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A method of deducing rate equations has been
devised for reaction mechanisms containing
several rate determining elementary reactions
coupled to each other. In the deduction an analogy
is used between a diagram of the reaction mechanism
and a corresponding diagram of an electrical circuit.
The concept of kinetic potential, analogous to an
electrical potential, has been introduced in such a
way that the net rate in all reaction paths becomes
analogous to a current in the electrical circuit. The
method is convenient when elucidating a compli-
cated reaction mechanism from kinetic data, since
it is often possible to deduce the number of
elementary reactions coupled in parallel and in
series directly from the algebraic form of the
experimental rate constant. The conditions for the
use of the method are explicitly defined in the text.

The stoichiometric mechanism for a chemical reac-
tion is generally elucidated by kinetic studies, from
which primarily a rate constant, kg, is obtained.
The number and the algebraic form of the terms
used to describe k,, give then a hint as to the number
and the composition of the activated complexes in
the process.

If the reaction proceeds successivly via several
activated complexes there must also exist several
intermediates, which for many reactions are in a
steady-state during most of the reaction time. The
rate law for such a reaction is deduced, generally,
by writing the time derivatives for the concentration
of a reactant (or a product) and for all the inter-
mediates. The steady-state means that those latter
derivatives are all zero, which gives a number of
equations from which the final nonintegrated rate
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law can be deduced by elimination of all con-
centrations of intermediates. This is a rather tedious
procedure if many intermediates are involved, and
if many different combinations of elementary reac-
tions must be tried. In the following, a method is
described which makes it possible to write down a
rate law directly for a given mechanism even if it
contains a large number of intermediates.

DEDUCTION OF THE RATE LAW

It has been pointed out !*? that a diagram of a
stoichiometric mechanism, which contains a number
of elementary reactions, can be compared to an
electrical circuit diagram, containing a number of
rheostats coupled together in the same way as the
elementary reactions are coupled in the stoichio-
metric mechanism (cf. also Ref. 3). In such a
comparison each rheostat corresponds to the
activated complex of an elementary reaction, each
branching point in the electrical circuit diagram to
an intermediate (or sometimes to the substrate or
the product), and finally the electrical current
through a rheostat to the net rate of reaction via
the corresponding elementary reaction. Here and
in the following the term net rate is used for the rate
of increase of concentration of a species via this
particular (reversible) elementary reaction (cf. Ref.
4). Such analogies have earlier been pointed out for
some rather simple mechanisms, vide eg. Refs.
1, 2, 3, but to our knowledge it has not been handled
for a general case. Hence the conditions for the
validity of the analogy have not been explicitly
stated, nor has a generally valid method been
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described for the calculation of the parameters in
the rate equations. Since the analogy is very con-
venient when elucidating complicated reaction
mechanisms, we have found it worthwhile to carry
out a general deduction of this method and to define
the conditions for its use. This is done as follows.

Equations are written which describe the net rate
via each elementary reaction as a product of two
factors. One such factor corresponds to the poten-
tial difference, U, and the other to the conductance,
k, in Ohm’s law, I=«U, where the current, I,
corresponds to the net rate. The total reaction rate
from substrate to product can then be deduced by
combination of the kinetic analogues to the con-
ductances, according to well-known rules for the
corresponding electrical circuit. This can be shown
as follows, where the analogy to Ohm’s and
Kirschoff’s laws is immediately evident.

Let us look at a reaction from a substrate A to a
product B, in which the i:th elementary reaction is

X+R;=Y+P; (1)

In this reaction the intermediate X is transformed to
another intermediate Y by reaction with the species
R;, whereby the species P; is also formed.

Reaction (1) is preceded by a number of other
elementary reactions, by which the substrate A has
been transformed to the intermediate X. These
reactions can be summarized as

A +ZIR;=X+ ZP; 2

The total reaction from A to B can then be written
schematically:

IR; R;
RN \x‘5 ' S Y B 3)
P P;
The net rate, v;, in (1) is
U= ki[x:] [Ri] - k—i[Y] [Pi] 4
or
—k, 11-%
vi =k [X][R/](1 K.») (5)

where the symbol [ ] denotes time dependent con-
centrations, k; and k_; are rate constants and

K;=k;/k_; the equilibrium constant of reaction
(1). Q; is the time dependent concentration quotient
corresponding to K ;.

Eqn. (5) can be brought in a form, (7), analogous
to Ohm’s law by introducing in it the equilibrium
constant, Ky, of reaction (2) and its corresponding
time dependent concentration quotient, Qy,

Ox = [X]n[P;][A]" " n[R]]" (6)

Hence

o=k KRR IR ) (2 - PR 0

In eqn. (7) the terms Qy/Kx and QxQ,/KxK;
within the parenthesis may be regarded as kinetic
potentials — in the points X and Y in (3) — whose
difference corresponds to U in Ohm’s law. The rest
of the right-hand member of eqn. (7) corresponds
to a conductance, k, and finally v; to an electric
current.

By introducing

fi=kiKx[R;]a[R;]n[P;]"! (8)

eqn (7) is simplified to

o= AP 22 o

Let us now regard two consecutive elementary
reactions, 1 and 2 within a mechanism, which
analogously to (3) can be represented as

TR

A XDl oy 2 g B (10
VAT ’
ij Py P,

Hence, as above

_ Ox _9x9,

= A2 - 22 (an)

vzsz[A](,%—:——g;g;) (12

where

fa= kZKY[Rl][RZ] ”[Rj] "[Pj]_ ! [Pl]_l (13)
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and

Qv = OxQ1, Ky = KxK, (14)

The last term within the parenthesis in eqn. (12)
represents the kinetic potential, Q;/K, in point Z
in (10) — cf. eqn (14) — so eqns (11), (12) and (14)
tell us immediately that the sum of the potential
differences X to Y and Y to Z equals the potential
difference between X and Z, as is required by the
analogy to an electrical circuit diagram. Further-

more, if the intermediate Y exists in a steady-state, -

it follows that the two net rates v, and v, are equal,
which is again the desired analogy to an electrical
circuit. What remains is to find the combination of
f, and f, to a quantity fxz, which makes it feasible
to substitute formally the two successive elementary
reactions with one single reaction of a net rate
vxz(=v,=0,, if the steady-state assumption is
correct). The expression for vy is

oxz = fxz[A] (% - %) (15)

and the egns. (11), (12) and (15) together with the
condition v, =v,=vy; then give

fxz b= (16)

which is just the expected analogy to the combined
conductance, kxz, of two rheostats of conductance
Kk, and k, coupled in series in an electrical circuit,
Kxz '=x, '+k,” ! In any given reaction mecha-
nism the quantities f, and f, are expressed by eqns.
(8) and (13) so eqn. (16) enables the combination
of two successive elementary reactions in any part
of a complicated reaction mechanism.

The next step is to deduce a combination cor-
responding to eqn. (16) for two parallel elementary
reactions. This can be done by starting from the
diagram (17)

R, Py
IR \ S

AN o x

\ w
ij ”~ ~

R, P,

Y———B (17)

where the notations correspond to those in diagrams
(3) and (10). Hence, as before
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(18)

(19

The difference within parenthesis in eqn. (18) equals
that in eqn. (19) if

0./K, =Q2/K2 (20)

Eqn. (20) is true if the reaction R, +P,=P,; +R,
is a rapid equilibrium. The total net rate, vyy, from
X to Y via the two paths in diagram (17) then equals
the sum of v; and v,, and it also follows that

fxy=fit/fa (21

where f, and f, are the products preceding the
factor [A] in the right-hand members of eqns. (18)
and (19). Eqn. (21) is again a direct analogy to the
conductances in an electrical circuit, this time for
two branches coupled in parallel.

Eqns. (16) and (21) make it feasible to successively
combine two consecutive or two parallel elementary
reactions in a reaction mechanism, until one arrives
at the rate equation for the total reaction mechanism
from the substrate to the product (cf. the example,
mechanism (23), below). As pointed out in the
deduction the following conditions must be ful-
filled:

(i) All reactions between reactants and products
interfering with the substrate and the intermediates
by side reactions are rapid.

(ii) All intermediates are in steady-states.

The procedure to write the rate law for a given
mechanism of the reaction from A to B then runs
as follows:

(i) Write the expression for f, eqn. (8), for each
elementary reaction of the mechanism.

(iiy Combine the quantities f; according to the
rules valid for conductances in an analogous
electrical circuit diagram. The obtained combina-
tion of f; values is denoted f,(t). It contains among
other quantities the rate constants of the elementary
reactions but also time dependent factors.

(iii) The rate law is

—d[A]/de=f(0)[A]1-Q/K) 22
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where K is the equilibrium constant of the total
reaction and Q the corresponding time dependent
concentration quotient. (Since the equation
describes a reaction, which starts at point A in our
mechanism schedule, the first term within the
parenthesis is 1 and not a Q/K quantity, cf. eqn.
(5)). The kinetic experiments can often be arranged
in such a way that f,(t) is kept practically constant
during each run and Q/K < 1, i.e. eqn. (22) takes the
form of a rate equation for a pseudo first-order
reaction (vide infra).

In order to exemplify the procedure we choose a
mechanism described by the following diagram

A ! B
\ // >
4

X ——Y

where X and Y are steady-state intermediates in one
of the reaction paths (2, 4, 5) between A and B.
There is also a direct reaction, 1, from A to B, and
a direct path, 3, from X to B. In each elementary
reaction i, (i=1,...,5), there is a reactant R; and a
product P; taking part besides the species marked
in the diagram. All existing reactions between R,
and P, are rapid, compared to the rate-determining
elementary reactions marked by arrows in the
diagram. The equilibrium constant and rate constant
for each elementary reaction are K; and k.
The quantities f; are, cf. eqn. (8),

f1 = kl[Rl]

fz = kz[Rz]

f3 = kus[Rz][Rs][Pz]_l

f4 = k4-Kz|:Rz][R4][P2]_l

fs= k5K2K4[R2][R4][R5][P2]_ 1[P4]—1

These f; values are combined to f,(t)=f 45 by the
following steps

Jas = fi+faxs , two parallel reactions
Jaxs = (' +fxs 1!, two consecutive reactions

fxs =f3+Sxys , two parallel reactions
Sxys = (fa '+fs" 1"t | two consecutive reactions

which gives

)=+ A+ ) ]

with the values of f; given above.

Hence, all the quantities in the rate eqn. (22) are
known. The simplest expression for K and Q in
eqn. (22), valid for mechanism (23), are K =K, and
Q=[B][P,][A]"'[R]™". Another possibility could
be, eg.,, K=K,K,Ks and
Q= [B][Pz][P4][P5][A] - l[Rz] B l[R4] B l[Rs] o

Other examples where the method is used can
be found in Refs. 5, 6, 7, 8.

We wish to point out that the rate eqn. (22) can
be directly written down for the given mechanism
(23), simply by keeping in mind which elementary
reactions in the diagram are coupled in parallel
or in series. It is not necessary to carry out the
deduction above, since the result follows im-
mediately from the analogy to an electrical circuit
(vide Ref. 5, pp. 45—48).

In practice when a mechanism shall be deduced
from an experimentally determined rate constant,
ks 1t is an easy task to try a number of diagrams
like (23) and compare the algebraic form of the rate
equation corresponding to each such diagram to
the experimental rate equation. Such a procedure
is considerably quicker than deducing the rate
equation for each tried mechanism by solving a
number of equations, each containing a great
number of terms, as is done in the standard method
mentioned in the introduction. The present authors
feel that there are several examples in the literature
where wrong mechanisms have been proposed, for
the reason that one has found it too time consuming
to try a sufficient number of possible mechanisms
because of the lengthy deduction for each such trial.

INTEGRATION OF THE RATE LAW

The rate law in eqn. (22) is valid for the reaction,

A+YR=B+3YP; (24)
In order to carry out an integration of eqn. (22) as
simply as possible we introduce the equilibrium
concentration of all species, which in the following
are denoted with low case letters. Hence, the
equilibrium constant of reaction (24), K, is

! (25)

K=bnpja! nr;

As before

Q= [B]n[P;J[A] 'n[R;]"!
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Each time-dependent concentration is written as
the sum of its equilibrium concentration and a time-
dependent A term representing the distance to the
equilibrium value. Hence

[Al=a+ As [R]=r;+ Ag;, [B] =b + Ay,
[P]=p+ A @7
Combination of eqns. (22), (25), (26) and (27)
gives an expression for the net rate, which as a first
approximation — essentially obtained by neglecting
products of A quantities — can be written

dA _ _
B d‘tA = Apfidl + a2 ' AgAs ™Y —

b—lABAA_l _Z(pﬁIAPjAAﬁl)]} (28)

Here f, is a time-independent function of the same
form as fi(t) in eqn. (22) but with all time dependent
concentrations in f,(t) substituted by the corre-
sponding equilibrium concentrations.

If the species in the total reaction (24) are not
taking part in any side reactions, all the A quotients
within the parenthesis in eqn. (28) are simple
rational numbers, determined by the stoichiometry
of the total reaction. If this condition is true for our
reaction (24), it follows that Ag;A,~'=1 and
AgA, " =ApA,~ ' = —1. So eqn. (28) takes the
form (29) of a pseudo first-order reaction, if the
approximations are valid

4, =AMfill+aXr 7 +b7 407 N]

dt @)

The deduction of a suitable form of eqn. (28),
when rapid side reactions are coupled to the main
paths of the reaction now remains. Then two
complications arise:

(i) The substrate (and/or the product) may exist
in several forms in rapid equilibrium.

(if) The A quotients are, generally, no longer
simple rational numbers.

If(i) is true the kinetic experiments measure the
change with time of the sum, C,, of the concentra-
tions of all the substrate forms, which disappear,
however, by the rate of the form A directly reacting
via the main path. To handle this case we substitute
eqn. (28) by
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. (ACA) — ACAfk
dt
(30)
1 +a[z:(r; lAijzl)—b_ IABARI —Z(P; IAPjA;\l)]
AC,AR?
which may be shortened to
—Ei-(—A-Ci)=ACAkobs (31)
dt
where ko = fi fe (32)
with
f;’ =
1 +a[Z(r; lAijxl)_b— 'AgAG! _Z(P; lAPjAXI)]
AC ALY
(33)

As mentioned in point (ii) above, the difference
quotients in the parenthesis of eqn. (30) are no longer
simple rational numbers. When the reaction is far
from equilibrium they are not even necessarily
constant. In relaxation experiments, however, they
can be regarded as constants and substituted by
the corresponding derivatives, which can be cal-
culated in the following way.

In the reaction mixture there are a number of
components. One of these contains among other
species the substrate A and the product B. Other
components contain species denoted as R; and P;
in the diagrams, e.g. (3) and (17), of the reaction
mechanism. Finally a number of components might
be present, e.g. as buffers or indicators. The differ-
ence quotients in eqn. (30) can be calculated from
the derivatives of the total concentration of each
component, eqn. (34). These total concentrations,
C;, can be written as sums of the concentrations of
all species belonging to this component. Each term
in this sum can be substituted by a product of a
stoichiometric integer, an equilibrium constant and
pseudo equilibrium concentrations (in dignities
corresponding to the equilibrium equation chosen
for each species). This can be carried out by
choosing one suitable representative, D;, for each
component. For the components taking part in the
side reactions mentioned above the representatives
are chosen among the species R; and P;.

The total concentrations, C;, can then be written
as functions
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Ci = F:([A]a [B]’ [Dl]) (34)

which contain a number of equilibrium constants as
parameters. Derivation of this function gives

_ OF;  9F; d[B] oF, d[D]
O~siat* s an)* ZeinTaad)

where all the partial derivatives are known, if the
equilibrium constants and hence also the pseudo
equilibrum concentrations are known. There is one
such equation for each component, so from this set
of equations all the derivatives d[B]/d[A] and
d[D;]/d[A] can be calculated and substituted for
the corresponding difference quotients Ag/A,,
Ag;j/A, and so on in eqn. (30) for all R; and P; which
have been chosen as representatives, D;, for their
respective components. (If there are also some R;
or P; in eqn. (30) which have not been chosen as
D; the difference quotients can still be easily
calculated from the corresponding d[D;]/d[A] and
a suitable equilibrium equation).

This calculation of the difference quotients in
eqn. (30) demands that the two conditions given
after eqn. (21) are fulfilled. From condition (i) it
follows that the equilibrium equations can be used
for all species when writing the total concentrations,
C;, in the form (34). This is true because the reac-
tions between A (and B) species with P; are rapid,
so there is in practice equilibration between, eg.,
[A] and all species in the side reactions, even though
[A] itself might be far from its final equilibrium
value. Obviously equilibrium expressions which
contain both A and B species cannot be used in this
connection, since the corresponding reactions are
not equilibrated during the kinetic run. This is the
reason why A and B have been marked in eqn. (34),
as if they belonged to two different components.
Condition (ii) means that the concentrations of all
species containing some intermediate are so small
that they can be neglected in eqns. (30) and (34).

The result of the discussion in the previous
paragraph is important in cases where there are
small deviations in the kinetic run from a pseudo
first order reaction, since the difference quotients in
eqn. (30) can be calculated at any reaction time from
eqn. (34), e.g. at time zero or close to equilibrium.
The value of f,, calculated from eqn. (33) can then
be combined with kg, (t=0) or ky, (t=c0) in order
to determine the corresponding value of f, from
eqn. (32). Finally the reaction mechanism is deduced
from the algebraic form of f,. This method to obtain

fx has been used eg. in Refs. 5 (pp. 39 and 94)
and 8.

Deviations from a pseudo first-order reaction
can also arise because the approximations made to
calculate a constant value of f; are not good enough
during the whole time range of the kinetic run.
Also in this case it is often practical to determine,
eg., kys (t=00) and to obtain a corresponding
value of f, (t=o0) from eqn. (31). This is often the
easiest approach to determine the relevant rate
constants in a proposed mechanism, even when it
is possible to carry out an explicit integration of the
unapproximated (non first-order) rate equation.
Such an example has been demonstrated in Ref. 6.

The approximations discussed above can in
practice be made acceptable in the following two
cases

(i) The concentration of the substrate is chosen
much lower than all r; and p;. This can easily be
carried out in experiments started by mixing two
solutions. In most cases it is also possible to arrange
the experiments so that the final equilibrium con-
centration, a, of the substrate is so small that f, in
eqn. (33) equals A,/AC, (which can — in general —
be kept at a sufficiently constant value and equals
1 if the substrate does not take part in any side
reactions).

(ii) The measurements are carried out as relaxa-
tions. Since the concentrations of all participating
species must, generally, be of the same order of
magnitude in such experiments, the sum of the
terms in the numerator of the right-hand member
of eqn. (33) is about equal to the number of
reactants and products. In this case, however, the
approximations described above to calculate the
terms in f, are always accurate enough.

SUMMARY

A method has been described, by which a rate
equation can be deduced for a reaction mechanism
containing several steady-state intermediates. The
observed rate constant is written as a product of
two factors, f, and f,.

The factor f, in eqn. (32) contains among other
quantities the rate constants of all the rate-
determining steps of the mechanism and also a
number of equilibrium constants. These rate and
equilibrium constants are often arranged so that
their products, similar to f; in eqn. (8), represent
the experimentally determinable formal rate con-

Acta Chem. Scand. A 33 (1979) No. 2



stants for the various elementary reactions of the
mechanism (cf., e.g., Ref. 6).

The form of the function f; can be easily deduced
for any given mechanism by comparing a diagram
of the reaction mechanism to an analogous electric
current diagram. This analogy gives a simple
method to directly write down expressions for f; for
several different reaction mechanisms — even for
rather complicated ones — in order to compare
them with the experiments. It is often directly
evident from the form of the experimentally ob-
tained f, that the mechanism must contain a certain
(minimum) number of paths coupled in parallel
and in series.

The factor f, is often a minor correction factor
and is — in principle — a function of the equilibrium
concentrations of the reactants and products, but
does not contain any rate constants.

The use of the method has been examplified in
the paper, and references are also given to examples
in the literature, where the method has been used.
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