The Crystal Structure of Hexakis(ethylisocyanide)manganese(I) Tri-iodide, [Mn(CNC₂H₅)₆]I₃

MÄRTA-STINA ERICSSON, SUSAN JAGNER and EVERT LJUNGSTRÖM

Department of Inorganic Chemistry, Chalmers University of Technology and the University of Göteborg, S-412 96 Göteborg, Sweden

The crystal structure of the title compound has been determined from single crystal X-ray diffractometer data collected at -105 °C. [Mn(CNC₂H₅)₆]I₃ crystallizes in space group $R\bar{3}$ with a=8.665(3) Å, $\alpha=88.12(3)$ ° and Z=1. Full-matrix least-squares refinement of the 44 structural parameters gave R=0.024 for 1110 independent reflections. The configuration of ligands about manganese is approximately octahedral with Mn-C and C-N distances of 1.924(3) and 1.162(3) Å. The Mn-C-N and C-N-C angles are 176.5(2)° and 172.4(3)°, respectively.

Crystal structure and ESCA studies on transition metal hexacyano complexes indicate 1-7 that the π -contribution to the metal-carbon bond increases with decreasing effective nuclear charge on the central metal atom, provided that sufficient d electrons are available. M(II)-C(N) bonds are thus usually shorter than their M(III) - C(N) counterparts. The investigation is now being extended to cover formal oxidation states lower than + II by including hexaisocyano complexes. The crystal structure of [Cr(CNC₆H₅)₆] has been reported previously,8 while that of [Mn(CNC₂H₅)₆]I₃ is presented in this paper. In order to elucidate the role of phenyl rings in the stabilisation of the metalligand π system, it is intended, where possible, to investigate both alkyl and aryl complexes. The crystal structure of [Mn(CNC₆H₅)₆]I₃ is now therefore under investigation.

EXPERIMENTAL

Ethyl isocyanide, prepared according to Casanova, Schuster and Werner, and anhydrous manganary

nese(II) iodide were dissolved in absolute ethanol.¹⁰ [Mn(CNC₂H₅)₆]I₃, which is less soluble in ethanol than [Mn(CNC₂H₅)₆]I, crystallized within a few hours from the ethanolic solution as dark reddishbrown rhombohedra with faces of the form {100}.

Intensities from a crystal, $0.019 \times 0.010 \times 0.013$ cm, were measured for $2\theta \le 60^{\circ}$ with a Syntex P2₁ diffractometer, using graphite-monochromated MoK α radiation and the $\omega - 2\theta$ scanning technique. Since preliminary investigations indicated considerable thermal motion of the atoms and loss in intensity of a given reflection with time, the crystal was held at -105 °C with the Syntex LT1 cryostat. Two reflections measured after each fiftieth reflection then exhibited a negligible drop in intensity during the collection of the data. The 2θ scan speed was varied between 2 and 8° min⁻¹ and a 96-step profile was recorded for each reflection, the Lehmann-Larsen method ¹¹ being used ¹² to correct for background. Correction was made for Lorentz and polarization effects; correction was applied for absorption, the crystal being divided into a $6 \times 4 \times 4$ grid. Symmetry-related reflections were averaged giving 1270 independent reflections. Of these, 1110 for which $F_0^2 \ge 3\sigma(F_0^2)$, according to counting statistics, were regarded as being observed and were used in the subsequent calculations. The unit cell parameters at -105 °C and their standard deviations were determined by a least-squares procedure based on accurately determined setting angles for 12 reflections.

CRYSTAL DATA

Hexakis(ethylisocyanide)manganese(I) tri-iodide, [Mn(CNC₂H₅)₆]I₃; M_r =766.1; trigonal, space group $R\bar{3}$, a=8.665(3) Å, α =88.12(3)°, Z=1, D_c =1.96 gcm⁻³, μ (Mo $K\alpha$)=41.6 cm⁻¹. The compound crystallizes as dark reddish-brown rhombohedra.

0302-4377/79/050371-04\$02.50 © 1979 Acta Chemica Scandinavica

Table 1. Fractional coordinates and thermal parameters (\times 10³). Estimated standard deviations are given in parentheses. The temperature coefficient is $\exp[-2\pi^2(a^{*2}h^2U_{11}+...+b^*c^*klU_{23})]$.

Atom	Site	X	y	Ξ	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Mn	1 <i>a</i>	0.0000	0.0000	0,0000	10.8(2)	10.8	10.8	-2.6(3)	-2.6	-2.6
C(1)	61	0.2030(3)	0.0670(3)	-0.0618(3)	18(1)	14(1)	15(1)	-1(2)	-4(2)	-2(2)
N(1)	6t	0.3245(3)	0.1042(3)	-0.1065(3)	18(1)	22(1)	21(1)	-4(2)	0(2)	-1(2)
C(2)	6t	0.4710(3)	0.1414(3)	-0.1811(3)	17(1)	27(1)	26(1)	-10(2)	7(2)	-4(2)
C(3)	61	0.5561(3)	0.2606(4)	-0.0929(4)	20(1)	25(1)	36(2)	-13(2)	-2(2)	1(2)
I(Ì)	1b	0.50000	0.50000	0.50000	21.8(1)	21.8	21.8	4.6(2)	4.6	4.6
I(2)	2c	0.31065(2)	0.31065	0.31065	31.7(1)	31.7	31.7	-7.9(1)	-7.9	-7.9

Fig. 1. Stereoscopic view of the $[Mn(CNC_2H_5)_6]^+$ ion, orientated as in Fig. 2. The thermal ellipsoids enclose 90 % probability.

Fig. 2. Stereoscopic view of the structure.

DETERMINATION OF THE STRUCTURE

The structure was solved from Patterson and successive electron density maps. ¹² Block-diagonal ¹² and, ultimately, full-matrix ¹² least-squares refinement of the positional and anisotropic thermal parameters yielded R=0.024 for 44 parameters; when the 160 unobserved reflections were included R=0.029. The $F_{\rm o}$ values were weighted according to ¹³ $w=(a+F_{\rm o}+cF_{\rm o}^{\ 2})^{-1}$ with a=24.0 and c=0.014. The scattering factors were those of Doyle and Turner ¹⁴ for the neutral atoms. Atomic coordinates and thermal parameters are listed in Table 1. Structure factors can be obtained from the authors on request. A final difference map showed a maximum electron density of 0.9 e Å ⁻³. No attempt was made to locate the hydrogen atoms.

DISCUSSION

Stereoscopic projections of the complex ion and the unit cell are shown in Figs. 1–2. Bond distances and angles within the $[Mn(CNC_2H_5)_6]^+$ ion are given in Table 2.

The manganese atom is octahedrally coordinated by the six isocyanide ligands, the Mn-C distance being 1.924(3) Å. Both the Mn-C(1)-N(1) and

Table 2. Bond lengths (Å) and angles (°) within the [Mn(CNC₂H₅)₆]⁺ ion. Estimated standard deviations are given in parentheses.

Mn - C(1)	1.924(3)	Mn - C(1) - N(1)	176.5(2)
C(1) - N(1)	1.162(3)	C(1) - N(1) - C(2)	172.4(3)
N(1) - C(2)	1.447(4)	N(1)-C(2)-C(3)	112.0(2)
C(2) - C(3)	1.528(4)	C(1)-Mn-C(1)	88.2(1)

C(1) - N(1) - C(2) linkages are approximately linear and the geometry of the ethyl isocyanide ligand appears to be normal.^{15,16}

The short Mn-C bond and relatively long C-N bond indicate metal-ligand back-bonding, as predicted by a molecular orbital calculation 17 on $[Mn(CNCH_3)_6]^+$ in which Mn-C was held at 1.97 Å. If the Mn-C distance in $[Mn(CNC_2H_5)_6]^+$ is compared with those found in the hexacyanomanganate ions (Table 3), there is seen to be a steady increase with increasing formal oxidation state of manganese, from 1.924(3) Å in the present compound, through 1.95(1) Å in Na₄[Mn(CN)₆].- $10H_2O$ to 2.002(8) Å in $K_3[Mn(CN)_6]$. This is consistent with previous observations 1-7 indicating an increase in the $d-\pi^*$ contribution to the metalcarbon bond with decreasing effective nuclear charge on the metal atom. An opposite trend in Mn-C distances would be expected were the bonds purely of σ -character. The Cr-C bond lengths in hexakis(phenylisocyanide)chromium(0) and the hexacyanochromate ions show a similar trend (Table 3).

In the presence of a stronger π acceptor than cyanide or isocyanide, e.g. NO⁺ or CO, the transfer to the cyanide or isocyanide ligands is reduced, as is apparent from the Mn(I) – C distances of 1.97(1) Å and 1.98(1) Å in $[Mn(CO)_3(CNCH_3)_2Br]^{15}$ and $K_3[Mn(CN)_5NO].2H_2O_1^{18}$ respectively.

A comparison between the metal-carbon bond lengths in $[Cr(CNC_6H_5)_6]$ and $[Mn(CNC_2H_5)_6]I_3$, both formally d^6 , indicates that the decrease in σ bond strength in going from Mn(I) to Cr(0) is largely compensated for by an increase in d- π * back-bonding. Such compensation would appear to be less effective for the d^4 ions $[Mn(CN)_6]^{3-}$ and $[Cr(CN)_6]^{4-}$. In the pentacyanonitrosyl ions, in

Table 3. Mean M-C and C-N bond lengths in some cyano- and isocyanide complexes of manganese and chromium.

Compound	Formal oxidation state of metal	Formal ground state config.	Mean M – C (Å)	Mean C-N(Å)	Ref.
$[Mn(CNC_2H_5)_6]I_3$	I	d^6	1.924(3)	1.162(3)	present work
[Mn(CO) ₃ (CNCH ₃) ₂ Br]	I	d^6	1.97(1)	1.13(1)	15
$K_3[Mn(CN)_5NO].2H_2O$	I	d^6	1.98(1)	1.16(1)	18
$Na_4[Mn(CN)_6].10H_2O$	II	d^5	1.95(1)	1.16(1)	4
$K_3[Mn(\hat{C}N)_6]$	III	d^4	2.002(8)	1.142(12)	1
$[Cr(CNC_6H_5)_6]$	0	d^6	1.938(3)	1.176(4)	8
Na_4 [Cr(CN) ₆]. $10H_2O$	II	d^4	2.053(4)	1.156(5)	6
$K_3[Cr(CN)_6]$	III	d^3	2.077(5)	1.136(7)	3

which the $d \rightarrow \pi^*$ transfer is effectively concentrated to a single ligand, the π contribution to the metalnitrogen bond has been shown 19 to increase from Fe to V, i.e. with decreasing effective nuclear charge on the central metal atom. In the hexacyanometallates(II), such a trend is observed at the beginning of the series (Fe to V) but is reduced for chromium 6 and negated for vanadium,5 presumably owing to an insufficient number of d electrons. The close similarity of the metal-carbon bond lengths in $[Cr(CNC_6H_5)_6]$ and $[Mn(CNC_2H_5)_6]I_3$ thus supports the conclusion drawn previously 1-7 that. provided sufficient d electrons are available, the π contribution to the metal-carbon bond will increase with decreasing effective nuclear charge on the central metal atom.

The π contribution to the metal—carbon bond in $[Cr(CNC_6H_5)_6]$ would appear to be enhanced by interaction with the π -system of the phenyl rings.⁸ It is hoped that the crystal structure of $[Mn(CNC_6H_5)_6]I_3$ will provide information as to the relative magnitude of this effect.

The tri-iodide ion lies along the $\bar{3}$ axis and the I-I distance, 2.934(2) Å, agrees well with values determined previously ^{16.20} for tri-iodide ions. Although there are no short I···I interactions between tri-iodide ions in [Mn(CNC₂H₅)₆]I₃, the I-I distance is slightly longer than that, 2.920 Å, suggested ²⁰ for a free symmetrical tri-iodide ion.

The closest contacts between the iodine atoms of the tri-iodide ion and the isocyanide ligands are 4.060(4) - 4.098(3) Å.

Acknowledgements. The authors thank Professor N.-G. Vannerberg for valuable comments. Financial support from the Swedish Natural Science Research Council (NFR, Contract No. 2286) is gratefully acknowledged.

REFERENCES

- Vannerberg, N.-G. Acta Chem. Scand. 24 (1970) 2335.
- Vannerberg, N.-G. Acta Chem. Scand. 26 (1972) 2863.
- Jagner, S., Ljungström, E. and Vannerberg, N.-G. Acta Chem. Scand. A 28 (1974) 623.
- Tullberg, A. and Vannerberg, N.-G. Acta Chem. Scand. A 28 (1974) 551.
- 5. Jagner, S. Acta Chem. Scand. A 29 (1975) 255.
- Ljungström, E. Acta Chem. Scand. A 31 (1977) 104.
- 7. Vannerberg, N.-G. Chem. Scr. 9 (1976) 122.

- 8. Ljungström, E. Acta Chem. Scand. A 32 (1978) 47.
- Casanova, J., Schuster, R. E. and Werner, N. D. J. Chem. Soc. (1963) 4280.
- 10. Sacco, A. Gazz. Chim. Ital. 86 (1956) 201.
- 11. Lehmann, M. S. and Larsen, F. K. Acta Crystallogr. A 30 (1974) 580.
- 12. Program library of the Dept. of Inorg. Chem., Chalmers University of Technology and the University of Göteborg: LELA, SYN written by Lindqvist, O. and Ljungström, E.; DRF by Zalkin, A.; BLOCK by Lindgren, O.; LALS by Gantzel, P., Sparks, R. and Trueblood, K.; DISTAN by Zalkin, A.; ORTEP by Johnson, C. K.
- Cruickshank, D. W. J. Crystallographic Computing, Munksgaard, Copenhagen 1970, p. 195.
- Doyle, P. A. and Turner, P. S. Acta Crystallogr. A 24 (1968) 390.
- Sarapu, A. C. and Fenske, R. F. Inorg. Chem. 11 (1972) 3021.
- Lam, C. T., Lewis, D. L. and Lippard, S. J. Inora. Chem. 15 (1976) 989.
- Sarapu, A. C. and Fenske, R. F. Inorg. Chem. 14 (1975) 247.
- Tullberg, A. and Vannerberg, N.-G. Acta Chem. Scand. 21 (1967) 1462.
- 19. Vannerberg, N.-G. and Jagner, S. *Chem. Scr.* 6 (1974) 19.
- Runsink, J., Swen-Walstra, S. and Migchelsen, T. Acta Crystallogr. B 28 (1972) 1331.

Received December 11, 1978.