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The title compound recently produced by Hocking
and Gerry by pyrolysis of silver cyanate has been
found among the many products of pyrolysis
(S,0, SO,, OCS, N,S,(7) of O=C—-N=S=N-§
(I), 5-oxo-1,3-2,4-dithiadiazole, and identified by its
microwave spectrum. By pyrolysis of a mixture of
15N-enriched species of I microwave spectra of
N=C-'"’*N=C=0and *’N=C—-N=C=0 were
obtained. The molecular model of cyanogen iso-
cyanate presented by Hocking and Gerry may con-
sequently be slightly modified.

Our current studies of pyrolysis of 5-membered
ring compounds ' ~* include O=C—N=S=N-§,
or 5-oxo-1,3-24-dithiadiazole (I). At 1000 °C and
p=30—40 mTorr a product of pyrolysis P was
obtained, its microwave spectrum (m.w.s.) ob-
served and assigned. P was identified as cyanogen
isocyanate, N=C—N=C=O0 (Fig. 1) which has
been produced recently by Hocking and Gerry by
pyrolysis of AgOCN and characterized by its
m.w.s.® Its experimental rotational constants B and
C are included in Table 1. By pyrolysis of I a
multitude of products is obtained besides P. To
sort out nitrogen-containing species an available

Fig. 1. Numbering of atoms in planar
N=C-N=C=0 as placed in its principal axes
(a,b) system.
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mixture of I (49 %), O=C—'"’N=S=N-§ (21 %),
O=C—N=8=!’N-8§ (21 %) and O=C—"’N=
S=1'5N—-8§ (9%) was pyrolyzed. As expected it
yielded P and two !*N-monosubstituted species S

“(with a small isotope effect) and L (with a large)

in sufficient quantities. The m.w.s. of P, L and S
were in almost correct intensity ratios, all three
displaying nitrogen quadrupole coupling fine struc-
ture. The instability of I (vide infra) and the small
available quantity (40 mg) of moderately '>-enriched
sample prevented the time-consuming recording of
resolved quadrupole coupling patterns of S and L
(neither was it resolved for P in Ref. 5). Thus, the
resulting rotational constants are less accurate than
usual. Nevertheless, the inclusion of B and C for
S and L in a discussion of a molecular model for
the isotopic ‘family’ P, S and L appears to be of
some interest. All values of B and C for S and L
were derived using the distortion constants and
inertial defect of Ref. 5, agreeing fully with our own
observations on P.

EXPERIMENTAL
0=C—N=S=N-=S8 (I) prepared and analyzed
earlier® was obtained by us by a method easily

amenable to !N enrichment.” Freshly prepared 1
kept in vacuo at 0 °C in an available volume of
30 ml developed a pressure of 10 mTorr in 1 min,
rising to 15 mTorr in the following 5 min. The
corresponding data at 20 °C are 45 and 60 mTorr.
Samples were kept at —20 °C or lower and
distilled in vacuo at 0 °C into a liquid air trap
prior to use. In pyrolysis experiments vapors of
P or of the !’N-enriched sample were pumped
through a 10 cm hot section (1000 °C) of quartz
tubing continuing through a 10 cm cold (20 °C)
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Table 1. Experimental (Exp.) and model (Mod.) rotational constants (MHz) of N=C-N=C=0,
N=C-"N=C=0Oand >*N=C-N=C=0.

B Exp.-Mod. C Exp.-Mod.
Species
N=C-N=C=0
Experimental 2699.03° 2597.865
Models
Hocking and Gerry?® 2698.44 047 2604.02 —6.16
ab initio ®* 2743.55 —44.52 2596.18 1.68
This paper model | 2699.36 —-033 2597.39 0.47
This paper model 2 2699.12 —0.09 2598.19 -033
N=C-'"N=C=0
Experimental 2699.11° 2594.00°
Models
Hocking and Gerry * 2698.41 0.60 2600.50 —5.50
ab initio 8 2743.55 —44.44 - 2590.13 3.87
This paper model 1 2699.34 -023 2593.61 0.39
This paper model 2 2699.12 -0.01 2593.80 0.20
BN=C-N=C=0
Experimental 2622.41° 2526.52°
Models
Hocking and Gerry ° ' 2622.94 -0.53 253237 —5.85
ab initio & 2666.73 —44.32 2525.53 0.99
This paper model 1 2623.76 —-1.35 252597 0.55
This paper model 2 2622.68 -0.27 2526.17 035

“ Planar model. Basis set minimal STO-3G. ° This paper.

Table 2. Comparison of molecular models of N=C—N=C=0. Atom numbering in Fig. 1. Bond lengths
in A, angles in degrees.

ab initio® H.and G.° This paper
Model 1 Model 2

Distances
N2=C1 1.160 1.164 1.164 1.164
C1-N1 1.384 1.283¢ 1.303¢ 1.345¢
N1=C2 1.256 1.218 1.218 1.218
C2=0 1.176 1.165 1.165 1.165
Angles
N2-C1-NI 176.1 180 180 172
Cl-N1-C2 123.1 140° 138.47¢ 129.0°
Ni1-C2-0O 168.7 180 180 169

“ Derived from experimental data.

section of the same tube in order to finally passing  to entrance/exit pressures at the spectrometer of
a conventional Stark modulated m.w. spectrometer,  30/20 mTorr. Experimental rotational transition
cell length 3 m. A suitable production of P,Sand L frequencies of S (13 p,-transitions) and of L (7 py,-
was obtained by keeping I at 20 °C, corresponding transitions), reporting the highest peaks in more
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or less resolved quadrupole coupling patterns
(triplets) are available on request. Observation of
transitions such as 6;,—7;5 at 37114.5 MHz (S)
and at 36106.0 MHz (L) at very low fields (10—20
V/cm) proved of great diagnostic value. Comparing
the richness of lines observed in Ref. 5 to our
spectra of P, S and L it must be realized that
pyrolysis of AgOCN S is superior to pyrolysis of I
to obtain cyanogen isocyanate.

DISCUSSION

N=C-N=C=0 has 7 geometric parameters.
Choosing five of these from related molecules® an
estimate of /=1.283 A and a=140° (Fig. 1) was
obtained.> An estimate of ! building on the hy-
bridization status of Cl1 and N1 and ignoring
shortening due to electron delocalization® indicates
1=1.37 A or 0.09 A longer than in the model of
Ref. 5, but much closer to the ab initio model.®? By
inclusion of the '5N-data of this paper [=1.303 A
and «=138.47° are obtained (Table 2, model 1).
Model 2 was obtained taking f=172°*! and y = 169°

N
(as for angle N=N=N, Ref. 11) and adjusting !
and o to I1=1.345 A and «=129°. This would
mean a considerable approach to the ab initio
model (Table 2). Qualitatively, ab initio estimates
of angles like f and y (Fig. 1) have proved
useful,!'1%!! even to predict a slight twist of a
CH, group.'?
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