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This paper is concerned with the iterative
refinement of NMR parameters as they are obtained
in the LAOCOON program and similar programs.

The error analysis differs from previous
subroutines in the introduction of a measure for the
variance of the unassigned transitions with respect to
the assigned transitions. In terms of this measure a
strategy for the gradual enlarging of the set of
assigned transitions is presented. The discussion
includes several examples from the literature
showing that the statistical nature of the errors in the
final iterated parameters has often been
misinterpreted.

The iterative simulation program LAOCOON * has
found general acceptance in the interpretation of
high resolution NMR spectra. Over the years many
modified versions have been published>~* each
introducing additional facilities. Our Danish
descendant from LAOCOON is named MIMER **
and it incorporates most of the facilities published
over the years. During its development the program
has been used in a number of publications.®3° In
two respects we have found the published
developments less than satisfactory and we have in
MIMER tried to remedy these. The error analysis in
LAOCOON is frequently misinterpreted or its
information disregarded (vide infra). This may be
explained in part due to the lapidaric coverage in the
user manual and partly due to the manner in which
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the information is presented in the output produced
by the computation. In MIMER we therefore have
designed a new error analysis, drawing on the
experience from other spectroscopic disciplines in
casu microwave spectroscopy. The procedure of
assigning line numbers to observed transitions is the
most decisive step in the iteration using LAOCOON.
The high degree of subjectiveness involved in this
step has been criticized *!+32 with good reason and it
is one of the motives for the development of “the
automatic method” as described by Diehl et al.3* and
Stephenson and Binsch.?? Progress towards a more
objective procedure for line assignment in
LAOCOON is intimately connected to the error
analysis. In the work of Kirchhoff ** on assignment
of transitions in microwave spectra, we found some
suggestions that could be applied to NMR spectra as
well. Trial calculations have confirmed that it is
possible based on these ideas to define a procedure
whereby the step by step enlargement of the set of
assigned lines may be performed in an objective
fashion. As an example we have included analysis ofa
four-spin system. A second test is provided by an
analysis of the distribution of the normalized errors
in the assigned lines. This test may be used to spot
incorrectly assigned transitions between trial
iterations. When the final iteration is completed it
provides a test of the validity of the model
Hamiltonian used.

THEORY

Let us consider an experimental spectrum
represented by a collection of transition frequencies
{FR}. Through the iterative LAOCOON procedure
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14 Manscher, Schaumburg and Jacobsen

they determine the best values for the parameters
appearing in the Hamiltonian of the spin system.
Typically the parameters are chemical shifts and
spin —spin coupling constants, but occasionally
dipole —dipole coupling constants and quadrupole
splittings may be present. For each of the observed
transitions the experimentalist will provide a
qualified estimate of the accuracy of the
measurement. The estimate should include the
estimate of the performance of the spectrometer
affecting all transitions equally, as well as the specific
properties of the individual transitions exemplified
by variation in linewidth, difference in signal to noise
ratio, overlapping band envelopes etc. In the initial
step the guessed parameters {p°} are used to
calculate a trial spectrum with transition frequencies
{FR}.To tie an observed and a calculated transition
together a line number N;; is introduced, demanding
that the transition N;; with the calculated frequency
FR;; should approach, under the least squares
condition, the observed frequency FR;. The
calculated frequency is related to the eigenvalues E
of the Hamiltonian

A
FR, = E,~E, (1)

In order to keep the risk of divergence during
the iterations as low as possible the eigenvalues and
eigenfunctions are ordered according to energy after
each iteration so that the linenumber relation

N; <Ny
always implies
E,>E,

During the process of iteration, a measure of the
correspondence between the observed and
calculated transitions is provided by the root mean
square deviation defined by eqn. 2, where the
summation extends over the N assigned transitions.
A convergent iteration process is reflected in a
sequence of monotonically decreasing values
yielding the best solution when no further
improvements occur. Since the user should be able to
provide an estimate of the accuracy of the
experimental data it is appropriate to introduce the
function 6% defined by eqn. 3,

A
RMS = ﬁZ(FRU'FRiJ) 2
ij

. 1 A
62 = m% W;;(FR;—~FR,)* 3)

62 being an estimate of the variance of the
measurement errors. M in eqn. 3 is the number of
independent parameters optimized in the iteration
and W ; is the weight of the observed transition FR;;.
To judge the failure or success of the iteration the
standard deviation 6 should be compared to the
anticipated accuracy of the experimental data. In a
successful calculation the two values should be
similar. (In the case of weighted transitions the
experimental accuracy should be compared to

6/\/ W ). The close similarity of eqns. 2 and 3 makes
them equally suitable as a measure of the
convergence of the iteration sequence.

Ifthebest solution based on these considerationsis
found acceptable, the best parameter values should
be reported with proper confidence limits. The
confidence limits cf, for the kth parameter can be
expressed as

o= t&th @

The confidence limits are determined by three
factors. ¢ as defined in eqn. 3 reflects the accuracy of
the experimental data. An increase in accuracy of the
experimental data will obviously be one way to
reduce the confidence limits. V' is the dispersion
matrix where the elements are defined by eqn. 5.

N
Va' =Y DC;;, W;;DC;;,
ij

kl=1m. Q)

where DC is given by

DCyj=— Lt =—">-— 6)

V! contain a measure of the sensitivity of the
assigned transitions to the parameters which the
iteration process attempts to determine. V contains
the inverse information ie. the sensitivity of the
iterated parameters to the calculated and assigned
frequencies. At the outset we left open the possibility
that only a subset of the observed transitions had
been assigned. It is, therefore, conceivable that the
assigned lines may be sensitive preferentially to some
of the parameters iterated. A low sensitivity of the
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assigned lines towards the parameter p, will be
reflected in a large value of ¥, ,. From eqn. 5 it is seen
that the diagonal elements in ¥~ ! will grow with an
increase in the number of assigned transitions and
Vi will decrease. The second possibility of reducing
the confidence limits in eqn. 4 is therefore to assign
additional transitions. A useful device for selecting
the proper lines will be provided later in this section.

The factor ¢ in eqn. 4 is the Student factor.>* It is
related to the statistical nature of the results obtained
by the least squares procedure. The confidence limits
calculated using eqn. 4 will depend on the significance
to be associated with the result. If the user is satisfied
with a 50 9 chance that the “true value” is within the
range p, +cf, alow value of t applies. If, on the other
hand, a 95 9; chance of bracketing the “true value” is
requested a larger value of ¢ must be inserted.

Many results obtained by LAOCOON iterations
report the RMS error but omit the confidence limits.
From the discussion above it can be deduced that
assignment of a small subset of transitions may lead
to veryfavourable R MS.values whileat the same time
Vcontains large diagonal elements that are reflected
in large confidence limits.

The off diagonal elements of Vexpressin a similar
manner to which extent the assigned lines
characterize the individual parameters rather than
linear combinations. Here reference can be made to
the properties of the well-known spin systems ABX
and AAXX'. If assignment is made only of the
prominent lines spaced by the sum of the coupling
constants to the X entity, this will lead to large off
diagonal elements between the coupling constants.
In order to normalize the values of the elements V,,
the covariance coefficient matrix C is introduced

Ck,l = Vk.l/(Vk,k*Vl,l) ¥ M

Using the normalized matrix C the statements can be
made more precise. When values of |C, | fall in the
range 0.9 to 1.0 it is an indication that the assigned
transitions determine a linear combination of p, +p,
with better precision than the individual parameters.
Let us for a moment abandon the request for best
values of the individual parameters and accept best
values for linear combinations of parameters py

14
= Z Tkj P; @®)
]

or in matrix notation p* = Tp. In the new parameters
the dispersion matrix V would be transformed into
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V¥ =TVT ! )

Since Vis symmetric Tmay be selected to produce V*
in diagonal form. For this particular choice no
covariance exists between the parameters {p*} and
the use of eqn. 4 for this case exploits the information
present in the assigned transitions as far as possible.
This point was fully appreciated by Castellano and
Bothner-By !* in the error analysis performed in
LAOCOON where the diagonalization of the
variance covariance matrix F is performed. Since
F can be expressed as eqn. 10, the results are the same
as indicated above.
F =gV (10)

It is good practice to limit the number of assigned
transitions in the first trial iteration to avoid wrong
assignments that may derail the iteration from the
right track. The penalty for this will be large elements
in V.Inorder to proceed, it is necessary to enlarge the
number of assigned transitions including lines that
increase the information contentin {FR}. The added
lines should fulfil the condition of unique assignment
since wrong assignments againmay lead theiteration
astray. To aid the user in this process we may ask,
how accurate are the predictions of unassigned
transitions calculated on basis of the previously
assigned transitions. The statistical measure of this is
the estimated standard deviation of a transition
O(FR,)). It can be shown (see appendix A) to depend
on three factors, the standard deviation of the
assigned transitions found in eqn. 3, the relations of
these to the iterated parameters expressed in the
dispersion matrix ¥ and the sensitivity of the
transition fkk, to the parameters DC,, .. This leads
to eqn. 11, where &FR,)) is the desired standard
deviation. This expression is valid both for assigned
and unassigned transitions, when the proper DC,, ,
is inserted.

~ MM
‘S(FRH)Z =0 ZZ Z DCkl,m Vm,nDCkl,n (1)

Let us consider a transition FR measured but not
included in the iteration. If the value FR falls within
the limits FR; +&FR,) then inclusion of the
transition FR,, = FR will not increase the standard
deviation & of the iteration. If several observed but
not assigned transitions fall within the range FRy +
O(FRy) it would be dubious to assign any of these to
the calculated linenumber unless additional evidence
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for the selection exists. If the list of 5(F/I\%ik) is scanned
and some of these values are much larger than the
measurement error for the observed lines it indicates
that some parameter or linear combinations of
parametersare poorly determined and assignment of
additional lines will be necessary. These lines should
be selected among the previously unassigned
spectral lines with values of 6(15)(), large compared to
the experimental error yet sufficiently small that an
unambiguous assignment can be made. In the next
cycle of the iteration the 5(F/){) values will have
changed and some new unassigned lines may be
suitable for inclusionin the calculation. Aslongas the
calculation results in FR)? values significantly
larger than the estimated variance of the unassigned
transitions the process of enlarging the basis of
the iteration should be continued. The method is
included in the error analysis and its application is
illustrated in an example later in this paper.

The fitting of parameters in a large spin system is
hardly ever performed using all the chemical shifts
and coupling constants as “free parameters”.
Typically less than 10 parameters are allowed to be
free, while the remaining parameters are held at fixed
values. Practical considerations justify this strategy,
but theoretically it presents problems if the fixed
parameter values differ from the “true” but unknown
values. In this case the model used in the least squares
process is false and accordingly a test for validity of
the model would be valuable. Kirchhoff presents in
his paper 33 a procedure that might point out an
incorrect model.

The test is based on the distribution of normalized
errors in the final step of the calculation. The
parameter #(Av) is defined as eqn. 12.

H) = 12
" o)
For the assigned lines #(Av);; is given as *>
N\ A\
t(Av)ij = (FRij ‘FRij)/(&z Wl: ! _&FRij)z) H 13)

The values of (Av);; are listed in the output as
shown in Tables 3 and 4. Under the assumption of a
correct model and random errors the t(Av) values
should be distributed around zero with a Student ¢
distribution. The values given in the output are used
in a histogram and the distribution is characterized
by mean value, variance, third moment and
skewness. Significant deviations would indicate that
the model used needs reconsideration.

DISCUSSION

The error analysis in LAOCOON"! uses the
Student ¢ factor 0.67 in eqn. 4. This factor determines
the magnitude of the probable error often reported in
the results of iterative calculations. In the literature
much discussion has been devoted to the
interpretation of the probable errors produced by the
LAOCOON program.

As an example, MacDonald and Schaefer 3* argue
against the practice of quoting as error estimates the
probable errors produced by LAOCOON.! They
find that with a standard deviation in experimental
frequencies of 0.02—0.04 Hz the probable error
computed in AB and ABX systems may be as low as
0.002 —0.004 Hz. This leads them to the conclusion
that “the probable errorsare nota realmeasureof the
accuracy of the obtained parameters”. The probable
errors produced by LAOCOON correspond to the
50 % confidence limits for a system with the number
of observations N exceeding the number of
parameters to be determined M by a large number.>*
The statistical measure of the confidence limits of a
parameter determined by the least squares
procedure is correctly given by eqn. 4 and choosing
for ¢ the (N — M) from the Student ¢ distribution,>*
o being the confidence limit required by the user.

In the case of an AB system there will be three
parameters to obtain from the iteration but only four
transitions. Using the common 95 %, confidence limit
(1,95 %)= 12.7, thisamounts to a whopping factor of
19 as the increase from the LAOCOON probable
error to the statistical correct estimate of confidence
in the parameter. Similarly an ABX system will in
general allow the observation of 12 or occasionally 14
lines while 6 parameters are to be determined. In this
case the probable errors produced by LAOCOON
should be multiplied by 4 in order to present the
statistical correct estimates. The examples discussed
by MacDonald and Schaefer, therefore, do not
present a criticism of the LAOCOON method and its
application but merely emphasize the need for a
better and easier interpretable error routine in the
simulation programs.

Kostelnik et al.*® have reported a very careful
study of aa,a-trifluorotoluene. They have estimated
the standard deviation on the observed lines to be
0.025 Hz. Separation of the spectrum into two
subspectra and observation at 100 and 60 MHz
permitted four independent iterations to be
performed yielding chemical shifts and coupling
constants. In all cases and for each parameter they
calculated a probable error about 0.010 Hz. Since a
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large number of lines were included the N — M,
50 %) should be 0.67. The confidence limits using
t(N—M,95 9%):0.030 Hz and (N — M, 99 %): 0.038
Hz. All the observed values lay within the 99 9, con-
fidence range. These results, therefore, seem to sup-
port the use of the results of the statistical analysis
rather than to discredit it as concluded by Mac-
Donald and Schaefer.3S In a paper Ewing3’ at-
tempts to estimate the parameter errors in
LAOCOON calculations. He states that “the error
analysis can only yield information about the
internal fit of observed and calculated spectra, and
some kind of calibration is required before the error
analysis can be really meaningful”.

This statement seems rather dubious to us. As
discussed in great detail by Albritton 32 it is vital for
the outcome of a least squares calculation that the
basic assumptions for the use of the method are not
invalidated. Among these, two seem to be pertinent
to typical NMR calculations. Firstly, the errorsin the
measured frequencies should be predominantly
random. The error distribution is only required to
possess a well-defined variance as given by eqn. 3 in
order that the least squares method will iterate to the
best possible values.® For the application of the
confidence limits expressed in eqn. 4 the stronger
requirement of a normal distribution of the error
must be fulfilled. If systematic errors dominate, then
the outcome of a least squares fit including the error
estimates become meaningless. With modern
spectrometers it is entirely possible that systematic
errors may dominate. In such cases it is often
advocated to enlarge the error estimates by a
common factor. This practice may work well for
certain classes of problems but being without
theoretical justification it should be used with
caution. Secondly, the model used may be inaccurate.
This may happen in larger spin systems where only
some of the parameters are iterated while the
remaining parameters are maintained at an
inaccurate value. This procedure introduces a bias in
the calculation that may produce parameter values
and error estimates that do not characterize the
unbiased solution. In addition to these factors
unequal precision in the determination of different
frequencies will be of importance as discussed later.

If we follow the arguments of Ewing?’ and
disregard the possibilities above there seems no
reason why the statistical method should fail, when
properly used. Ewing’s test system is a four-spin
system with 10 parameters and 35 lines assigned. He
then uses the reverse process of calculating the
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spectrum for small variations in the coupling
constants and monitors the RMS error and its
relation to the mean change in the coupling constants

E, eqn. 14.

A =Y ~J )6 (14)
Inordertointerpret the experiments we shall express
the confidence limits in terms of the RMS error and
the dispersion matrix V. Inserting eqns. 2 and 3 into
eqn. 4 we obtain the relation 15.

N +
M) VRMS (15)

fi=tN—-M ,a)(N —
The elements of the dispersion matrix do not depend
on the accuracy of the observed data,® but reflect
only the structure of calculation, i.e. the relation
between the selected set of transitions used in the
iteration and the parameters to be determined. In the
present calculations it means that the use of the same
transitions and the same parameters to be fitted
assures the unchanged value of V. From eqn. 15 it is
obvious that in the limit of random errors a linear

relation exists between the mean error AJ and the
RMS error, the slope of the line being determined by
eqn. 16.

N t_ (v}
ERE

Ewing did not report the magnitude of the dispersion
matrix elements. In a similar four-spin system
Laatikainen * reports their values to be in the range
0.5—0.8. Values in this range would lead to a slope of

25\~
1.96 x (—) 0.65 = 1.5
35

Using a large number of numerical experiments
Ewing finds a slope of 1.21. Ewing also considers the
situation where a large error is introduced in one of
the coupling constants only. Such a result would only
be observed when some sort of systematic error is
present in the observed data. As discussed by
Albritton,*® it is common practice to use a larger
number in place of {N — M,a). This reflects, as Ewing
suggests, a steeper slope.

It can be concluded that the experiments of Ewing
are an example of the use of computers to derive
relations that consideration of the theory would have

(16)
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given naturally. Furthermore the expression given
in eqn. 16 shows that the slope in the relation is not a
constant of nature but that it depends on the
conditions of the iteration. Especially it must be
emphasized that when the elements ¥ differ
significantly in magnitude an average relation with
an assumed value of V} ~0.65 may be totally
misleading. For a five-spin system the number of
observable lines increases more rapidly than the
number of parameters. This situation leads to a
reduction in the value of the elements of the
dispersion matrix and accordingly to a relation

between AJ and RMS error with a smaller slope. Also
this result is established numerically by Ewing. The
lack of conception of the statistical nature of the
results of the iterative procedure is most clearly
phrased in the concluding remarks of Ewing’s paper
where the “real” error in the iterated parameters is
suggested to be 2.5 times the probable errors of
LAOCOON . Stated in statistical termsiit suggests the
use of the 95 %, confidence limit instead of the 50 %,
confidence limit. When choosing the confidence limit
the procedure of preference is to use the N and M of
the actual calculations and select from a table the
corresponding (N — M,a).

In the present program we have included the
weighted least squares method. The technique is
described by Albritton 8 and theimplications should
be discussed in some detail. An unbiased estimate is
obtained using weights related to the accuracy of the
frequencies determined.
Wy, = 1/6} (18)
6,;being theestimate of the standard deviation for the
measured frequency of transition N, . If the spectrum
consists of lines of various linewidth due to the
presence of scalar broadening 3° or effects of medium
slow exchange, it is advisable to introduce the
weights according to eqn. 18. Similarly, if groups of
lines are not separated and line positions are
determined by measurements of local maxima on the
band envelope, such lines should carry a reduced
weight in the iteration.*® For quite a different reason
weights may be introduced due to the assignment
problem. If some spectral lines can be assigned with
certainty due to their isolated position in the initial
calculation and these lines determine a linear
combination of the parameters to be iterated that
should be kept almost unchanged, a large weight is
introduced. The combination of the last two
techniques often permits the untangling of groups of

overlapping lines, especially when wused in
combination with the bootstrap technique
depending on (FR). It is important to note that the
probable errors determined in a weighted iteration
are the same as in the unity weighted calculation for
the same parameter estimate. This is due to the fact
that weights enter the dispersion matrix and
variance in a compensating manner.3®

For the iteration procedure it is generally agreed
that the four-spin systems, especially the AA’BB’
system, are the most troublesome. The reasonfor this
is the low ratio between the number of observable
transitions and parameters to be iterated and in the
latter case the high degree of correlation among the
coupling constants. In a recent paper Manatt 4! has
considered the use of LAOCOON and NMRIT *2for
an AA’BB’system. For several of the trial calculations
it was found that LAOCOON diverges in the
iteration while NMRIT was stable in the iterations
over the trials performed. This led to the conclusion
thatinthecase of AA’BB’ systemsitisadvisablenot to
use LAOCOON but resort to NMRIT. Since our
program uses the same basic strategy as LAOCOON
we have recalculated the trial systems reported by
Manatt using MIMER to examine the performance
on the four spin case. The results obtained are
reproduced in Table 1 where the data from the work
of Manatt have been included.* The overall result is
that no divergence can be found using MIMER on
the trial cases reported by Manatt. Since we have
assigned the same number of lines to the same
frequencies the main difference arises in the ordering
of energy levels that MIMER performs, while this
step is absent in LAOCOON.*

In NMRIT the assignment of energy levels
explicitly results in the same ordering. This ordering
explains also the large discrepancy between the two
methods observed in the initial step. Usingmany trial
parameters further from the real parameters we have
obtained convergence to the real parameters in most
cases, even when the initial guess is very poor (trial 6).
In some cases we have, however, experienced the
same convergence to an improper set of parameters
that is exemplified by LAOCOON in trial 5. In such
cases we have found that the use of the symmetry
separation in the assignment results in proper
convergence. The problem arising in the AA’BB’ case
is related to the interchange of symmetric and

* We have obtained the program listing of LAOCOON in
the version used by Manatt through the cooperation of
Prof. H. Giinther.
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Table 1. Comparison of the iteration performance between LAOCOON and MIMER. The test example is
taken from Ref. 41. For each trial case the interative performance is given. Left column LAOCOON, right
column MIMER. Trial 6 only MIMER.

Real

parameters Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6
w(l) 48.863 48.000 47.90 47.80 47.70 47.825 0.000
w2) 48.863 48.000 4790 47.80 47.70 47.825 0.000
w(3) 61.450 62.000 62.10 62.20 62.30 62.175 1.000
w(4) 61.450 62.000 62.10 62.20 62.30 62.175 1.000
J(12) 6.200 6.00
J(13) —16.136 —14.10
J(14) 6.789 6.70
J(23) 6.789 6.70
J(24) —16.136 —14.10
J(34) 5.166 5.70
Iteration
number 0 1.029 1.202 1.025 1.197 7.771 1201 9.412 1212 5397 1.199 63.284
RMSerror 1 0.082 0.096 0.088 0.103 6.445 0.109 7.090 0.116 3.116 0.108 19.282
2 0.000 0.008 0.000 0.008 7.983 0.008 5.496 0.008 2.788 0.008 2.693
3 0.000 0.000 0.000 0.000 0.000 5.361 0.000 2762 0.000 0374
4 6.035 0.000 0.020
5 0.000

antisymmetric energy levels in the hierarchy of en-  program MAOCOON analyses the symmetry of the
ergy levels. This leads to switching of linenumbersso  eigenstates and avoids interchange of symmetric and
that the assigned transitions are identified by the  antisymmetric states by a modified diagonalization
calculation as symmetry forbidden transitions. procedure. He refers to the quantum mechanical
When this happens divergence or oscillatory “noncrossingrule”asthe origin of the problemin the
iterations may be encountered. Laatikainen * in his AA’BB’ system. This explanation seems dubious

—_—H

B

A
1 ]

4.5 44 4.3 4.2  ppm

Fig. 1. 'H 270 MHz spectrum of 6,7,10-trichloro-8,8-dimethoxy-1,4-dioxaspiro[4,5]dec-6-en-9-one. Trace A
shows the spectrum, while trace B corresponds to increased gain in order to observe the weak lines 22, 29
and 51.
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Table 2. The best values for chemical shifts and coupling constants obtained for 6,7,10-trichloro-8,8-
dimethoxy-1,4-dioxaspiro[4,5]dec-6-en-9-one using the iterative program MIMER. The parameters are
given with the 959 confidence limits in parentheses. Two iterations are reported. In case I only the strong
lines with intensities above 0.4 were assigned. In case II three additional weak lines were included.

CH,0 OCH,
Cl 0
al 5!
H
Case I Case 11
H1 w(1) 1147.846 (0.04) H1 w(1) 1147.853 (0.04)
H?2 w(2) 1162.289 (0.04) H2 w(2) 1162.289 (0.04)
H3 W(3) 1186.033 (0.53) H3 W(3) 1185.969 0.12)
H4 w(4) 1183.593 (0.57) H4 W4) 1183.677 0.12)
J(1,2) —7414 (0.06) J(1,2) —17.390 (0.05)
J(1,3) 7.189 (0.46) J(1,3) 7.146 (0.15)
J(1,4) 5.297 (0.43) J(1,4) 5.299 (0.16)
J(2,3) 6.983 0.17) J(2,3) 7.017 0.12)
J24) 7.119 0.22) J(2,4) 7076 (0.16)
J(3,4) —7.692 (7.87) J(3,4) —6.776 0.07)
RMS 0.029 RMS 0.035

Table 3. The iterative results obtained by the program MIMER. The best values of the parameters
corresponding to the calculated lines are listed in Table 2 as Case I. The assigned lines all have intensities
above 0.4. The result in ¢ distribution corresponding to the last column has a mean value of 0.013, a variance
0.989 and a skewness —0.412.

LINE EXP FREQ CALC FREQ INTEN ERROR 5(FR) t
51 1136.354 0.351 0.038
25 1142.390 1142.364 0.468 0.026 0.028 0.927
56 1143.469 1143.462 0.997 0.007 0.026 0.239
18 1143.459 1143.485 0.539 —0.026 0.029 —0.968
46 1148.840 1148.813 1.266 0.026 0.027 0.909
1 1149.230 1149.273 0.793 —0.043 0.024 —1.364
41 1150.890 1150.908 1.462 —0.019 0.026 —0.625
52 1152.106 1152.107 0.978 —0.001 0.028 —0.030
11 1156.066 1156.037 1.946 0.028 0.027 0.989
42 1157.260 0.016 4.297
27 1158.015 1158.039 1.334 —0.024 0.027 —0.823
55 1159.215 0.147 0.030
20 1159.431 1159.395 1444 0.036 0.027 1.242
12 1161.756 0.014 4.292
38 1164.509 1164.488 0.245 0.020 0.028 0.744
2 1165.243 1165.210 2072 0.033 0.025 1.078
33 1166.804 1166.818 0.509 -0.014 0.024 —0.456
47 1169.221 0.019 0.036
13 1170.438 0.110 0.034
5 1171931 1171975 1.369 —0.044 0.024 —1.392
29 1172.537 0.070 4.284
34 1173.170 0.032 4289
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Table 3. Continued.

14 1177.666 0.111 4.300

30 1178.864 1178.889 3.246 —0.025 0.028 —-0.912

54 1179.646 1179.622 2.806 0.024 0.027 0.820
3 1183.481 0.032 4302

39 1184.919 1184.896 1.755 0.023 0.023 0.716

48 1184919 1184.974 1.939 —0.055 0.027 —1.901

53 1185.975 0.051 4.288

15 1186.137 1186.113 1.892 0.024 0.028 0.851
7 1186.337 1186.375 1.421 —0.039 0.028 —1.370

28 1190919 1190.906 1.289 0.013 0.029 0.482
4 1193.317 1193.284 1.103 0.033 0.027 1.124

4 1193421 0.080 4.295

35 1193.578 0016 4.274

22 1200.709 0.039 4314

Table 4. The iterative results obtained by the program MIMER. The best values of the parameters
corresponding to the calculated lines are listed in Table 2 as case II. The assigned lines are as in case I but
three weak lines 51, 29 and 22 have been included. The resulting ¢ distribution corresponding to the last
column has a mean value of 0.026, a variance 0.990 and a skewness 0.043.

LINE EXP FREQ CALC FREQ INTEN ERROR MFR) t
51 1136.486 1136.404 0.351 0.082 0.027 2.262
25 1142.390 1142.386 0.469 0.004 0.026 0.105
56 1143.469 1143.490 0.998 -0.021 0.027 —0.583
18 1143.459 1143.510 0.540 —0.052 0.025 —1.370
46 1148.840 1148.816 1.264 0.024 0.029 0.691
1 1149.230 1149.275 0.794 —0.045 0.027 —1.244
41 1150.890 1150919 1.461 -0.029 0.029 -0.829
52 1152.106 1152.116 0.978 -0.010 0.030 —0.304
11 1156.066 1156.026 1.946 0.040 0.027 1.091
42 1156.352 0.017 0.047
27 1158.015 1158.041 1.333 —0.027 0.030 —-0.774
55 1159.203 0.147 0.032
20 1159.431 1159.404 1.443 0.026 0.029 0.755
38 1164.509 1164.471 0.247 0.038 0.027 1.034
2 1165.243 1165.216 2.070 0.027 0.028 0.738
33 1166.804 1166.813 0.514 —0.009 0.027 —0.236
47 1169.258 0.019 0.038
13 1170.453 0.108 0.033
5 1171.931 1171.968 1.370 —0.037 0.026 —0.986
34 1172.245 0.024 0.046
29 1173.491 1173.466 0.072 0.025 0.036 0.924
14 1178.573 0.123 0.044
30 1178.864 1178.898 3244 —0.035 0.030 —1.029
54 1179.646 1179.645 2.797 0.001 0.028 0.027
3 1184.385 0.037 0.046
39 1184919 1184913 1.753 0.006 0.025 0.145
48 1184919 1184.970 1.928 —0.052 0.030 —1.503
53 1185.078 0.057 0.047
15 1186.137 1186.109 1.882 0.028 0.029 0.793
7 1186.337 1186.395 1.421 —0.058 0.028 —1.610
28 1190.919 1190.896 1.285 0.023 0.031 0.695
44 1192.506 0.092 0.042
35 1192.688 0.018 0.040

4 1193.317 1193.284 1.099 0.033 0.028 0.918
22 1199.820 1199.794 0.044 0.025 0.036 0.926
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since the noncrossing problem is a one-dimensional
phenomenon.*? In a six-parameter iteration the
crossing conditions can be fulfilled in many ways. The
one-dimensional problem occurs only when the least
squares method used in the iteration prescribe a
linear combination of the six parameters as the
direction along which the step must be taken.
Therefore we find the discussion of the noncrossing
problem by Laatikainen unfounded and agree with
Castellano and Waugh ** in their suggestion that
noncrossing is introduced by the method of iteration
and not by the quantum mechanical nature of the
problem itself.

An interesting four-spin system that may serve as
anillustration of the ideas in the previous discussion
is presented by the 'H spectrum of 6,7,10-trichloro-
8,8-dimethoxy-1,4-dioxaspiro[4,5]dec-6-en-9-one.**
The CH,—CH, fragment constitutes a tightly
coupled ABCD system when a 5 %, w/w solution in
CDCl, is used. In Fig. 1 the 270 MHz spectrum is
reproduced. The staggered configuration of the CH,
—CH, has previously been studied in several
dioxolanes.*® The geminal coupling constants are
expected to fall in the range —6 to —8 Hz while the
vicinal coupling constants are expected to be about 7
Hz. The data used as starting parameters were

6,=1148.10 Hz
6,=1184.20 Hz
Ji3=J3,=~-75Hz
Ji4=55Hz

5,=1162.70 Hz
8,=1180.70 Hz
Jy3=J,,=170 Hz
J;3=73 Hz

The data simulated the spectrum sufficiently
accurately to permit an assignment of all the strong
transitions in the spectrum. The subsequent iteration
produced a set of best values listed ascaseIin Table 2.
The accuracy of the location of the experimental lines
is judged to be from 0.05 to 0.1 Hz. Based on these
figures the RMS error of 0.029 obtained (standard
deviation 0.04) is acceptable. The insufficiency of the
assigned transitionsis, however, reflected in the large
confidence limits particularly for J,. In Table 3 the
deficiency of the provided data is reflected in 6(FR)
values for some of the unassigned transitions being
40to 80 times larger than the uncertainty of the input
data. To obtain reliable parameters from the
iteration it is, therefore, mandatory to reexamine the
spectrum to decide if some of the weak transitions
previously neglected could be assigned. The wing
lines 51 and 22 could be identified uniquely. From the
S(FR) values it is anticipated that inclusion of line 51
will have little influence on the results. This is borne

outina subse}gent iteration. Line 22 on the contrary
has a large (FR) value and it is expected to influence
the results significantly. The same is valid for line 29
that can be identified in the middle of the spectrum.

The best values obtained with this enlarged set of
input data is given as case Il in Table 2. It is seen that
the confidence limits for all parameters become
reasonable and in Table 4 the values of 5(16() are all
reduced to a uniform size comparable to the
measurement accuracy.

Since all parameters are iterated it is expected that
thetdistributionsin Tables 3and 4 should be good for
both iterations, since the model is correct. In
calculations where one of the chemical shifts have
been fixed on an incorrect value the t distribution
showed this in mean value, variance and skewness.
Our experience is that imperfect ¢ distributions may
arise due to a few outliers or to a small shift of many
lines. Only in the latter case will the ¢ values indicate
that an incorrect model was used.
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APPENDIX

Consider the observed transitions collected in the
u
column vector (;) where u symbolizes the observed

yet unassigned transitions and y the assigned
transitions used in the least squares determination of
the parameters {§} according to the expression

P=(A"M"14)" 4™y (A1)

where p is the least square solution to the equation

y=Ap+e (A2)
For the unassigned transitions we obtain the
predicted values

ii=Bp (A3)
where Bisa matrix ofknown quantities similarto A in
the previous equation. The variance covariance
matrix for the unassigned transitions is defined by
E{(u—a)u—a)"} (Ad)
where E{ } denotes the expectation values 38 of the
quantity in braces.

Using Al and A2 we obtain
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(u—a)u—)" =(u—Bp\u—Bp)T=
(u—BA™M 1 A) AT [ Ap+¢])
{u—B(ATM~14) ' ATM " [Ap+¢]}T=
{u—Bp—BA™M ' 4) ' ATM ¢}
{(u—Bp—BA™M ' A)"'ATM 1) T=
(u—Bp)Yu—Bp)" -

(u—Bp){BA™™ 1 4) L ATM "¢}

- {B(ATM_ 1)~ 14™ 18}(14 —Bp)T (A5)
+{BA™M ' 4)" AT " e} x
{B(ATM—lA)—lATM—le}T

We notice that the second and third term in A5 are
vanishing due to

E{e}=0
The last term can be rewritten as

E{BA™ '4)'A™M 'ee"™™M 'A x
(ATM—lA)—lBT} —

BA™ ' A) ' A™M 'E{es"}M "' A x (A6)
(ATM— lA)—lBT

The variance covariance matrix of the errorsis given
as

E{ee™} = ’M (A7)
Inserting A7 in A6 we find

E{(u—iYu—i)T} =
B(A"™ ~14)"'BT = BVB" (A8)

In A8 we have neglected the first term in AS. This
term we have no means of calculating based on the
previously assigned transitions. For the present
purpose only the variance i.e. the diagonal elements
in A4, is of interest. The term neglected is expected to
be approximately the size of the variance of the
measurement error for the unassigned lines.

Using the subscripted notation 6(FR,)? for the left
hand side of A8 and DC,, , for the elements of B the
expression in eqn. 11 is obtained.
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