are of two types: non-hydrogen
bond donor (non-HBD) indicators typified by I and
hydrogen bond donor (HBD) types. The HBD
indicators are of two types with one and two

* The F-test measures the significance of the difference
between two variances. In the present case the test is used
to compare the prediction errors of two different scales.
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hydrogens accessible for hydrogen bonds, typified
by II and III, see Scheme 2, and Figs. 1c and 2c.
A PC—CYV analysis of the shifts of the 7 non-HBD
indicators (I) showed that a one-component model
was sufficient to describe the systematic part in the
data. With the aim of investigating the predictive
power among the non-HBD indicators, indicators |
and 2 were deleted. A PC—-CV analysis was
repeated on the remaining data set with
measurements of 5 indicators and a one-component
model was sufficient to describe the systematic part
in the data. The CMREG approach was then used to
investigate the predictive information in the solvent
scale determined from indicators 3—7 on the
solvatochromic shifts of indicators I and 2. Solvent
scales were thereafter calculated from indicators 1,
2, 4—7 and then finally 1—4. The predictive
properties of these scales were investigated on
indicators 3 and 4 and on indicators 5—7. The
results are presented in Table 4 and in Fig. 6 and the
origins of the solvent scales are presented in Table 3.

On an average, 139, of the standard deviations
(SDM) in the series were unexplained by the
calculated solvent scales.

PC models were also extracted from the
solvatochromic shift of HBD indicators 8 — 14 (set
IV) and from the subsets II and III, see Table 3. Two
components were needed to describe the systematic
part in the data set. Some further components were
also determined, however. The solvent scales were
then used to predict the behaviour of indicators 1
—7 with the CMREG method. As seen from the
results presented in Table 4 and Fig. 6 the overall
predictive ability of the solvent scales from HBD
indicators is significantly lower than that of the
solvent scales derived from the non-HBD
indicators.

Summary of solvent effect analysis

1. Non-HBD indicators (I} are well modelled
with a one-component model. On an average,
models from non-HBD indicators predict 87 %, of
the SDM in the data of the non-HBD indicators.

2. HBD indicators (set II, III, IV) need two-
components models. These predict 78, 65 and 80 %,
respectively, of the SDM in set L.

3. The scales extracted from set II, III and I'V have
a prediction ability on set I, which is significantly less
than the scales from set 1.

DISCUSSION

a. General

The scope of this review is to provide evidence
for the non-generality (non-transferability) of

Table 3. The origins of solvent scales used to predict the solvent effects of non-HBD indicators.

Solvent scales*® Components A° Indicators ¢ Predicted series®
T(AA) 1(2) 3-7 1,2

T(dA) 12) 1,2,5-7 3,

T(dA) 1(2) 1-4 5-7

T(IA) 2(3) 811 1-7

T(ITIA) 2(4) 12—16 1-7

T(IVA) 2(4) 8—16 1-7

“?Solvents in all cases; 3, 5,6, 8 — 11, 14 — 21 for numbering of solvents see Fig. 1¢.® Numbers of significant components in
eqn. (5) according to CV and within parenthesis the number of calculated components. ¢ Indicators; 1, 4-nitroanisole; 2,
N,N-diethyl-3-nitroaniline; 3, 4-methoxy-f-nitrostyrene; 4, N,N-diethyl-4-nitroaniline; 5, N,N-dimethyl-4-
aminobenzophenone; 6, N,N-3,5-tetramethyl-4-nitroaniline; 7, N,N-diethyl-3-methyl-4-nitroaniline; 8, N-methyl-4-
nitroaniline; 9, N-ethyl-4-nitroaniline; 10, N-isopropyl-4-nitroaniline; 11, N-ethyl-3-nitroaniline; 12, 3,5-dimethyl-4-
nitroaniline; 13, 4-aminobenzophenone; 14, 3,5-dinitroaniline; 15, 3-nitroaniline; 16, 4-nitroaniline. Data from Refs. 15, 33,
34, 53 and personal communication from Dr. M. J. Kamlet.
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Table 4. Prediction ability of various solvent scales, T(XA)“ tested on v
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of 7 indicators of non-HBD type

max

and in 15 HBA solvents. The prediction ability of a solvent scale T(XA) is expressed as % UNEX SDM (see

text).
T(A) T(IA) T(IITA) T(IVA)

No. of

indicator A=1 A=2 A=1 A=2 A=3 A=1 A=2 A=3 A=4 A=1 A=2 A=3 A
=4

1 15 15 24" 21 19 51 35 37 37 39 21 19 20

2 18 19 33 30 34 60 4 49 46 48 30 34 23

3 18 22 34 28 29 62 38 42 44 50 23 23 23

4 9 8 27 16 17 56 27 27 29 44 13 14 13

5 17 19 34 25 24 62 45 54 56 50 24 17 22

6 8 9 27 17 17 57 30 33 32 44 14 13 13

7 11 13 24 16 17 57 26 26 25 44 13 14 11

SPRESS® 070 078 324 174 190 116 421 540 548 791 144 143 1.18

F=SPRESS/0.70¢ L11 463 249 271 165 60 771 782 113 205 204 169

7

“The origins of the solvent scales and the used solvents are given in Table 3.> SPRESS= ) PRESS i.e. the sum of the

squared prediction errors for indicators 1 — 7. © With this F-test, SPRESS of the solvent scales from indicators with HBD
properties, used to predict the behaviour of the non-HBD indicators, is compared with SPRESS (=0.70) of the solvent
scales T(I1) from the non-HBD indicators. The F-valugs in italics are significant on the 95 9; level. Thus in these cases the
used T(XA) scale gives significantly inferior prediction compared to the T(I1) scales.
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Fig. 6. Mean percentage of unexplained standard
deviation (MEAN %UNEX SDM) of different
solvent scales, when applied to indicators of non
HBD type. x, solvent scales from NHB indicators
(type 1); A, solvent scales from HBD indicators of
type IL; [, solvent scales from HBD indicators of
type III; O, solvent scales from HBD indicators of
type Il and 111 together, data set IV; Broken line, see
Fig. 5.
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chemical “effects” and their quantitative models
(ETRs). We favour an interpretation of these
models as being local linearizations of very
complicated relationships; the full complexity of
which we can never, not even in principle, grasp.
Even if the models are not generally applicable,
they are still most useful both for “applied” work in,
say, chemical reactivity and structure-biological
activity studies as well as for the basic
understanding of organic chemistry.

The reason for our strong emphasis on the local
validity of ETRs is our belief (empirically founded)
that a failure to understand this non-generality of
organic chemical models leads to very a confusing
picture and apparently contradictory results in the
quantitative investigation of organic reactivity.

Above we have shown that aromatic reactivity
partly can be transferred to aliphatic reactivity and
the reverse. However, the predictive precision of
models derived in one area (say aromatic reactivity)
and applied in another area (say aliphatic reactivity)
is significantly lower than the predictive precision of
models derived from reactions in the same area as
those studied.

In the same way, we have shown that the pre-
dictive properties of solvent effects models are more
precise for indicators of the same type as those for

2
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which the models are “calibrated” and significantly
less precise for less similar indicators.

This property of local validity of ETRs is rather
easy to understand in terms of perturbation theory
but is not consistent with the idea that the same
“effects” operate everywhere in organic chemistry.

b. Scope of ETRs

We can now discern two different main
objectives with ETRs. The first (and simplest to
discuss) is the use of ETRs to predict the behaviour
of chemical compounds in various reaction
systems, for instance their reactivity in a given step
in a synthetic scheme or their biological activity
versus some biological test system. For this
“empirical” use of ETRs the interpretation of the
models is not of primary interest. Rather, one
desires good predictive properties in a given
application.

Since the predictive precision is better when the
ETR is derived from the behaviour of systems
similar to the one studied, there should be little
controversy regarding the preferability of the
“statistical” approach in this context. Exner® has
stated that the best approach to a precise prediction
of reactivity is the plotting of one series against
another. We note that principal components
analysis is a generalization of this approach where,
instead, a series is “plotted” against components
summarizing a battery of similar series. Thus
parameters derived statistically give more precise
predictions in the domain of applicability of the
model because “random” fluctuations in individual
series have been smoothed out.

This does not mean that large deviations for the
“normal behaviour” can be overlooked in a
statistical derivation of substituent parameters. On
the contrary, the statistical approach is the only one
where the level of unacceptable deviations can be
specified and deviations exceeding this level
detected.

The second objective is more central to organic
chemistry and concerns the use of ETRs to
“understand” organic reactivity. We note that the
philosophy of science with Godel, Bohr and
Heisenberg gave up hope of being able to
understand “how things really are”. Instead the only
thing a scientist can do now is to construct models of
greater or less generality. Thus the battle over the
interpretation of ETRs is not whether the “effects”

are “true” or not — a philosophically meaningless
question — but rather about their range of
applicability. Thus the traditional interpretation of
ETRs can be said to regard the models as being of
general scope (within organic chemistry) while the
present interpretation regards them as considerably
less general.

Also, even if we were to accept the general scope
of ETRs, we think that the least one has to do is to
verify this generality of the “effects”. The efforts of a
rigorous analysis of reactivity data strongly indicate
that “effects” are not generally valid.

However, many analyses have been made with
limited range of substituents and reactions. The
results of such analysis often are interpreted as
supporting the generality of ETRs in their
uncomplicated form. A good example of this is our
recent analysis of the influence of alkyl groups on
aliphatic reactivity >* where the statistical results
show that one needs to postulate at least three
“effects” even with this limited range of reactions
and substituents. DeTar,** analyzing a subset of the
same set of data, finds a simpler (one component)
model after deleting data that were not consistent
with this idea. The resulting arguments are, in our
view, hardly constructive. Different models can be
evaluated only when they are applied to the same
level of statistical rigour.

An interesting example is seen in a recent analysis
of acidity function data.>¢ In this investigation it was
shown that a two-component model is needed to
adequately describe the carefully measured data set.
When restricting the range of the solvent variation,
various one-component models are adequate. Each
of these is a local linearization of the more
complicated two-component model needed for the
full data set.

The arguments concerning the two different ways
of interpreting ETRs are, in our view, unnecessarily
confused due to the inability to keep apart on the
one hand statistical significance of the model and on
the other hand chemically exhaustive fit to a model
(i.e. a fit-that explains fully the systematic part of the
data). There is no doubt that data measured on a
class of aliphatic reactions contain a component
which is significantly correlated to data measured
on aromatic reactions. However, we and others
have shown that this correlation is not as good as
that obtained with a component derived from
aromatic reactions. Thus the “aliphatic” reactivity
parameters do not give an exhaustive fit in aromatic
reactions — the model is not perfectly transferable
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between aliphatic and aromatic reactions.
Moreover, the difference in fit between aliphatic and
aromatic substituent scales varies between aromatic
reactions in a difficult-to-predict manner; it is not so
that, say, 80% of the inductive “aliphatic” effect is
transferable to aromatic systems.

In this context it is perhaps worthwhile to discuss
the results of Taft and Grob,?” which by many are
cited as support for the classical ETRs
interpretation. In their analysis they plot the
difference in pK, between 4-substituted pyridines
and 4-substituted quinuclidines against oy and
obtain a straight line apparently indicating an
“isolated resonance” effect. When looking into this
example, however, one finds that o is defined as the
difference between ¢* (aromatic) and g (aliphatic).
The latter (o)) is derived from 4-substituted
bicyclooctanecarboxylic acids and similar sys-
tems.2* Now, 4-substituted quinuclidines are very
similar to 4-substituted bicyclooctanes. Hence we
would expect that the pyridines are modelled by a
ot type of scale and the quinuclidines by a o,
(aliphatic) scale. If we now subtract the two
nonrelated models from each other we, of course,
still get straight lines without any physical meaning
even if we rename ¢* —o; as oy . The difference
between two straight lines remains a straight line
even if the two original lines are completely
unrelated to each other. Hence we conclude that the
Taft-Grob example is no support for the classical
ETRs interpretation.

A further complication with the classical
interpretation is the choice of standard series. The
dilemma is, which of the series is best suited to
describe a “fundamental effect”. How large
deviations can be tolerated before another “effect” is
postulated? Does an investigated series contain all
or just some (which) of previously postulated effects.
This approach inevitably leads to an ever-increasing
number of scales, each of which is claimed to be
superiour in some respect. This proliferation has
now gone rather far and presently there are more
than 20 scales to choose among to describe polar
and resonance effects of a substituent. The user of
ETRs thus has a formidable problem to choose
among available models. Also one has the problem
of chance correlation due to the large number of
possibilities to select scales and combinations
thereof in a given application. To quote Bordwell *8
in a recent effort to analyze the behaviour of
substituted nitroalkanes with the battery of scales
available: “the variety of parameters used to
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correlate the acidity data for nitroalkanes and the
variety of ways in which these parameters have been
combined has led to a complex and confusing
picture, to say the least”.

We also note that the “effects” described by
various scales in ETRs are inconsistent with
quantum mechanics since a o—n separation is
possible only in planar molecules. Even in these ¢
—m polarization still operates and at least 7 effects
may operate according to Katritzky,*® even if we
adopt a very simplified picture based on one
electron orbitals.

-

c. Conclusion

We conclude that also for the understanding of
organic reactivity, i.e. the central domain of physical
organic chemistry, the classical interpretation of
ETRs as generally applicable models is
counterproductive. We don’t want, however, to
dismiss the use of substituent scales. We just want to
emphasize their local validity and the difficulties
encountered when one starts to combine scales
derived from different data sets. Thus ¢ * certainly is
a good scale for certain aromatic reactions. The
combination of 6+ with, say, ¢° for series deviating
from both ¢ and ¢* to the Yukawa-Tsuno equation
is maybe valid, but is in our view a less than optimal
way to estimate parameters.
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