Short Communications

A 400 MHz ¹H NMR Study of Five Aspidospermane-type Alkaloids

MAURI LOUNASMAA a, † and SIEW-KWONG KAN^b

^a Institut de Chimie des Substances Naturelles, F-91190 Gif-sur-Yvette, France and ^b Institut d'Electronique Fondamentale, Université de Paris-Sud, F-91405 Orsay, France

To obtain useful ¹H NMR data for the structure determinations of new aspidospermane-type alkaloids, we undertook a 400 MHz ¹H NMR study of 11-methoxytabersonine 1, vandrikidine 2, hazuntinine 3 and vandrikine 4, isolated from the leaves or the stem bark of the Madagascan plants Craspidospermum verticillatum Boj. (Apocynaceae) and Hazunta velutina Pichon (Apocynaceae). ¹⁻³ In connection with this study we were also able to show that the new Aspidosperma alkaloid (product M, m.p. 214 °C, $[\alpha]_D^{2D}$ – 388° (c, 1, CHCl₃), M⁺ at m/e 398 (C₂₂H₂₆N₂O₅)) isolated from the root bark of

Craspidospermum verticillatum, is 19-hydroxy-vandrikine 5, and that vandrikidine 2 has a 19R configuration.

The application of consecutive double resonance experiments permitted all the protons in compounds 1-5 to be assigned. The chemical shifts and the coupling constants determined are presented in Tables 1 and 2.

Of the 26 protons of 11-methoxytabersonine 1, the identification of 17 is straightforward: $CH_3 - (\delta \ 0.63)$, $H_R - 19^*$ ($\delta \ 1.00$), $H_S - 19^*$ ($\delta \ 0.86$), $CH_3O - ** (\delta \ 3.75)$, $-CO_2CH_3^{**}$ ($\delta \ 3.76$), H - 15 ($\delta \ 5.70$), H - 14 ($\delta \ 5.78$), H - 10 ($\delta \ 6.38$), H - 12 ($\delta \ 6.41$), H - 9 ($\delta \ 7.10$) and NH ($\delta \ 8.96$).

Irradiation of H-14 allowed the identification of both H-3's (δ 3.44 and δ 3.16). The distinction between these protons was mainly based on the coupling constants (Table 1).***

The signals at δ 2.42 and 2.54 were assigned to H_R-17 and H_S-17 , respectively. These protons could be distinguished on the basis of the long-

0302-4369/80/050379-03\$02.50 © 1980 Acta Chemica Scandinavica

[†] Present address: Technical University of Helsinki, Department of Chemistry, SF-02150 Espoo 15, Finland.

^{*, **} Assignments may be interchanged.

^{***} It is supposed that the D ring in compounds 1, 2 and 3 exists in a slightly modified half chair form and in compounds 4 and 5 in a chair form. The present ¹H NMR results seem to be in good agreement with these suppositions.

Table 1. ¹H NMR data of 11-methoxytabersonine 1, vandrikidine 2 and hazuntinine 3. Spectra were run in CDCl₃ at 400 MHz. Values are in δ (TMS=0), s, singlet, d, doublet, t, triplet, q, quartet, m, multiplet, br, broad. The coupling constants between the aromatic protons are not included. The Hanson prochirality nomenclature system ⁴ is applied to distinguish between the H-atoms of different -CH₂-groups. It should be noted that the priority sequence at C-17 in compounds 1 and 2 is different from that in compound 3. The signal due to the OH-group of vandrikidine 2 is omitted.

H-atoms	1	2	3
Chemical	shifts (δ)		
H_R-3	3.16 br d	3.28 br d	2.93 br d
H_{s} -3	3.44 ddd	3.44 ddd	3.58 dd
H_{R} -5	3.02 br dd	3.03 br dd	3.05 br dd
H_{s} -5	2.67 ddd	2.76 ddd	2.72 ddd
H_R-6	2.04 ddd	2.06 ddd	2.10 ddd
H_s -6	1.76 br dd	1.82 ddd	1.70 br dd
H-9	7.10	7.18	6.80
H-10	6.38	6.40	_
H-12	6.41	6.42	6.49
H-14	5.78 ddd	6.06 ddd	3.26 dd
H-15	5.70 br d	5.73 br d	3.07 d
H_{R} -17	2.42 d	2.48 d	2.70 dd
$H_{s}-17$	2.54 dd	2.62 dd	2.54 d
H-18	0.63 t	1.00 d	0.74 t
H_R-19	1.00° dq	_	0.99 ^d br q
H _s -19	0.86° dq	3.25 q	0.97d br q
H-21	2.63 d	3.30 d	2.43 d
CO ₂ Me	3.76 ^b s	3.76° s	3.78 s
OMe	3.75 ^b s	3.75° s	3.86 s
OMe	_	_	3.86 s
NH	8.96 br s	8.92 br s	8.88 br s

Coupling constants (Hz)

$$\begin{array}{l} 1\colon J_{3_{\mathrm{R}},3_{\mathrm{S}}}\!=\!15;\; J_{3_{\mathrm{R}},14}\!\approx\!2;\; J_{3_{\mathrm{S}},14}\!=\!5;\; J_{3_{\mathrm{S}},15}\!\approx\!2;\\ J_{5_{\mathrm{R}},5_{\mathrm{S}}}\!=\!12;\; J_{5_{\mathrm{R}},6_{\mathrm{R}}}\!=\!7;\; J_{5_{\mathrm{R}},6_{\mathrm{S}}}\!\approx\!1;\; J_{5_{\mathrm{S}},6_{\mathrm{R}}}\!=\!10;\\ J_{5_{\mathrm{S}},6_{\mathrm{S}}}\!=\!5;\; J_{6_{\mathrm{R}},6_{\mathrm{S}}}\!=\!14;\; J_{14,15}\!=\!10;\; J_{17_{\mathrm{R}},17_{\mathrm{S}}}\!=\!15;\\ J_{17_{\mathrm{S}},21}\!\approx\!2;\; J_{18,19_{\mathrm{R}}}\!=\!7;\; J_{18,19_{\mathrm{S}}}\!=\!7;\; J_{19_{\mathrm{R}},19_{\mathrm{S}}}\!=\!15. \end{array}$$

$$\begin{array}{l} 2\colon J_{3_{\mathrm{R}},3_{\mathrm{S}}}\!=\!15;\,J_{3_{\mathrm{R}},14}\!\approx\!2;\,J_{3_{\mathrm{S}},14}\!=\!5;\,J_{3_{\mathrm{S}},15}\!\approx\!2;\\ J_{5_{\mathrm{R}},5_{\mathrm{S}}}\!=\!12;\,\,J_{5_{\mathrm{R}},6_{\mathrm{R}}}\!=\!7;\,\,J_{5_{\mathrm{R}},6_{\mathrm{S}}}\!\approx\!1;\,\,J_{5_{\mathrm{S}},6_{\mathrm{R}}}\!=\!10;\\ J_{5_{\mathrm{S}},6_{\mathrm{S}}}\!=\!5;\,\,J_{6_{\mathrm{R}},6_{\mathrm{S}}}\!=\!14;\,\,J_{14,15}\!=\!10;\,\,J_{17_{\mathrm{R}},17_{\mathrm{S}}}\!=\!15;\\ J_{17_{\mathrm{S}},21}\!\approx\!2;\,J_{18,19}\!=\!7. \end{array}$$

$$\begin{array}{l} 3\colon J_{3_{\mathsf{R}},3_{\mathsf{S}}}\!=\!14;\,J_{3_{\mathsf{R}},14}\!\approx\!0.5;\,J_{3_{\mathsf{S}},14}\!\approx\!1.5;\,J_{5_{\mathsf{R}},5_{\mathsf{S}}}\!=\!12;\\ J_{5_{\mathsf{R}},6_{\mathsf{R}}}\!=\!7;\,J_{5_{\mathsf{R}},6_{\mathsf{S}}}\!\approx\!1;\,J_{5_{\mathsf{S}},6_{\mathsf{R}}}\!=\!10;\,J_{5_{\mathsf{S}},6_{\mathsf{S}}}\!=\!5;\\ J_{6_{\mathsf{R}},6_{\mathsf{S}}}\!=\!14;\,J_{14,15}\!=\!4.5;\,J_{17_{\mathsf{R}},17_{\mathsf{S}}}\!=\!15;\,J_{17_{\mathsf{R}},21}\!\approx\!2;\\ J_{18,19_{\mathsf{R}}}\!=\!7;\,J_{18,19_{\mathsf{S}}}\!=\!7;\,J_{19_{\mathsf{R}},19_{\mathsf{S}}}\!=\!15. \end{array}$$

Table 2. ¹H NMR data of vandrikine 4 and 19-hydroxyvandrikine 5. Spectra were run in CDCl₃ at 400 MHz. Values are in δ (TMS=0), s, singlet, d, doublet, t, triplet, q, quartet, m, multiplet, br, broad. The coupling constants between the aromatic protons are not included. The Hanson prochirality nomenclature system⁴ is applied to distinguish between the H-atoms of different $-CH_2$ groups. The signal due to the OH-group of 19-hydroxyvandrikine 5 is omitted.

Chemical shifts (δ) H_{R} -3 H_{S} -3 H_{R} -5 H_{R} -5 H_{S} -5 H_{S} -5 H_{R} -6 H_{S} -6 H_{S} -6 H_{S} -7 H_{S} -10 H_{S} -10 H_{S} -14 H_{S} -14 H_{S} -17 H_{S} -17 H_{S} -17 H_{S} -17 H_{S} -17 H_{S} -18	2.98 br dd 2.76 br d 2.96 br d 2.82 ddd 2.00 ddd
H _S -3 2.71 br d H _R -5 2.93 br d H _S -5 2.64 ddd H _R -6 2.00 ddd H _S -6 1.72 br dd H-9 7.10 H-10 6.39 H-12 6.40 H _R -14 1.95 am H _S -14 1.92 am H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 bm H _S -18 3.72 bm	2.76 br d 2.96 br d 2.82 ddd
$\begin{array}{lll} H_{R}-5 & 2.93 \text{ br d} \\ H_{S}-5 & 2.64 \text{ ddd} \\ H_{R}-6 & 2.00 \text{ ddd} \\ H_{S}-6 & 1.72 \text{ br dd} \\ H-9 & 7.10 \\ H-10 & 6.39 \\ H-12 & 6.40 \\ H_{R}-14 & 1.95 \text{ m} \\ H_{S}-14 & 1.95 \text{ m} \\ H-15 & 3.65 \text{ t} \\ H_{R}-17 & 2.28 \text{ br d} \\ H_{S}-17 & 2.72 \text{ d} \\ H_{R}-18 & 3.80 \text{ m} \\ H_{S}-18 & 3.72 \text{ m} \\ \end{array}$	2.96 br d 2.82 ddd
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.82 ddd
H _R -6 2.00 ddd H _S -6 1.72 br dd H-9 7.10 H-10 6.39 H-12 6.40 H _R -14 1.95 m H _S -14 1.92 m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 m H _S -18 3.72 m	
H _S -6 1.72 br dd H-9 7.10 H-10 6.39 H-12 6.40 H _R -14 1.95 m H _S -14 1.92 m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 m H _S -18 3.72 m	2.00 ddd
H-9 7.10 H-10 6.39 H-12 6.40 H _R -14 1.95 m H _S -14 1.92 m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 m H _S -18 3.72 m	
H-10 6.39 H-12 6.40 H _R -14 1.95 m H _S -14 1.92 m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 m H _S -18 3.72 m	1.81 br dd
H-12 6.40 H _R -14 1.95 °m H _S -14 1.92 °m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 °m H _S -18 3.72 °m	7.15
H _R -14 1.95 °m H _S -14 1.92 °m H-15 3.65 t H _R -17 2.28 br d H _S -17 2.72 d H _R -18 3.80 °m H _S -18 3.72 °m	6.42
H _s -14 1.92 m H-15 3.65 t H _R -17 2.28 br d H _s -17 2.72 d H _R -18 3.80 m H _s -18 3.72 m	6.40
$\begin{array}{lll} H\text{-}15 & 3.65 \text{ t} \\ H_{R}\text{-}17 & 2.28 \text{ br d} \\ H_{S}\text{-}17 & 2.72 \text{ d} \\ H_{R}\text{-}18 & 3.80^{b}\text{m} \\ H_{S}\text{-}18 & 3.72^{b}\text{m} \\ \end{array}$	1.95°m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.90°m
$ H_{S}^{-17} $ 2.72 d $ H_{R}^{-18} $ 3.80 m $ H_{S}^{-18} $ 3.72 m	3.73 t
H _R -18 3.80 ^b m H _S -18 3.72 ^b m	2.37 br d
$H_{s}^{-}18$ 3.72 m	2.78 d
3	3.93 ^f dd
TT 10 1 400 1 1 1	3.56 ^f dd
H_R -19 1.42°ddd	_
H_{s} -19 1.30°ddd	4.07 dd
H-21 2.77 br s	3.21 br s
CO_2Me 3.76 ^d s	3.77°s
OMe 3.75^d s	3.76 ^g s
NH 8.86 br s	

Coupling constants (Hz)

$$\begin{array}{l} 4\colon J_{3_{\mathrm{R}},3_{\mathrm{S}}}\!=\!10;\ J_{3_{\mathrm{R}},14_{\mathrm{R}}}\!=\!7.5;\ J_{3_{\mathrm{R}},14_{\mathrm{S}}}\!\approx\!2;\ J_{3_{\mathrm{S}},14_{\mathrm{R}}}\!\approx\!4;\\ J_{3_{\mathrm{S}},14_{\mathrm{S}}}\!\approx\!4;\ J_{5_{\mathrm{R}},5_{\mathrm{S}}}\!=\!12;\ J_{5_{\mathrm{R}},6_{\mathrm{R}}}\!=\!7;\ J_{5_{\mathrm{R}},6_{\mathrm{S}}}\!\approx\!1;\\ J_{5_{\mathrm{S}},6_{\mathrm{R}}}\!=\!10;\ J_{5_{\mathrm{S}},6_{\mathrm{S}}}\!=\!5;\ J_{6_{\mathrm{R}},6_{\mathrm{S}}}\!=\!14;\ J_{14_{\mathrm{R}},15}\!=\!3;\\ J_{14_{\mathrm{S}},15}\!=\!3;\ J_{17_{\mathrm{R}},17_{\mathrm{S}}}\!=\!15;\ J_{17_{\mathrm{R}},21}\!\approx\!1;\ J_{18_{\mathrm{R}},18_{\mathrm{S}}}\!\approx\!10;\\ J_{18_{\mathrm{R}},19_{\mathrm{R}}}\!=\!9;J_{18_{\mathrm{R}},19_{\mathrm{S}}}\!=\!5;J_{18_{\mathrm{S}},19_{\mathrm{R}}}\!=\!7;J_{18_{\mathrm{S}},19_{\mathrm{S}}}\!=\!7.5;\\ J_{19_{\mathrm{R}},19_{\mathrm{S}}}\!=\!12. \end{array}$$

$$\begin{array}{l} 5\colon J_{3_{\mathrm{R}},3_{\mathrm{S}}}\!=\!10;\,J_{3_{\mathrm{R},14_{\mathrm{R}}}}\!=\!7.5;\,J_{3_{\mathrm{R},14_{\mathrm{S}}}}\!\approx\!2;\,J_{3_{\mathrm{S},14_{\mathrm{R}}}}\!\approx\!4;\\ J_{3_{\mathrm{S},14_{\mathrm{S}}}}\!\approx\!4;\,J_{5_{\mathrm{R}},5_{\mathrm{S}}}\!=\!12;\,J_{5_{\mathrm{R}},6_{\mathrm{R}}}\!=\!7;\,J_{5_{\mathrm{R}},6_{\mathrm{S}}}\!\approx\!1;\\ J_{5_{\mathrm{S}},6_{\mathrm{R}}}\!=\!10;\,J_{5_{\mathrm{S}},6_{\mathrm{S}}}\!=\!5;\,J_{6_{\mathrm{R}},6_{\mathrm{S}}}\!=\!14;\,J_{14_{\mathrm{R}},15}\!=\!3;\\ J_{14_{\mathrm{S}},15}\!=\!3;\,J_{17_{\mathrm{R}},17_{\mathrm{S}}}\!=\!15;\,J_{17_{\mathrm{R}},21}\!\approx\!1;\,J_{18_{\mathrm{R}},18_{\mathrm{S}}}\!=\!10;\\ J_{18_{\mathrm{R}},19}\!=\!5;J_{18_{\mathrm{S}},19}\!=\!7.5. \end{array}$$

a,b,c,d Assignments may be interchanged.

^{*.}d.e.8 Assignments may be interchanged. b.c. f Tentative assignments.

range coupling (≈ 2 Hz; W-configuration) of H_s - 17 with H-21. This coupling also confirmed the correct assignment of the signal at δ 2.63 to H-21.

The remaining 4 protons represent the C(5) - C(6) ethylene bridge and form a separate system, which could be easily resolved by consecutive irradiations.

The assignment of the signals of vandrikidine 2, hazuntinine 3 (Table 1), vandrikine 4 and 19hydroxyvandrikine 5 (Table 2) followed a procedure similar to that described for 11-methoxytabersonine 1. A comparison of the ¹H NMR data of vandrikidine 2 (Table 1) with those of 19R-hydroxytabersonine and 19S-hydroxytabersonine 5 indicates a 19R configuration for vandrikidine 2. The coupling constants $(J_{3_R,14} \approx 0.5 \text{ Hz}; J_{3_S,14} \approx 1.5 \text{ Hz})$ found for hazuntinine 3, support the presence of a 14β , 15β epoxy group. The spectra of vandrikine 4 and 19hydroxyvandrikine 5 are very similar. The coupling constants $(J_{14_{\rm R},15}=3~{\rm Hz};\,J_{14_{\rm S},15}=3~{\rm Hz})$ indicate that H-15 bisects H-14's. The chemical shifts and the coupling constants found for the three proton system of the C(18)-C(19) ethylene bridge of 19hydroxyvandrikine 5, compared with those of the corresponding four proton system of vandrikine 4, clearly support the proposed 19-OH structure. This structure is further supported by the strong influence of the OH-group on the chemical shift of H-21.

Experimental. The NMR spectra were recorded on a laboratory-built 400 MHz 1 H high resolution spectrometer (I.E.F. 400) 6 and obtained by collecting 8 to 16 free-induction decay signals for $a \approx 0.01$ M solution of the samples in 450 μ l of CDCl₃.

Acknowledgements. The authors thank Dr. Pierre Potier for his interest in this work, Mme Anne-Marie Bui for the supply of hazuntinine and Mme Christiane Kan for the rest of the alkaloid samples.

- Kan, C., Ahond, A., Mompon, B. and Potier, P. To be published.
- Wenkert, E., Cochran, D. W., Hagaman, E. W., Schell, F. M., Neuss, N., Katner, A. S., Potier, P., Kan, C., Plat, M., Koch, M., Mehri, H., Poisson, J., Kunesch, N. and Rolland, Y. J. Am. Chem. Soc. 95 (1973) 4990; Cordell, G. A. In Manske, R. H. F. and Rodrigo, R. G. A., Eds., The Alkaloids, Academic, New York 1979, Vol. XVII, p. 209.
- 3. Potier, P., Bui, A. M., Das, B. C., Le Men, J. and Boiteau, P. Ann. Pharm. Fr. 26 (1968) 621.
- Hanson, K. R. J. Am. Chem. Soc. 88 (1966) 2731;
 Bentley, R. Molecular Asymmetry in Biology,
 Academic, New York 1969, p. 172.

- Langlois, N. and Andriamialisoa, R. Z. J. Org. Chem. 44 (1979) 2468.
- Lounasmaa, M. and Kan, S. Tetrahedron. 36 (1980) 1607.

Received February 8, 1980.

Acta Chem. Scand. B 34 (1980) No. 5