Short Communications

Topology of the 553 K Isotherm in the Quasi-ternary System Ag,(K,Na)-I,NO₃

BERTIL HOLMBERG

Physical Chemistry 1, Chemical Center, P.O.Box 740, S-220 07 Lund 7, Sweden

Equilibrium data pertaining to reactions between solid and liquid AgI-based phases and alkali nitrate melts at 553 K have been communicated in a number of papers ¹⁻⁴ dealing essentially with silver iodide complexation in the nitrate melts. The present interest in AgI-based electrolytes makes it highly desirable to obtain a schematic overview of the phase relationships in systems of this kind. Therefore, we have supplemented the previously published data with liquid-liquid distribution measurements at 553 K in systems AgI – AgNO₃ – MNO₃, where M stands for an equimolar mixture of K and Na.

All melts were prepared from p.a. grade chemicals which were pre-treated prior to use as described elsewhere.² The melts were equilibrated for 24 h or more under vigorous stirring in Pyrex glass tubes in an aluminium block furnace.⁵ AgI-rich and MNO₃-rich melts were separated from each other and analyzed for silver and iodide as described in previous papers.^{2,4}

The melt compositions are indicated by cationic mol fractions $x_{\rm M}$ (=1- $x_{\rm Ag}$) and anionic mol fractions $x_{\rm I}$ (=1- $x_{\rm NO_3}$). Although all systems have an over-all cation balance $n_{\rm K}/n_{\rm Na}$ =1, this ratio may be significantly different from unity in separate phases (cf. Ref. 4).

The topology of the 553 K isotherm in the quasiternary system $Ag_s(K,Na)-I,NO_3$ may now be depicted by use of the present and previously published data.¹⁻⁴ Fig. 1 gives the phase diagram. There are four single phase areas. The limiting compositions of these four phases, designated by letters a-m, are listed in Table 1. The solids are MI, which stands for solid solution (K,Na)I, and α -AgI-based solid solutions (Ag,M) (I,NO_3) (ss) in

Fig. 1. The 553 K isotherm of the quasi-ternary system Ag, M - I, NO_3 . M stands for a mixture of K and Na with the over-all ratio $n_K/n_{Na} = 1$. Further details are given in the text.

Table 1. The limiting compositions of solid (s) and liquid (l) systems, denoted a-m in the phase diagram.

System	x_{M}	$x_{\mathbf{I}}$
a (s)	0.145	1
b (l)	0.233	1
c (l)	0.335	1
d (ĺ)	0.979	0.158
e (1)	1	0.128
f (l)	0.995	0.079
g (ĺ)	0.942	0.001
h (l)	0.005	0.721
j (ĺ)	0	0.74
k (s)	0	0.81
m (l)	0.45	0.14

the range k - AgI - a. This area is best described as a solution of AgNO₃ in α -AgI in the range k-AgI, approaching pure AgI in the upper left corner of the diagram, and a solution of KI in α-AgI in the range a-AgI, also approaching pure AgI in the corner. Upper limits for the AgNO₃ content in the region AgI-a and the KI content in the region AgI-kcan be derived from equilibrium data of Refs. 1 and 4 and Refs. 1 and 3, respectively. In the range AgI – a x_{NO_3} is calculated to $\leq 8 \times 10^{-6}$ and $x_M \leq 2 \times 10^{-7}$ is obtained for the AgI-k region, so the entire k-aarea does, in fact, not extend from the axes into the interior of the diagram to any greater extent. Analogously the single phase region b-c is best described as a liquid (Ag,M)I(I), M being essentially K,² with $x_{NO_3} \le 5 \times 10^{-10}$ as calculated from the data of Refs. 3 and 4. The fourth single phase area is the liquid I in the phase diagram. For the sake of clarity, melts having $x_{\rm M} > 0.45$, corresponding to the critical point m on the binodal curve, are denoted l₁. Analogously those with $x_M < 0.45$ are denoted l_2 in the diagram. In the vicinity of MNO₃ the liquid range extends along the diagonal MNO₃-AgI to $x_{Ag} = x_{I} = 2.5 \times 10^{-6.1}$ Two-phase regions with selected tie-lines included

Two-phase regions with selected tie-lines included and invariant three-phase fields are marked in the diagram. The two-phase area j-h-k is simply deduced from the rest of the diagram, and no experimental determinations have been made here.

Finally it should be noted that – except for the ranges of solid solubility – the subsystems AgI – MI and AgI – AgNO₃ conform closely to the 553 K isotherms in previously published binaries AgI – KI^{6,7} and AgI – AgNO₃.^{8,9} The only report on solid solubility is found in the early work by Scarpa, ⁸ although the actual solubility of AgNO₃ in α-AgI at 553 K appears to be about three times as large as that stated by him.

Acknowledgement. This work has been supported by a grant from the Swedish Natural Science Research Council, which is gratefully acknowledged.

- Elding, I. and Leden, I. Acta Chem. Scand. 23 (1969) 2430.
- 2. Holmberg, B. Acta Chem. Scand. 27 (1973) 3550.
- 3. Holmberg, B. Acta Chem. Scand. 27 (1973) 3657.
- 4. Holmberg, B. Acta Chem. Scand. A 30 (1976) 797.
- 5. Holmberg, B. Acta Chem. Scand. A 30 (1976) 641.
- Bradley, J. N. and Greene, P. D. Trans. Faraday Soc. 62 (1966) 2069.
- 7. Topol, L. E. and Owens, B. B. J. Phys. Chem 72 (1968) 2106.
- 8. Scarpa, G. Atti R. Accad. Lincei 22 II (1913) 452.
- Berg, L. G. and Lepeshkov, I. N. Ann. Sect. Anal. Phys. Chim. USSR 15 (1947) 144.

Received October 8, 1979.