Reactions between Furyl Ketones and Grignard Reagents. III. Suppression of 1,4-Addition of Benzylmagnesium Chloride to Alkyl 2-Furyl Ketones by Voluminous Alkyl Groups at the Carbonyl Carbon*

RAINER SJÖHOLM and AGNETA LUNDQVIST

Institutionen för organisk kemi, Åbo Akademi, SF-20500 Åbo 50, Finland

When alkyl 2-furyl ketones react with alkylmagnesium halides the amount of conjugate addition increases at the expense of 1,2-addition when the size of the alkyl group of the ketone or that of the reagent is increased.^{2,3}

However, in our studies of the title reaction, we observed a trend opposing that observed for alkyl reagents.

Results. When benzylmagnesium chloride was allowed to react with alkyl 2-furyl ketones (R = Et, i-Pr or t-Bu) 1,2- and 1,4-additions (cis and trans) were observed (Scheme 1). The 1,4-addition products were oxidized by air during the work-up procedure. The oxidations, which have been dealt with in detail previously, $^{2-5}$ resulted in the formation of compounds 3 and 4. No 1,6-additions were observed.

The results are presented in Table 1. For comparison, results from Refs. 2 and 5 are included. The yields are normalized and "1,4-addition" includes all 1,4-addition products. The data in Table 1 show

Scheme 1.

Table 1. Normalized" and total yields of products from the reaction of benzylmagnesium chloride with alkyl 2-furylketones and furfural (2-FurCOR). Yields are given in mol-% of reacted substrate.

Substrate R	Products		
	1,2-addn	1,4-addn ^b	Total yield
H ^d	17	83	f
Mee	33	67	54
Et	55	45	65
i-Pr	97	3	78
t-Bu	>99	<1	80

 a 100 % = % 1,2-addn + % 1,4-addn. b Oxidation products included. d Data from Ref. 5. e Data from Ref. 2. f Tot. yield not determined.

that the amount of 1,4-addition decreases drastically when the size of the group at the carbonyl carbon of the ketone is increased.

The observed effect is opposed to the one observed with i-propyl and t-butyl Grignard reagents.

Discussion. The explanation of the difference between alkyl- and benzylmagnesium chlorides in reactions with alkyl 2-furyl ketones, is probably to be found in the possibility of the substrate occupying two different conformations. One hypothesis, presented previously,³ is based on the assumption that the ketones, in their reactions with benzylmagnesium chloride, are forced into the less favourable syn conformation as a results of coordination of the Mg-atom of the reagent to both oxygen atoms of the substrate. This would then bring a bulky group at the carbonyl carbon very close to C-3 in the furan ring, thus preventing 1,4-addition.

3

a.
$$R = CH_2CH_3$$
b. $R = CH(CH_3)_2$
c. $R = C(CH_3)_3$

^{*} Cf. Ref. 1; For Part II, see Ref. 3.

At this stage, no evidence for this hypothesis can be presented. A closer study of the mechanisms involved in the reactions of alkyl and benzyl Grignard reagents with alkyl 2-furyl ketones is now in progress.

Experimental. 1-(2-Furyl)-propan-1-one, 1-(2-furyl)-2-methylpropan-1-one and 1-(2-furyl)-2,2-dimethylpropan-1-one were prepared by methods described previously.³

The reactions between the ketones and benzylmagnesium chloride and the qualitative and quantitative analyses were performed as described previously, except that benzophenone and benzyl benzoate were used as internal GLC-standards.

Compounds 2b, 2c, 3b and 3c could not be isolated. However, comparison of their mass spectra with those of similar compounds, isolated previously ^{2,5} and identified by ¹H NMR spectroscopy, confirmed the structures.

The ¹H NMR spectra of the furfuryl alcohols (1) displayed ABX spin systems for the furan ring protons, the shifts ranging from δ 5.91 to 6.28 ppm for H₃ and H₄ and from δ 7.39 to 7.41 ppm for H₅. The spin systems were not completely analyzed and the exact shifts and couplings are omitted. The shifts of the OH protons are concentration dependant and are also omitted.

2-(2-Furyl)-1-phenylbutan-2-ol (1a). ¹H NMR (60 MHz, CDCl₃): δ 0.87 (CH₃CH₂-, t, J 7.8 Hz), 1.88 (CH₃CH₂-, q, J 7.8 Hz), 3.00 and 3.24 (Ph-CH₂-, AB-syst., J_{AB} 13.4 Hz), 6.73 to 7.34 (Ph-H, m). MS [IP 70 eV; m/e (% rel. int.)]: 216 (2, M), 198 (22, M-H₂O), 183 (5, M-H₂O-CH₃), 169 (9, M-H₂O-CH₃CH₂), 125 (100, M-PhCH₂), 105 (7), 95 (9, FurCO), 91 (17, PhCH₂), 43 (15), 29 (10, CH₃CH₂).

2-(2-Furyl)-3-methyl-1-phenylbutan-2-ol (1b). ¹H NMR (60 MHz, CDCl₃): δ 0.91 and 1.02 [(CH₃)₂CH -, dd, J 6.7 Hz], 2.13 [(CH₃)₂CH -, sept, J 6.7 Hz], 3.00 and 3.36 (PhCH₂ -, AB-syst., J_{AB} 12.7 Hz), 6.7 to 7.3 (PhH, m). MS [IP 70 eV; m/e (% rel. int.)]: 230 (1, M), 212 (12, M - H₂O), 197 (5, M - H₂O - CH₃), 187 [17, M - (CH₃)₂CH], 169 [6, M - H₂O - (CH₃)₂CH], 139 (100, M - PhCH₂), 105 (17) 97 (34), 95 (17, FurCO), 91 (23, PhCH₂), 43 [36, (CH₃)₂CH].

2-(2-Furyl)-3,3- \overline{d} imethyl-1-phenylbutan-2-ol (1c).
¹H NMR (60 MHz, CDCl₃): δ 1.05 [(CH₃)₃C-, s], 2.98 and 3.45 (PhCH₂-, AB-syst., J_{AB} 12.9 Hz), 6.7 to 7.2 (PhH, m). MS [IP 70 eV; m/e (% rel. int.)]: 244 (3, M), 226 (2, M-H₂O), 211 (2, M-H₂O-CH₃), 187 [100, M-(CH₃)₃C], 111 (25), 105 (42), 95 (24, FurCO) 91 (42, PhCH₂), 57 [13, (CH₃)₃C], 43 (45).

In all reaction mixtures two isomers of the 2,3-dihydrofuryl ketones formed by 1,4-addition of the reagent to the ketones were detected. These were identified as *cis* and *trans* isomers, respectively,

based on arguments presented previously.² However, only one of the 1,4-addition products (2a), shown to be trans by ¹H NMR spectroscopy,⁵ could be isolated. The mass spectra of the isomers were very similar and only the MS data of the more abundant isomer (believed to be trans) are given below.

trans - $1 - (3 - Benzyl - 2,3 - dihydro - 2 - furyl) - propan - 1 - one (2a). ¹H NMR (60 MHz, CDCl₃): <math>\delta$ 1.20 (CH₃CH₂ -, t, J 7.8 Hz), 2.27 (CH₃CH₂ -, q, J 7.8 Hz), ~2.5 - 3.7 (PhCH₂ - and H'₃, poorly resolved ABX-system), 4.48 (H'₂, d, J 5.4 Hz), 4.91 (H'₄, t, J 2.6 Hz), 6.38 (H'₅, dd, J 2.6 and 1.6 Hz). MS [IP 70 eV; m/e (% rel. int.)]: 216 (2, M) 214 (1, M - 2H), 187 (3, M - CH₃CH₂), 148 (5, M - 68), 159 (10, M - CH₃CH₂CO), 125 (5, M - PhCH₂), 95 (1, FurCO), 91 (63, PhCH₂), 68 (4, C₄H₄O), 57 (100, CH₃CH₂CO).

1 - (3 - Benzyl - 2,3 - dihydro - 2 - furyl) - 2 - methylpropan-1-one (2b). MS [IP 70 eV; m/e (% rel. int.)]: 230 (1, M), 228 (<1, M-2H), 187 [7, M-(CH₃)₂CH], 162 (4, M-68), 159 [7, M-(CH₃)₂CHCO], 139 (8, M-PhCH₂), 95 (3, FurCO), 91 (100, PhCH₂), 71 (71, (CH₃)₂ CHCO], 43 [59, (CH₃)₂CH].

1 - (3 - Benzyl - 2,3 - dihydro - 2 - furyl) - 2,2 - dimethylpropan-1-one (2c). MS [IP 70 eV; m/e (% rel. int.)]: 244 (2, M), 242 (2, M-2H), 187 [77, M-(CH₃)₃C], 176 (4, M-68), 159 [6, M-(CH₃)₃CCO], 153 (17, M-PhCH₂), 95 (13, FurCO), 91 (97, PhCH₂), 85 [43, (CH₃)₃CCO], 68 (8, C₄H₄O), 57 [100, (CH₃)₃C].

Only one of the substituted furyl ketones, formed by oxidation of the primary 1,4-addition products, could be isolated and the structure confirmed by ¹H NMR spectroscopy. The other two were identified by their mass spectra.

1-(3-Benzyl-2-furyl)-propan-1-one (3a). 1 H NMR (60 MHz, CDCl₃): δ 1.19 (CH₃CH₂ -, t, J 7.5 Hz), 2.91 (CH₃CH₂ -, q, J 7.5 Hz), 4.22 (PhCH₂ -, s), 7.26 (PhH, s), 6.30 (H'₄, d, J 1.9 Hz), 7.36 (H'₅, d, J 1.9 Hz). MS [IP 70 eV; m/e (% rel. int.)]: 214 (100, M), 199 (4, M - CH₃), 185 (100, M - CH₃CH₂), 181 (13), 157 (77, M - CH₃CH₂CO), 129 (47, M - CH₃CH₂CO - CO), 128 (60, M - CH₃CH₂CO - CHO), 91 (22, PhCH₂), 77 (27, Ph), 57 (18, CH₃CH₂CO).

1-(3-Benzyl-2-furyl)-2-methylpropan-1-one (3b). MS [IP 70 eV; m/e (% rel. int.)]: 228 (53, M), 213 (6, M-CH₃), 195 (6), 185 [100, M -(CH₃)₂CH], 157 [44, M-(CH₃)₂CHCO], 129 [23, M-(CH₃)₂CHCO-CO], 128 [26, M -(CH₃)₂CHCO-CHO], 91 (19, PhCH₂), 77 (11, Ph), 71 [6, (CH₃)₂CHCO], 43 [13, (CH₃)₂CH].

1-(3-Benzyl-2-furyl)-2,2-dimethylpropan-1-one (3c). MS [IP 70 eV; m/e (% rel. int.)]: 242 (25, M), 217 (3, M-CH₃), 186 (30), 185 [100, M-(CH₃)₃C], 157 [11, M-(CH₃)₃CCO], 129 [7, M $-(CH_3)_3CCO-CO]$, 128 [19, M- $(CH_3)_3CCO$ -CHO], 91 (21, PhCH₂), 77 (7, Ph), 57 [39, $(CH_3)_3C]$.

3-Benzyl-2-(5H)-furanone(4). The ¹H NMR and mass spectral data were found to be identical with those reported previously for this compound.⁵

Acknowledgements. Financial support of this work by Stiftelsens för Åbo Akademi Forskningsinstitut and Magnus Ehrnrooths stiftelse is gratefully acknowledged.

- 1. Results presented in part at Ninth International Conference on Organometallic Chemistry, Dijon, France 1979 and at Third International Symposium of Furan Chemistry, Smolenice, Czechoslovakia 1979.
- 2. Sjöholm, R. and Aura, P.-E. Acta Acad. Abo. Ser. B 38 (1978) No. 1.
- 3. Sjöholm, R. and Wörlund, K. Acta Chem. Scand. B 34 (1980) 435.
- 4. Sjöholm, R. Acta Chem. Scand. B 31 (1977) 278.
- 5. Sjöholm, R. Acta Chem. Scand. B 32 (1978) 105.

Received April 25, 1980.